
Abstract

The accurate-, and timely prediction of the annual
sugar-beet crop yield is important to Sugar Industry
because, based on it, the “harvest campaign” can be
scheduled efficiently. This work presents intelligent
clustering techniques for effecting efficient-, small
error prediction of the annual sugar-beet crop yield for
the Hellenic Sugar Industry based on production- and
meteorological- data acquired during a period of
eleven years. The experiments here demonstrate that
intelligent clustering techniques can provide with
better estimates of sugar production than alternative
prediction methods including an “energy
conservation” system model.

1   Introduction

The sugar production in Europe stems from an annual
(in farm practicing) plant, namely Beta Vulgaris L or
simply sugar-beet. The sugar-beet is planted in early
spring, and sugar is produced from processing the roots
of the plant which (roots) are harvested, in Greece,
during late summer /early fall time period.

The capacity to predict both accurately and timely the
annual sugar-beet crop yield is of vital importance to
Sugar Industry because the deployment of the “harvest
campaign” can be scheduled efficiently resulting in an
increased margin of profit.

Root and sugar yield forecasts are based on pre-harvest
sugar-beet and other data samples taken from randomly
selected fields. Forecasting is achieved using a
prediction model on the basis of the trend in the current
year compared with the corresponding trend in
previous years [16]. For instance, linear and multiple
regression models have been employed [1, 2, 16] based

on historical data. Attempts have been made to
incorporate in the prediction models various aspects of
climate and environmental parameters [10, 12, 15].

At an individual- “farm level”, decision support
systems have been developed for improving sugar-beet
crop yield based on expert knowledge and symbolic
data manipulation rather than on numeric data
processing [18]. A “systems approach” to the problem
of sugar production and prediction has been adopted by
several researchers aiming at an understanding, as
well, of the interaction among various underlying
mechanisms and factors [9, 16]. There exists an
extended bibliography presenting the results of various
studies for modeling and forecasting of both the sugar-
beet crop yield and the sugar production [4, 17, 19].

The algorithmic prediction of sugar production in
Greece is not trivial for two reasons. First, prediction
models which have been applied successfully elsewhere
in Europe are not valid in Greece due to differences in
both climate and soil fertility [8]. Second, the number
of data available for developing as well as for
validating various prediction models barely spans the
last decade. Therefore previous attempts to develop
prediction models such as interpolation-, polynomial-,
linear autoregression-, and neural- predictors for
Hellenic Sugar Industry (HSI) have met with only
limited success [13]. More specifically, in [13] a
prediction error around 6% is reported using data of six
years. This work builds on previous experience to
improve prediction accuracy.

Section 2 presents the sugar prediction problem in
terms of the data which are available. Section 3
presents two forecasting models. Section 4 details the
experiments and the corresponding results. Finally,
section 5 concludes by discussing comparatively the
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merits of the proposed techniques and by delineating
the potential for further improvement.



2   Data Acquisition

The sugar-beet growing area in Greece, stretches from
Florina to Orestiada along central and northern Greece.
The production is organized around five principal
factories located at Larisa, Platy, Serres, Xanthi, and
Orestiada. In the beginning of the year in every factory
a set of representative fields, namely pilot fields, is
defined by agriculturalists of Hellenic Sugar Industry
(HSI) to obtaining sample measurements from.
Different factories might define different numbers of
pilot fields. Moreover, even for the same factory, the
number of pilot fields might differ from year to year.
Note that it is not necessary, in a factory, one pilot field
to be “pilot field” again for any future year.
Nevertheless, as long as a set of pilot fields is defined
in the beginning of a year for a factory, then all
samples during the year in question are obtained from
the defined pilot fields.

Sample measurements for several variables of
agricultural interest were available in this study where
each variable was being sampled for a number of
consecutive years; the last year any variable sampled
was 1999. Several variables have been dropped for
various reasons. In particular, for some variables there
were samples available for a period of only 2 years,
therefore those variables were ignored from the outset.
Other variables, pertaining to “soil”, were ignored
because i) those variables were being sampled for only
6-7 years, and ii) a data preprocessing procedure
showed that the values of those variables were fairly
stable from year to year. Note that a variable pertaining
to soil is sampled only once a year.

Samples of production variables as well as of
meteorological (climate) variables have been
considered in this work. The production variables were
recorded from year 1987 to 1999 including, and they
are summarized in Table 1.

Table 1   Production variables

Variable name Description
(where necessary)

Unit

1 average root weight g
2 POL (sugar content) sugar in fresh root

weight
%

3 α-amino-Nitrogen (α-N) meq*/100g root
4 potassium (K) meq*/100g root
5 sodium (Na) meq*/100g root
6 Leaf Area Index (LAI) leaf area per field

area
dimensionless

7 TOP plant top weight kg/stremma**

8 Roots Yield (RY) kg/stremma**

9 Nitrogen-test (N-test) NO3-N content in
pedioles

mg.kg-1

10 planting date
      *    meq: milli-equivalent
    **  1 stremma = 1000 m2

The sugar content or, equivalently, sugar production is
calculated by the product POL×RY. The
meteorological (climate) variables were recorded from
year 1989 to 1999 including, and they are summarized
in Table 2.

Table 2   Meteorological (climate) variables

Variable name Unit
1 average daily temperature oC
2 maximum daily temperature oC
3 minimum daily temperature oC
4 relative humidity %
5 wind speed miles /hour
6 daily precipitation mm
7 daily evaporation mm
8 sunlight hours /day

Sample measurements of both production variables
and meteorological (climate) variables have been used
in this work for eleven consecutive years from 1989 to
1999 including. An additional number of samples has
been dropped as explained in the following.

The meteorological data here were recorded by the
National Meteorological Service of Greece (EMY) in
local stations nearby the factory areas. Data for the
Orestiada factory did not exist, whereas the data for the
Xanthi factory were sparse and practically unusable.
Note that there were available complete meteorological
data sets from EMY stations at Xrisoupolis and at
Alexandroupolis. Nevertheless due to the considerable
distances of Xrisoupolis and Alexandroupolis from,
respectively, Xanthi and Orestiada as well as due to the
considerable geographic /climate differences between
the aforementioned districts it was decided to use
jointly production and meteorological data from only
three factories, these are Larisa, Platy, and Serres. The
last difficulty regarding the data arose from the fact
that the sampling of the production- and the
meteorological- variables was not uniform as explained
below.

On the one hand, the meteorological variables were
sampled every day during the whole year. On the other
hand, the production variables were sampled at
different rates in different years and, in addition, the
sampling was lasting for different lengths of time. In
particular until year 1997, starting on June 1, or June
11, or June 21, samples of the production variables
were taken in all factories every 10 days until either
September or early October. For the last two years,
starting on June 20, the production variables were
sampled in all factories every 20 days until either
September or early October. Another problem stemmed
from the fact that the “pilot fields” were actually
“commercial fields” cultivated for profit, therefore
when harvest was beginning in late August the pilot



fields were bound to be harvested as well, hence the
measurements were distorted. We decided to consider
measurements up until September 10 including. In
conclusion, regarding the production variables,
samples have been considered from June 20 through
September 10 every 20 days, whereas, regarding the
meteorological variables, daily samples have been
considered from June 1 through September 10. Note
that for the aforementioned data the “missing values”
represented around 1% of the total amount of data.

In conclusion, the “raw” data considered in this work
have been samples of 10 production- and 8
meteorological- variables for the three factories of
Larisa, Platy, and Serres for eleven consecutive years
from 1989 to 1999 including. The Larisa factory
included always 50 pilot fields, the Platy factory 54, 58,
or 60 pilot fields, and the Serres factory included 40 or
45 pilot fields.

3   Forecasting Models

The goal has been to predict accurately at the end of
July the sugar content to be on September 10. Recall
that at the end of July a set of measurements (samples)
of the production variables is available immediately
before the beginning of the harvest campaign. Note that
in this work the prediction of sugar content is aimed at
the factory level, that is there is no interest here for
prediction either at the individual field- or at the plant-
level.

3.1   “First Principles” Model
A “system modeling” approach has been elaborated for
the prediction of sugar-beet crop growth. The model is
based on “first principles” where the sugar-beet plant
growth process is modeled as an energy- and matter-
conversion process at a macroscopic scale. The process
inputs (exogenous variables) are mainly weather
related. In particular these variables include the daily
average temperature, the daily sunshine (in hours), and
the date of planting which also depends on both the
weather and plant variety. The system state variables
include the leaf weight, total root weight, and weight of
sugar in the plant. The most significant internal
derived variable is the leaf area index (LAI) which
determines the plant energy intake and subsequent
growth.

The model is described by a set of non linear
differential equations that are numerically integrated
using the Euler method at one day sampling intervals.
The energy input from sunshine, modulated by the
daily average temperature and current LAI, is
converted into solid matter for the leaf and root (non-
sugar) parts of the plant and into sugar. The daily

average temperature determines leaf loss and metabolic
loss of solid matter.

3.2   “Computational Intelligence” based Prediction
By “Computational Intelligence” is meant an array of
tools such as neural networks, fuzzy systems, and
evolutionary computation techniques, which attempt to
simulate computationally various aspects of human
intelligence [14]. In this work computational
intelligence techniques have been used for building a
model which best fits the data. The sugar production
has been the output of the predictor, whereas the
corresponding inputs are selected among the
production- and the meteorological- variables as
explained below.

In the first place, a “clustering” procedure was carried
out in order to group together similar arithmetic values
of the output (sugar production) in a factory. Note that
in a previous work on sugar prediction [13],
“clustering” has also been employed for grouping
together various inputs to a predictor model in order to
train one model with “similar”, in a “cluster
belonging” sense, inputs. Moreover note that the
prediction of sugar production is treated as a time-
series classification problem in [13] using data of six
years from 1989 to 1994 without including any
meteorological data. In this work clustering was carried
out on the output (sugar production) values for every
factory. The decision for this sort of clustering was
taken in line with the common practice by
agriculturalists of HSI that the correct classification of
a year as “good”, “medium”, or “poor” (sugar
production year) is sufficient in practice. After having
clustered the sugar production (of September 10) in a
factory in three clusters, a training /testing computation
was carried out as explained in the following.

The leave-1-out paradigm has been used for training
/testing, that is one year was left out for testing and the
remaining years were used for training. Both “training”
and “testing” used the L1-distance between two sets of
samples which (L1-distance) is computed as follows.
Let S1 and S2 be two sets of numbers, then the L1-
distance between S1 and S2 is defined to be the absolute
value of the difference of the average values of the two
sets S1 and S2. Note that a set of numbers emerges in
this work from either the production- or the
meteorological- variables. In particular for production
variables, a set of numbers emerges from the set of
pilot fields, whereas for meteorological variables a set
of numbers emerges from the set of the daily samples
taken during the previous 20 days.

During the “training phase” one square symmetric
matrix with the L1-distances between different
“training” years was calculated for each input variable.
Let X={x1,…,xN} be the set of input variables and let



I={1,…,N} be a set of indices. Furthermore, let Di

denote the square symmetric matrix with the L1-
distances for input variable xi. A weighted matrix D
was defined by

D= wiDi+…+wkDk, where i, …,k∈I, and
wi, …wk are real number weights.

A ‘training year” was associated with another one
which corresponded to the shortest distance in D. A
contradiction occurs if the two years (associated with
the shortest distance) are in different categories. A cost
function C(D) was defined as the sum of all
contradictions. Hence, the following optimization
problem had to be solved:

Find 1) indices i, …,k∈I, and
2) weights wi, …wk

such that C(D) is minimized.
In case more than one optimal solutions are computed,
then one solution is selected randomly.

Having computed indices i,…,k∈I as well as weights
wi, …wk, the “testing phase” is carried out by
computing the enhanced matrices iD′ ,…, kD′  and D′
such that the “testing year” is also accounted in the
computation of matrices iD′ ,…, kD′  and D′. More
specifically, each dimension of square matrices

iD′ ,…, kD′ , D′ is “by one” larger than the dimension of
square matrices Di,…, Dk, D. Finally, the “testing year”
is assigned to the category of its shortest-distance-year
as computed from the enhanced weighted matrix D′.

The optimization of the aforementioned cost function
C(D) was carried out using a Genetic Algorithm (GA)
[5, 6]. The encoded solution vector (genotype) of the
GA was a binary string containing representations of
the weights wi,…wk of variables xi,…xk, respectively.
Note that the weights wi,…wk were being varied in the
closed interval [0,2], where weight value ‘0’ implies
that the corresponding input variable is “missing” from
the solution.

4   Experiments and Results

4.1   “First principles” Model
A number of modeling relationships and parameters
are defined based on Greek Sugar Industry experience
as well as on previous experimentation. Four to twenty
parameters (depending on the simulation experiment)
are left free for estimation by algorithmic techniques
based on process data. Gradient free search techniques
are used for this purpose and in particular the Simplex
method of Nelder-Mead as implemented in Matlab [3]
and a variation of a genetic algorithm [7].

Five previous years of plant growth data from the
Larisa factory are employed. There are fifty different
measurement fields per production region. Each year of

data is considered in isolation, i.e. data from different
years are not used to try to estimate a given year’s
model parameters. The first three measurements (at
170, 190 and 210 days from the beginning of the year
respectively) are used in a system identification manner
while the measurement for day 230 is estimated. The
resulting relative identification and prediction errors
are shown in Fig.1. The average prediction error in five
years was 15.63%. These errors, while within
reasonable bounds given the variability of the
underlying process, are too large for the intended
purposes of prediction.

The large discrepancies between predicted and
measured values for the sugar content are attributed to
the small number of data available for model
identification. Therefore, no further predictions have
been attempted using this type of predictor model for
the factories of Platy and Serres.

Estimate of Sugar Content in Sugar Beet based on First 
Principles Modeling
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Fig.1 Prediction errors during five consecutive years
of sugar production for the Larisa factory based
on “first principles” system modeling techniques

4.2   “Computational Intelligence” based Prediction
Section 3.2 presented the arguments for employing
three cluster levels, namely “good”, “medium”, and
“poor” levels, for the annual sugar production in a
factory. Due to the different capacities of the sugar
growing districts of Larisa, Platy, and Serres, the levels
for “good”, “medium”, and “poor” have been assigned
by an expert agriculturalist at different levels for each
factory (district) as shown in Table 3. Note that, during
the procedure of defining the levels of three clusters per
factory among the sugar production data of eleven
years, one year was left out as an “outlier” for each
factory because its corresponding sugar production was
far beyond, either above or below, the sugar production
rate of other years. In conclusion, data for ten years
have been used for each factory.



For different reasons three production variables as well
as two meteorological variables were ignored in the
experiments. More specifically, 1) production variable
LAI was ignored because there were not enough data;
2) meteorological variable average daily temperature
was ignored as “redundant” since both the maximum-
and the minimum- daily temperatures had been
included in the experiments; 3) meteorological variable
wind strength was ignored because a data preprocessing
procedure showed an insignificant correlation with the
annual sugar production; 4) production variable
planting date was ignored because a “Markovian”
assumption was made such that the planting date had
no relevance, as soon as the first measurement (sample)
was available; 5) production variable potassium (K)
was ignored due to its high correlation with production
variable sodium (Na), the latter variable has been
included in the experiments. Hence, in conclusion, 7
production variables and 6 meteorological variables
have been considered in the experiments. Two
additional variables have been used namely PTOP and
QR. Variable PTOP is defined as “the percentage TOP
of the total plant’s weight”, and variable QR is defined
by equation QR= POL/Na, where ‘TOP’, ‘POL’ and
‘Na’ are known production variables. Note that both
variables PTOP and QR are known indices for sugar
quality [11].

Table 3  Sugar production levels in Kg/stremma for
“good”, “medium”, and “poor” years, in three
agricultural districts.

Sugar Agricultural District
Production
level Larisa Platy Serres
“good” 1040 1045 1164
“medium” 970 961 1064
“poor” 890 925 982

Recall that the problem is, using the data available on
July 30, to assign a year the correct label from the set of
labels {“good”, “medium”, “poor”}. In other words, the
problem of “prediction” has been treated here as a
problem of “classification”. It might be useful to point
out that the minimum prediction error, ever expected,
by the proposed prediction-via-classification method is
1.08%, 1.44%, and 1.46%, respectively, for the Larisa,
Platy, and Serres factories as shown in the first row of
Table 4. Note that the “minimum prediction error” is
attained when each year is classified to its correct
cluster “good”, “medium”, or “poor”.

Table 4 also shows the average errors for the three
factories of HSI when each year is assigned randomly a
value in the set {“good”, “medium”, “poor”}. The error
rates 8.45%, 5.87%, and 7.47% in Table 4 for the
Larisa, Platy, and Serres factories, respectively, have

been calculated by carrying out a number of random
experiments in the computer. It should be pointed out
that, even with a random prediction /classification, the
prediction error is significantly smaller than the error
of the previous “first principles” model. Hence,
prediction-via-classification, as presented here, is a
“well posed” technique in the sense that a small
prediction error is expected from the outset.

Various techniques have been employed for reducing
further the classification error. For instance a
“medium” (sugar production) has been assumed for
every year in a factory. In such a case the prediction
error is further reduced as shown in Table 4. In
particular prediction errors of 6.13%, 3.44%, and
5.54% have been calculated for Larisa, Platy, and
Serres, respectively. This is yet another indication that
the technique of prediction-via-classification is “well
posed”.

A further reduction of the prediction error was
achieved using a genetic algorithm in order to identify
the input variables which can better classify years as
“good”, “medium”, and “poor”. The GA was applied as
described in section 3.2. The GA implementation here
was a simple GA, that is no problem-specific-operators
or other techniques were employed. Ten experiments
were carried out for each factory area (Larisa, Platy and
Serres), that is one experiment for each year of data.
The GA encoded the 15 input variables’ weight
parameters using 3 bits per parameter and thus a total
genotype length of 45 bits. A population of 200
genotypes (solutions) was employed and it was left to
evolve for 500 generations. For each experiment (year)
10 independent GA runs were carried out and the best
task was taken as the final result for the specific year.
The search space contains 245≈3.5x1013 solutions. The
average number of solutions considered and evaluated
by the GA in each experiment was only 105. The
average time for the GA runs was about 10 seconds (for
each run) on a Pentium III 667 Mhz platform. For the
Larisa pilot fields the training error was in the range
0.91% to 2.05% and the testing error in the range
0.22% to 16.98%. For the Platy pilot fields the training
error was in the range 1.4% to 2.4% and the testing
error was in the range 1.05% to 13.3%. Finally for the
Serres pilot fields the training error was in the range
1.38% to 2.34% and the testing error was in the range
0.82% to 10.43%. The average testing (prediction)
errors for the three factories are summarized in Table
4.

Table 4  Average % prediction error rates using
various methods for three factories of HSI.

Prediction Method Larisa Platy Seres
minimum prediction error 1.08 1.44 1.46
GA with L1-distances 5.83 4.42 4.58



“medium” selection 6.13 3.44 5.54
random prediction 8.45 5.87 7.47

5   Discussion and Conclusion

There is a need for Hellenic Sugar Industry (HSI) to
develop algorithms for predicting accurately the annual
sugar production. Prediction models established in
other countries can not be used due to differences in
both environmental conditions and soil fertility.

A system modeling approach was used for predicting
sugar production based on “first principles”, in
particular the sugar-beet plant growth was modeled as
an energy conversion process. The large size of the
prediction error (it was larger than 15% for the Larisa
factory) was attributed to the lack of both detailed
knowledge of the underlying and sufficient measured
data. We intend to improve the algorithm by
integrating into the model plant leaf aging which was
found to be a significant in the overall beet growth
process and is believed to be insufficiently
approximated in the current model. Furthermore, as
more data will become available in the future, better
estimates of the model parameters could be estimated.

It should be pointed out that a system model for sugar
production, despite its poor performance as a predictor
in the context of this work, has been hailed firmly by
expert agriculturalists of HSI as an effective tool for the
education of young-, practicing- agriculturalists.

“Intelligent clustering” techniques for prediction of
sugar production have demonstrated quite promising
results here. In particular there have been reported
good results for all three factories for which there was a
sufficient number of data. An advantage of the
intelligent clustering techniques presented here is that
they are “model free”. That is they do not require the
expensive (“expensive”, at least, in terms of time)
procedure of developing a prediction model. The
experiments in this work have shown that a “small”
number of ten years of dependable measurements is
enough for reducing the prediction error to around 5%.

A promising research direction, currently pursued, is to
use a distance between the distributions of samples
(measurements) of the pilot fields in a factory, in order
to calculate the proximity of a year to previous years,
instead of using the L1-distance. A further reduction of
the sugar production prediction error could be achieved
by taking into account the effects of potential diseases
including cercospora, rhizomania disease, etc. as soon
as such data become available.

References

[ 1] D. Bruandet, “Les prévisions de récolte à l’ IRIS: forme
actuelle et perspectives d’ amélioration”, Sucrerie
française, pp. 297-302, 1989.

[ 2] B.M. Church, and A. Gnanasakthy, “Estimating sugar
production from preharvest samples”, British Sugar
Beet Review, vol. 53, no. 3 pp. 9-11, 1983.

[ 3] T. Coleman, M.A. Branch, A. Grace, “Optimization
Toolbox For Use with Matlab”, The Mathworks Inc.,
1990-1999.

[ 4] R.P. Freckleton, A.R. Watkinson, D.J. Webb, and T.H.
Thomas, “Yield of Sugar-Beet in Relation to Weather
and Nutrients”, Agricultural and Forest Meteorology,
vol. 93, no. 1, pp. 39-51, 1999.

[ 5] D.E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Reading, MA:
Addison Wesley, 1989.

[ 6] J.H. Holland, Adaptation in Natural and Artificial
Systems, Ann Arbor, Michigan: The University of
Michigan Press, 1975.

[ 7] S. Kazarlis, Application of Genetic Algorithms on
Real-World Constrained Optimization Problems and
the Varying Fitness Function Technique (in Greek),
Ph.D. Dissertation, Dept. of Electrical and Computer
Engineering, Aristotle University of Thessaloniki,
Greece, 1998.

[ 8] A. Kallinakis, “Criteria and factors of sugar beet
quality” (in Greek), Technical Report, Hellenic Sugar
Industry S.A., Direction of Agricultural Services, Serres
1991.

[ 9] S. Krupa, M. Nosal, and A. Legge, “Modeling plant
response to tropospheric ozone: concepts and
strategies”, in H.J. Jäger, M. Unsworth, L. De
Temmerman and P. Mathy (Eds.), Proceedings of the
final Symposium of the European Open-Top Chambers
project, pp. 131-150, 1992.

[10] S. Mambelli, G. Vitali, G. Venturi, and M.T.
Amaducci, “Simulation model for predicting sugar beet
growth and sugar yield under Po-valley conditions”,
Proceedings of the HRB 55th Winter Congress, pp. 305-
314, 1992.

[11] N. Maslaris, P. Christodoulou, and G. Zountsas,
“Quantitative effect of root/leaf growth rate on root
yield and quality parameters in sugar beet”,
Zuckerindustrie, vol. 122, no. 3, pp. 208-211, 1997.

[12] S.A. Modig, “Swedish Forecasts of sugar beet yields –
Some Regression Models”, Proceedings of the IIRB
55th Winter Congress, pp. 189-210, 1992.

[13] V. Petridis, A. Kehagias, L. Petrou, A. Bakirtzis, N.
Maslaris, S. Kiartzis, H. Panagiotou, “A Bayesian
Multiple Models Combination Method for Time Series
Prediction”, Intl. Journal of Intelligent and Robotic
Systems, 2000.

[14] X. Yao, “Evolving Artificial Neural Networks”,
Proceedings of the IEEE, special issue on
Computational Intelligence, vol. 87, no. 9, pp. 1423-
1447, 1999.

[15] C.J.T. Spitters, H. van Keulen, and D.W.G. van
Kraailingen, “A simple and universal crop growth
simulator: SUCROS87”, in R. Rabbinge, S.A. Ward,
and H.H. van Laar (Eds.), Simulation and systems
management in crop protection, Simulation
Monographs 32, Pudoc, Wageningen, pp. 147-181,
1989.



[16] H. Vandendriessche, “Modeling Growth and Sugar
Accumulation of Sugar Beet (Beta Vulgaris L.) for
Potential Production Conditions”, Biologische
Wetenschappen, Katholieke Universiteit Leuven,
Belgium, Ph.D. Dissertation, September 1995.

[17] H. Vandendriessche, M.K. van Ittersum, “Crop models
and decision support systems for yield forecasting and
management of the sugar beet crop”, Agricola, vol. 4,
no. 3, pp. 269-279, 1995.

[18] J.M. Vion, “SAKARA: Système expert pour l’
amelioration de la productivité des betteraves
sucrières”, Proceedings of the IIRB 55th Winter
Congress, pp. 17-31, 1992.

[19] C.R. Webb, A.R. Werker, and C.A. Gilligan,
“Modeling the Dynamical Components of the Sugar-
Beet Crop”, Annals of Botany, vol. 80, no. 4, pp. 427-
436, 1997.


