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Abstract

A connectionist scheme, namely σ- Fuzzy Lattice Neurocomputing scheme or σ-FLN for short, which has

been introduced in the literature lately for clustering in a lattice data domain, is employed in this work for

computing clusters of directed graphs in a master-graph. New tools are presented and used here including

a convenient inclusion measure function for clustering graphs. A directed graph is treated by σ-FLN as a

single datum in the mathematical lattice of subgraphs stemming from a master-graph. A series of

experiments is detailed where the master-graph emanates from a Thesaurus of a spoken language

synonyms. The words of the Thesaurus are fed to σ-FLN in order to compute clusters of semantically

related words, namely hyperwords. The arithmetic parameters of σ-FLN can be adjusted so as to calibrate

the total number of hyperwords computed in a specific application. It is demonstrated how the

employment of hyperwords implies a reduction, based on the a priori knowledge of semantics contained

in the Thesaurus, in the number of features to be used for document classification. In a series of

comparative experiments for document classification it appears that the proposed method improves

favorably classification accuracy in problems involving longer documents whereas performance

deteriorates in problems involving short documents.
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1  Introduction

A sustained interest in connectionist models, or, alternatively, neural networks, has been revitalized

more than ten years ago. Connectionist models have been quite efficient for vector-based or for sequential

representations due, among other, to their capacity for generalization, parallel processing, as well as their

ability for real function approximation [Scarselli]. Nevertheless, in several applications other types of data

than vectors may arise. For instance, terms in first-order logic, blocks in document processing, patterns in
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structural and syntactic pattern recognition are entities which are best represented as graph structures and

they cannot be easily dealt with vector-based architectures [Sperduti97]. However, the conventional

connectionist models, despite their aforementioned qualities, fall short of processing non-numeric data.

Interest in developing connectionist architectures capable of dealing with non-numeric data can be

traced back to the end of the 1980’s. Early approaches include BoltzCONS [Touretzky], and Recursive

Auto-Associative Memory (RAAM) [Pollack]. A widely referenced neural model of learning past tenses

of English verbs has also been presented in [Rumelhart]. More recent techniques include labeled RAAM

[Sperduti95], and holographic reduced representations [Plate]. Recurrent neural networks have been

proposed as connectionist models with a feedback mechanism in their network architecture so as they can

be trained to behave like deterministic finite-state automata [Omlin]. Furthermore, the need for a unified

treatment of several types of data structures has been acknowledged [Frasconi].

The problem of learning based on “other than fixed-length” feature vectors has been treated in a non-

connectionist context in [Cohen] where set-valued features are employed. Nevetheless a major difficulty

regarding the employment of connectionist models for non-numeric data processing is in devising proper

ways of learning. In typical neural network applications, which involve non-vector data, a suitable vector-

based data representation is forced out as an observation [Lecun]. Further data processing may be carried

out on a conventional multilayer perceptron architecture [Gori] whose well-known drawbacks include: 1)

long training time, 2) “erosion” of previous knowledge when new training data are presented, and 3) no

reasons for the answers can be provided. Note that the common practice in neural computing when non-

numeric data are involved, that is of converting the non-numeric data to numeric ones, might be regarded

as one type of data preprocessing which could potentially suppress original discriminatory features and

lead to deterioration in decision making.

A fundamentally novel approach to neurocomputing, namely Fuzzy Lattice Neurocomputing (FLN),

has been proposed by the authors of this paper for dealing with non-numeric data without converting them

to numeric data [Kaburlasos97], [Petridis98]. More specifically the FLN is a connectionist paradigm in

the framework of fuzzy lattices (FL-framework) which is detailed rigorously in [Petridis99]. An FLN

scheme implies versatility since an FLN scheme can be applied, in principle, to disparate data domains

which might be any one of the following domains: vectors of numbers, fuzzy sets, symbols, etc. as it has

been demonstrated in [Kaburlasos97], [Petridis98], [Petridis99]. A specific FLN scheme is shown in this

paper, namely σ-FLN (scheme), inspired from the biologically motivated Adaptive Resonance Theory

(ART) for neural computation [Carpenter87], [Carpenter91]. The σ-FLN is employed in this work for

computing clusters of directed graphs in a master-graph aiming at document classification based on

semantics.

Apart from the treatment of a whole graph as a single datum in neural computing, another suggestion

of this work for improving the state-of-the-art involves the application of neural computing for document
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classification based on semantics. The latter is effected as described in this work by computing graph

clusters in a master-graph stemming from a Thesaurus of linguistic synonyms. Note that various

approaches to document classification employ vectors of features, where a feature corresponds to an

occurrence of a specific word in a document [Drucker], [Mladenic98], [Sahami]. For a recent survey on

intelligent agents for learning text the reader may refer to [Mladenic99]. Lately, the idea of relating

documents based on content rather than merely on statistics is “gaining momentum”, for example in

[Chang] a feedback mechanism is proposed for information retrieval based on content. In the same

context, a priori knowledge of semantics has been employed as explained in the following. More

specifically, the problem of text classification is dealt with in [Junker] by integrating the WordNet

Thesaurus in conventional rule induction algorithms; furthermore, in [Green] the WordNet Thesaurus is

employed as well to generate automatically links between semantically related documents.

The layout of this paper is as follows. Section 2 delineates the framework of fuzzy lattices (FL-

framework) and it introduces novel tools for clustering graphs. Section 3 introduces lattice G of directed

graphs and it illustrates by an example the utility of various tools in lattice G. In section 4 a neural

scheme for unsupervised clustering, namely σ-FLN scheme, is described algorithmically and analyzed.

Section 5 details an application of σ-FLN for graph clustering in a master-graph emanating from MOBY

Thesaurus of linguistic synonyms in order to imply a semantics-based dimensionality reduction of the

feature vectors to be employed for document classification. A series of comparative experiments for

document classification is also reported. Finally, section 6 summarizes the contribution of this work and it

discusses the potential utility of the presented techniques.

2 The Framework of Fuzzy Lattices (FL-framework): A Theoretical Foundation

for Structured Data Processing

In order to enable processing of non-numeric data including graphs, the framework of fuzzy lattices

or FL-framework for short, has been introduced. This section summarizes briefly useful notions and tools.

For a more general and  formal introduction to the FL-framework the reader may refer to [Petridis99]. An

important notion in the FL-framework is the notion partly ordered set which is defined as follows.

Definition 1  A partly ordered set is a set in which a binary relation x≤y is defined, which satisfies the

following conditions for all x,y,z

P1.  For all x, x≤x. (Reflexive)

P2.  If x≤y and y≤x, then x=y. (Antisymmetry)
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P3.  If x≤y and y≤z, then x≤z. (Transitivity)

∇

The definition of the well-known notion lattice is cited underneath from [Birkhoff].

Definition 2  A lattice is a partly ordered set any two of whose elements have a greatest lower bound or

meet denoted by x∧y and a least upper bound or join denoted by x∨y.

∇

A lattice is called complete when each of its subsets has a least upper bound and a greatest lower

bound in the lattice in question. A nonvoid complete lattice contains a least element and a greatest

element denoted by OL and IL, respectively, as suggested in [Petridis99]. Note that only complete lattices

will be considered in this work, therefore in the sequel by “lattice” is meant “complete lattice”. A lattice

is called in this work conventional lattice, or alternatively, crisp lattice. The partial ordering relation in a

crisp lattice L will be denoted by ≤L, whereas the join and meet operations in L will be denoted,

respectively, by ∨L and ∧L.

If x,y∈L then either “x and y are comparable”, that is either x≤Ly or y≤Lx, or “x and y are

incomparable” that is neither x≤Ly nor y≤Lx. Two incomparable elements x,y∈L are denoted by x∥Ly.

Note that the subscript in all of ≤L, ∨L, ∧L, and ∥L is meant to explicitly identify the underlying lattice.

When ≤, ∨, ∧, and ∥ are used in this work without a subscript they refer to the set R of real numbers. Note

that R is itself a lattice such that for x,y∈R it holds x∧y=min{x,y} and x∨y=max{x,y}. Furthermore x∥y is

always false in R, symbolically x∦y, hence the elements in R are called totally ordered and R is called

totally ordered lattice or, alternatively, chain.

The notion fuzzy lattice has been introduced in [Kaburlasos97], [Petridis98], [Petridis99] in order to

extend the lattice ordering relation to all pairs (x,y)∈L×L of a crisp lattice L. Such an extended relation

may be regarded as a fuzzy set on the universe of discourse L×L. In this work a fuzzy set is denoted by

(X,µ), where X is the universe of discourse and µ is a membership function µ: X→[ 0,1]. Hence, the

aforementioned extended relation implies a fuzzy set (L×L,µ), which is defined under condition µ(x,y)=1

if and only if x≤Ly. The definition for a fuzzy lattice follows naturally.

Definition 3  A fuzzy lattice is a pair 〈L,µ〉, where L is a crisp lattice and (L×L,µ) is a fuzzy set such that

µ(x,y)=1 if and only if x≤Ly.

∇
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The collection of fuzzy lattices is referred to as framework of fuzzy lattices or FL-framework for

short. The significance of the above definition is that it allows one to specify the degree of inclusion of a

crisp lattice’s element to any other element. Note that µ(x,y)=1 in a fuzzy lattice 〈L,µ〉 does not

necessarily imply µ(y,x)=0 and it could well be µ(y,x)>0. Regarding transitivity in a fuzzy lattice 〈L,µ〉

note that the conventional transitivity property holds only in the sense that µ(x,y)=1 and µ(y,z)=1 jointly

imply µ(x,z)=1. When it is either µ(x,y)≠1 or µ(y,z)≠1 then µ(x,z) could be any number in [0,1]. The

following definition for an inclusion measure from [Kaburlasos97], [Petridis98], [Petridis99] will

eventually enable the fuzzification of a complete crisp lattice.

Definition 4  Let L be a complete lattice. An inclusion measure in L is a map σ: L×L→[0,1] such that

σ((x,u))≡σ(x≤Lu) satisfies the following three conditions:

(E0)  σ(x≤LOL)=0, x≠OL, where OL is the least element in L.

(E1)  σ(u≤Lu)=1, ∀u∈L.

(E2)  u≤Lw ⇒ σ(x≤Lu) ≤ σ(x≤Lw), x,u,w∈L - Consistency Property.

∇

It can be argued that σ(x,u) indicates the degree of inclusion of x in u, therefore notations σ(x,u) and

σ(x≤Lu) will be employed interchangeably. To define an inclusion measure in a crisp lattice L a real

number will be attached to each of its elements by a valuation function. A valuation on crisp lattice L is a

real-valued function v: L→R which satisfies v(x)+v(y)=v(x∨Ly)+v(x∧Ly), x,y∈L. A valuation is monotone

if and only if x≤Ly implies v(x)≤v(y), and positive if and only if x<Ly implies v(x)<v(y) [Birkhoff]. A

positive valuation v on a lattice L renders the lattice in question a metric space with metric (distance) :

d(x,y)= v(x∨Ly)-v(x∧Ly), x,y∈L [Birkhoff]. It is assumed here that v(OL)=0 for a positive valuation

function because if v(OL)≠0 then another positive valuation function v+ with v+(OL)=0 can always be

defined out of v by subtracting v(OL) from all v(x), x∈L. The following theorem for defining an inclusion

measure in L is from [Petridis99].

Theorem 5  The existence of a positive valuation function v on a crisp lattice L is a sufficient condition

for function 
)(

)(
),(

uxv

uv
uxk

L∨
=  to be an inclusion measure in lattice L.

∇
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Due to the application requirements in the context of this work another inclusion measure will be

defined next.

Theorem 6  The existence of a positive valuation function v in a crisp lattice L is a sufficient condition

for function 
)(

)(
)(

xv

uxv
ux,s L∧

=  to be an inclusion measure in lattice L.

∇

The proof of theorem 6 is given in the Appendix.

Note that s(x,u) can be employed for indicating the degree of inclusion of x in u, therefore in the

sequel s(x,u) will also be denoted by s(x≤Lu). Furthermore s(x≤Lu) equals 1 if and only if x≤Lu. It might be

useful to point out that an employment of function 
)(

)(
)(

uv

uxv
ux,f L∧

=  , with v(u) in the denominator

instead of v(x), for indicating the degree of inclusion of x in u is “counter-intuitive” for the following

reason. Let there be x,u in L such that x≤Lu and x≠u, that is let there be x<Lu. Then an employment of

function f(x,u) implies that the degree of inclusion of x in u is less than 1, that is counter-intuitive. On the

other hand, an employment of function s(x,u) suggested by theorem 6 implies x<Lu ⇒ s(x,u)=1 as

expected intuitively. The effectiveness of function s(x,u) has also been confirmed experimentally as

shown in section 5.

All the analysis in this section has been carried out with regards to a lattice L. However, lattice L

could itself be a product lattice of N other lattices L1,…,LN, namely constituent lattices, that is

L=L1×…×LN. The lattice ordering of the product of N lattices L1,…,LN accounts for the modular and

inherently hierarchic nature of the FL-framework as it has been illustrated in [Petridis99]. The following

result has been copied from [Petridis99].

Proposition 7  If v1,…,vN are valuations on lattices L1,…,LN, respectively, then function v=v1+…+vN is a

valuation on the product lattice L=L1×…×LN.

∇

Note that it suffices all valuations v1,…,vN to be monotone so as valuation v=v1+…+vN to be

monotone as well. If at least one of the monotone valuations v1,…,vN is, in addition, a positive valuation

then v is a positive valuation in product lattice L=L1×…×LN. The latter accounts for FL-framework’s

capacity to treat jointly and with mathematical rigor disparate types of data. Note that the capacity for

learning based on disparate types of data in the FL-framework has already been demonstrated in various
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constituent lattices including: the lattice “unit hypercube” [Kaburlasos97], a lattice of fuzzy sets

[Petridis98], and a lattice of symbols [Petridis99].

Various types of “data processing” are also possible in the FL-framework. For instance, Fuzzy

Lattice Neurocomputing or FLN for short, is a possibility as shown in this paper. Another possibility for

data processing in the FL-framework is regression as it will be shown elsewhere. The following section

studies a specific lattice, that is the lattice of directed graphs, in view of an application involving graphs.

3 A Lattice of Directed Graphs

In this section a lattice G of directed graphs is shown followed by the definition of a positive

valuation function in G. An example illustrates calculation of the degree of inclusion of a graph into

another one in lattice G. The notion of a graph is defined formally underneath.

Definition 8  A graph G, denoted by G=(V,E), is the set-union of a finite non-empty set V={n1,…,nN} of

vertices (or, nodes) and a set E of edges (or, links), where an edge is an ordered pair (ni,nj) of nodes ni,nj

in V.

∇

The non-empty set V={n1,…,nN} contains the labels of a graph’s nodes, whereas set E includes

ordered pairs (ni,nj), ni,nj∈V, i,j∈{1,…,N}. It is important to note that E is a binary relation on V in the

sense that a link (ni,nj) is eligible to appear in E if and only if both ni and nj are in the corresponding non-

empty set V of nodes. Definition 8 implies that a graph might have no links, that is a graph G=(V,E) with

E=∅ is eligible. Nevertheless for a link (ni,nj) in E both ni and nj have to be in V, hence a graph G=(V,E)

with V=∅ and E≠∅ is not allowed.

All graphs considered in this work are directed graphs in the sense that link (nj,ni) with nj≠ni is

different than link (ni,nj). From henceforward a directed graph will also be called graph for simplicity.

Note that a (directed) graph G=(V,E) may also be denoted, alternatively, as the set-union of V and E, that

is G=V∪E, under the aforementioned condition that E is a binary relation on V.

The largest directed graph of interest in a particular application is the universe of discourse, namely

master-graph, and it will be denoted by M=(VM,EM). Any particular graph G=(V,E), which might arise

in the application in question, will be included in the master-graph, symbolically G⊆M. The latter, set-

theoretic relation G=(V,E) ⊆ (VM,EM)=M is interpreted as conjunction “V⊆VM”.AND.“E⊆EM”.
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The previous discussion implies that a graph G is in the power set ℘(M) of the master-graph

M=VM∪EM. Note, however, that not any element in the power set ℘(M) of master-graph M=VM∪EM

is a graph. For instance, consider a non-empty set S≠∅ which includes only links from EM but no nodes

from VM. In line with definition 8, it follows that S is not eligible for representing a graph because S does

not include any nodes. In conclusion, if G denotes the set of (directed) graphs emanating from a master-

graph M it follows G ⊂ ℘(M), that is the set G of graphs is a proper subset of the power set ℘(M) of

the master-graph M.

It is well known that the power set ℘(M) is lattice-ordered and moreover it is known that the

corresponding lattice-ordering (≤℘), lattice-meet (∧℘), and lattice-join (∨℘) in ℘ are, respectively, the

conventional set-inclusion (⊆), set-intersection (∩), and set-union (∪). It is quite straight forward to show

that the aforementioned set G of graphs is closed under both operations set-union (∪) and set-intersection

(∩), in the sense that if both G1 and G2 are in G then it follows that both G1∪G2 and G1∩G2 are in G. In

conclusion, the set G of graphs emanating from a master-graph M is a lattice. As a convention the join

(∨G) and meet (∧G) operators in lattice G will be denoted, alternatively, by the set-union (∪) and set-

intersection (∩) operators, respectively. Likewise, inclusion (≤G) in lattice G will be denoted,

alternatively, by set-inclusion (⊆). Lattice G is a complete lattice; the least element OG and the greatest

element IG in G are the empty set and the master-graph M, respectively.

A positive valuation function can be defined in lattice G of directed graphs by a real function v:

G→R which assigns a positive real number to a graph’s node as well as to a graph’s link. It can be shown

easily that such a function v satisfies both v(G1)+v(G2)=v(G1∨GG2)+v(G1∧GG2) and G1<GG2⇒v(G1)<v(G1)

for two graphs G1,G2 in G, hence function v is a positive valuation function. The positive real number

assigned to a graph’s node n will be called node weight, denoted by wn. Likewise, the positive real

number assigned to a graph’s link l will be called link weight, denoted by wl. Apparently, “uncountably

infinite many” positive valuations functions can be defined in G. In the interest of simplicity this work

employs only positive valuation functions such that the weight of either a node or a link is equal to 1, that

is wn= wl=1 for all nodes and links in master-graph M. The following example illustrates an employment

of lattice inclusion measure s, defined by theorem 6, in the lattice G of graphs.
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Example #1:

Consider the graphs G1, G2, and G shown in Fig.1. Graph G1=(V1,E1), is specified by V1={2,3,6} and

E1={(2,6),(6,2),(2,3),(3,2),(3,6)}. Note that none of the links (1,2), (1,3), (6,8), and (7,6) are in E1 because

a node of the latter links is not in V1. In conclusion, graph G1 may be denoted by the set-union of sets V1

and E1, that is G1={2,3,6,(2,6),(6,2),(2,3),(3,2),(3,6)}. The cardinality of the sets V1 and E1 is,

respectively, V1=3, E1=5.

Likewise, graphs G2 and G are defined, respectively, by G2={4,5,7,8,(4,5),(5,8),(8,7),(7,4)} and

G={1,2,3,4,5,(2,3),(3,2),(1,2),(1,3),(1,1),(1,5),(4,5)}. In the sequel it is demonstrated the calculation of the

degree of inclusion of graph G in graphs G1 and G2, respectively, using inclusion measure s defined by

theorem 6. Note that

G∧GG1=G∩G1={2,3,(2,3),(3,2)}, and

G∧GG2=G∩G2={4,5,(4,5)}

Figure 1

Graph G is included, in a lattice inclusion measure s(.) sense, more in graph G1 than it is in

graph G2.
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Let wn denote the weight of a node and let wl denote the weight of a link. Then
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Using wn= wl=1.0 it follows s(G⊆G1) = 0.34 > 0.25 = s(G⊆G2), that is graph G is included more in graph

G1 than in graph G2. Note that inclusion measure s(G⊆G1) quantifies, in principle according to definition

4, by a number in the  range [0,1], the degree of inclusion of graph G in graph G1. In other words, the total

number of nodes and links in either G or G1 does not “show” in number s(G⊆G1); the latter number only

indicates “by how much graph G is inside graph G1”.

∇

4 σ- Fuzzy Lattice Neurocomputing (σ-FLN) Scheme for Graph Clustering

The σ- Fuzzy Lattice Neurocomputing (σ-FLN) scheme is presented in this work for application to

lattice G of directed graphs defined in the previous section. Note that the σ-FLN scheme has been

introduced under the name FLNN in [Petridis98], where its capacity for pattern recognition has been

demonstrated on vector-based data sets as well as on synthetic data in a lattice of fuzzy sets. Moreover,

the σ-FLN scheme has been presented under the name σ-FLL in [Petridis99], where it has been applied as

well to a benchmark data set including a constituent lattice of symbolic data. Lately the authors have

decided to switch to the name “σ-FLN scheme” so as to adhere to the terminology established

subsequently in the FL-framework. In particular, the initials “FL” denote a scheme applicable in the FL-

framework, initial “N” signifies a neural implementation, and letter σ indicates that both the training

phase and the testing phase are carried out using an inclusion measure (σ).

The σ-FLN has been inspired from the biologically motivated Adaptive Resonance Theory (ART)

neural paradigm [Carpenter87], in particular from fuzzy-ART [Carpenter91]. It has been explained in

[Petridis98] that both training and testing by σ-FLN are effected the same way as by fuzzy-ART.

Moreover, well-known properties of learning by the fuzzy-ART neural model [Huang], [Georgiopoulos]

are retained by σ-FLN.

In order to better illustrate the mechanics involved in learning by σ-FLN a conventional neural

architecture is reviewed in Fig.2. In particular, Fig.2(a) shows two successive layers including the Input

Layer of a conventional fully interconnected neural architecture. Note that in Fig.2(a) an interconnection
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between two neurons corresponds to a single real number. Moreover, the outputs of Upper Layer are fed

upwards to another layer of neurons which is not shown in Fig.2(a). Fig.2(b) resumes concisely the neural

architecture of Fig.2(a). More specifically, the Input Layer in Fig.2(b) is shown as a single neural node.

Hence, a line interconnection between the Input Layer neuron of Fig.2(b) and an Upper Layer neuron

corresponds to a vector of numbers. That is, the neural architecture in Fig.2(b) underlines that a datum

dealt with in Fig.2(b) is a vector. Pursuing further Fig.2(b) note that a neuron in Upper Layer computes

the sigmoid function of the inner product of two vectors, the latter are 1) input vector x, and 2) a weight

vector wi, i=1,…,L. Recall that the sigmoid is a monotonically increasing function of its argument, where

the latter ‘argument’ is in particular the aforementioned inner product of two vectors. It can be argued that

the outcome of the inner product operation may quantify by a number in interval [0,1] the similarity of its

operands. It is shown in the sequel that the σ-FLN carries out a “like” data processing procedure.

The corresponding neural architecture of σ-FLN for processing graphs is shown in Fig.3. The names

and roles of the various subsystems in Fig.3 are analogous to the names and roles of the corresponding

subsystems in an Adaptive Resonance Theory (ART) neural model as explained in [Petridis98] and they

will not be repeated again. It is worthwhile noting the structural similarity of Fig.3 to Fig.2(b). A key

difference between Fig.2(b) and Fig.3 is that the former processes vectors of numbers whereas the latter

processes graphs. That is, a datum dealt with in Fig.2(b) is a vector of numbers, whereas a datum dealt

with in Fig.3 is a graph represented as a set of nodes and links in line with definition 8. Likewise note that

the weight Gk, k=1,…,L of an interconnection in the σ-FLN architecture in Fig.3 corresponds to a whole

graph. Finally, a neuron in Category Layer F2 of the σ-FLN architecture (Fig.3) computes the degree of

inclusion of an input graph Ri to a weight graph Gk, k=1,…,L using inclusion measure function

s(Ri≤GGk)=s(Ri⊆Gk), the latter is a number in interval [0,1].

We remark that neural computing based on the elements of a mathematical lattice, including the

totally ordered lattice of real numbers, is FL-framework’s “proposal” in order to enhance conventional

neural computing which is typically carried out on real numbers. It should also be pointed out σ-FLN’s

capacity to process, as well, elements of a product lattice L=L1×…×LN involving disparate constituent

lattices L1,…,LN. The latter capacity accounts for σ-FLN’s potential for dealing jointly with disparate

types of data [Petridis99]. Nevertheless, in the context of this work, a single constituent lattice is

considered, that is in particular the lattice G of directed graphs emanating from a master-graph.

Algorithms for training- and for testing- using the σ-FLN are described in the following in pseudo code

form.
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Upper Layer

Input Layer

(a)
Upper Layer

Input Layer

(b)
Figure 2

(a) Two successive layers of a conventional fully connected neural architecture including the
Input Layer. Due to the dot-product between the outputs of Input Layer with the
connection weights to Upper Layer the input to an upper layer neuron may quantify by a
number in interval [0,1] the “similarity” of input vector x=(x1,x2,…,xN) to the stored
weights w1=(w11,w12,…,w1N),…, wL=(wL1,wL2,…,wLN).

(b) A concise representation of two successive layers of a conventional fully connected neural
architecture. The Input Layer is shown as a single neural node, which can accommodate a
vector of numbers. An interconnection between Input Layer and Upper Layer
accommodates a vector of numbers.
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Category Layer  F2

Competition : winner takes all.

Input Layer  F1

Buffering & Matching.

Figure 3

The two layer σ- Fuzzy Lattice Neurocomputing (σ-FLN) architecture for processing
directed graphs. L, is the number of Category Layer neurons, which equals the total
number of clusters/graphs. A Category Layer neuron employs a lattice inclusion measure
s(.) as its activation function in order to specify by a number in interval [0,1] the degree of
inclusion of an input graph Ri to a weight graph Gk, k=1,…,L. Input Layer is used to buffer
an input graph. A “reset” node is used for resetting the activity of a node in the Category
Layer.

s(Ri⊆G1) s(Ri⊆G2) s(Ri⊆G3) s(Ri⊆GL)
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G2

GL

reset

1 2 3 L

Ri
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Algorithm for Training by σ-FLN

Function trainFLN(S,ρ)

  1 L:=1;

  2 GL= R0, (the first input graph R0∈G is memorized)

  3 For each graph Ri, i=1,…,n in the training set S do

  4 “Set” all memorized-graphs Gk, k=1,…,L

  5 Calculate s(Ri≤GGk), k=1,…,L

  6 while (there exist memorized-graphs Gk, k=1,…,L “set”) do

  7 GJ:= the graph with max{s(Ri≤GGk), k=1,…,L} among the “set” memorized-graphs

  8 if (s(GJ≤GRi)≥ρ) then GJ:=GJ∨GRi; exit the while loop;

  9 else “reset” GJ;

10 endwhile

11 if (all memorized-graphs Gk, k=1,…,L have been “reset”) then

12 L:=L+1;

13 GL:=Ri; (memorize input graph Ri∈G)

14 endif

15 endfor

16 return Gk, k=1,…,L

Various terms employed by the σ-FLN algorithm above including “set”, “reset”, “vigilance

parameter” originate from ART as explained in [Petridis98]. More specifically, a node in Category Layer

(Fig.3) is “set” when the node in question is potentially available for accommodating an input to the σ-

FLN, whereas a “reset” node is unavailable for doing so. Furthermore, the “vigilance parameter” ρ is a

user-defined threshold parameter in the range [0,1] such that when a particular degree of lattice inclusion

is above the vigilance threshold then a learning procedure may be triggered. The principal difference

between fuzzy-ART and σ-FLN concerns the type of data dealt with the two neural models. In particular,

σ-FLN deals with intervals of data in a lattice domain including fuzzy-ART’s domain, the latter is the unit

N-dimensional hypercube in which fuzzy-ART deals solely with points, these are trivial intervals in the

N-dimensional Euclidean space. More details regarding a comparison of σ-FLN with fuzzy-ART are

shown in [Kaburlasos00].
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Note that function trainFLN(S,ρ) above requires two input arguments, these are a set S which

includes all graphs to be used for training as well as the “vigilance parameter” ρ, that is a real number

between 0 and 1. The output of function trainFLN(S,ρ) is a set of clusters, these are graphs Gk, k=1,…,L

which have been learned during training. In the previous scheme the learning is continuously “on” for all

inputs. In particular, a new input graph Ri∈G is assigned to the most activated memorized-graph GJ,

J∈{1,…,L} provided that σ(GJ≤GRi) is larger than the user-defined “vigilance parameter” ρ. Otherwise

“reset” is triggered and the quest for a new winner resumes. If all graphs G1,…,GL have been “reset” and

no winner has been found then input graph Ri is memorized as indicated in line 13 of the above

algorithm. Memorization means that input graph Ri is stored as a new cluster/graph in the Category Layer

(Fig.3).

Learning by σ-FLN is effected in steps 8 and 13 of the previous algorithm. On the one hand,

learning in step 13 has already been explained. On the other hand, learning in step 8 is effected by the

lattice G join operator ∨G, that is the set-inclusion operation ∪, as explained in section 3. Note that a

memorized-graph Gk, k=1,…,L can be regarded as interval [∅,Gk], where ∅ is the empty set the latter is

the least element OG in the complete lattice G of directed graphs. Hence, a graph G belongs in interval

[∅,Gk]= [OG,Gk] if and only if ∅=OG ⊆ G ⊆ Gk. In conclusion, it follows that learning by σ-FLN is

effected either by memorizing intervals of graphs in G (step 13) or by enhancing existing intervals of

graphs in G (step 8) using the lattice G join operator ∨G.

To employ the σ-FLN solely for testing, σ-FLN’s “learning capacity” must be disengaged. In

particular testing is affected according to the following algorithm. Note that function testFLN(T)

underneath requires one input argument that is set T which includes all graphs to be used for testing.

Algorithm for Testing by σ-FLN

Function testFLN(T)

  1 For each graph Rm, m=1,…,N in the testing set T do

  2 Calculate s(Rm≤GGk), k=1,…,L

  3 Assign Rm to GJ:= the graph with max{s(Rm≤GGk), k=1,…,L}

  4 endfor
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Note that the number L of graphs/clusters in Category Layer F2 remains constant during testing.

In all, the σ-FLN scheme for clustering is a competitive self-organizing neural scheme, which

employs a lattice inclusion measure σ aiming at crisp set identification by clustering. The capacity of σ-

FLN to generalize on new and hitherto unknown patterns is due to the employment of inclusion measure

σ, and it has been demonstrated on disparate lattice domains including vectors of real numbers

[Kaburlasos97], fuzzy sets [Petridis98], and lattice-ordered symbols [Petridis99]. The total number L of

graphs/clusters to be learned is not known a priori, more specifically number L is specified ‘on-line’

during training. Regarding the training complexity, it follows from function trainFLN(S,ρ) that learning

by σ-FLN is achieved in one pass through the training data set, that is there are no multiple cycles in the

algorithm. The worse case training scenario would be to keep “resetting” all L clusters for every input.

Hence the training complexity is quadratic O(n2), where n is the number of graphs for training.

The same way as with an ART neural model [Carpenter87], [Carpenter91], retraining the σ-FLN by

another data set does not “wash away” previous learning. More specifically, retraining the σ-FLN by a

new data set either enhances previously learned clusters (step 8) or it creates new clusters (step 13) in the

Category Layer. The “vigilance parameter” ρ regulates σ-FLN’s granularity of learning, that is the

number of clusters/graphs in the Category Layer. More specifically, on the one hand, a large value of ρ

within interval [0,1] implies more clusters/graphs in the Category Layer F2 and hence a “more refined”

knowledge is attained, on the other hand, as ρ decreases, fewer clusters are learned. Note that the

aforementioned role of the “vigilance parameter” ρ as a “regulator for learning” has been retained from an

Adaptive Resonance Theory (ART) neural model [Carpenter91].

5  Graph Clustering for Semantic Document Classification

5.1  A Domain for Graph Clustering

The proposed methods have been applied for synonym clustering in a master-graph stemming as

described in the following from MOBY Thesaurus of synonyms, which is available from The Institute for

Language, Speech and Hearing, University of Sheffield [MOBY]. MOBY Thesaurus contains in an

ASCII file records with terms such that the first term in a record, namely root term, is followed by a list

of synonym terms in alphabetical order. Each term, including the root, is followed by a comma. The last

term in a record is followed by a carriage return /linefeed. There are 30,260 records in MOBY Thesaurus

and more than 2.5 million synonym terms, in all.
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In a series of preprocessing steps, MOBY Thesaurus has been reduced in size by omitting

uncommon terms as described in the following. In the first place, all synonym terms which do not appear

as root terms have been eliminated. Hence a simplified Thesaurus emerged, namely simplified MOBY

Thesaurus, including 681,761 synonym terms. Further preprocessing has been carried by removing root

terms including two or more words, for example such root terms as “a capella”, “bid price”, “infantile

paralysis”, etc. have been removed. Finally, rare root terms have also been removed, where a root term is

considered to be rare if the number of times it occurs as a synonym in MOBY Thesaurus is below a user-

defined threshold. In conclusion a new Thesaurus emerged, namely reduced MOBY Thesaurus, including

11,769 root terms and 628,242 synonyms terms, in all. Note that a root term does not always include a

single word; for instance root terms consisting of hyphen-separated words are also included, such as

“well-versed”, “self-esteem”, “well-to-do”, etc. The number of synonyms in a root term is called

cardinality of the corresponding root term.

A master-graph M with 11,769 nodes, or vertices, has emerged as follows. Each root term of the

reduced MOBY Thesaurus corresponded to a node in the master-graph. The existence of a link (ni,nj) in

M from a node ni to another node nj was assumed if and only if the term corresponding to node nj is in

the list of synonyms of the root term corresponding to node ni. In this way a master-graph with 11,769

nodes and 628,242 links emerged from the reduced MOBY Thesaurus.

The goal of clustering by σ-FLN in the master-graph M has been to learn clusters of terms that retain

a similar meaning. The term hyperword has been coined to denote such a cluster of terms. The term

cardinality of a hyperword denotes the number of terms clustered in a hyperword. Note that the

granularity of learning defined at the end of section 4 equals, in this case, the total number of computed

hyperwords. In the context of this work hyperwords are meant for dimensionality reduction in a document

classification problem by replacing a term in a document by its corresponding hyperword. Note that,

often, in a document classification problem every word in the document is used as a feature. Furthermore,

various dimensionality reduction techniques have been considered and employed in the literature based

on document frequency thresholding, information gain, mutual information, term strength, and χ2

[Drucker], [Quinlan]. In addition, “word stemming” and a “stop list” have also been used in order to

reduce the dimensionality of the feature space [Mladenic98], [Sahami]. This work proposes a novel

method for reducing dimensionality of the feature space for document classification based on semantics.

5.2  σ-FLN for Clustering Words in a Thesaurus

A specific type of graphs, namely s-Graphs, have been used in the experiments here. In particular,

the set V of nodes in an s-Graph G=(V,E) is partitioned as it is explained underneath to two disjoint sets
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Vc and Vs, namely set of core nodes and set of satellite nodes, respectively, such that V=Vc∪Vs.

Likewise, the set E of links is partitioned to two disjoint sets Ec and Es, namely set of core links and set of

satellite links, respectively, such that E=Ec∪Es. The set Ec of core links contains all the links in master-

graph M interconnecting core nodes in Vc and only those links, whereas the set Es of satellite links

contains all the links in M from a core node to another node in M, the latter nodes are called satellite

nodes. Recall that the set of satellite nodes has been denoted above by Vs. Hence, by construction of an s-

Graph, a satellite node corresponds to a synonym of a core node. Note that when a node appears both as a

core- and as a satellite- node then the node in question counts as a core node in an s-Graph. The previous

s-Graphs are 1st-order s-Graphs, in the sense that the maximum number of links between a core node and

a satellite node is one. An nth-order s-Graph is an s-Graph such that the aforementioned maximum

number of links between a core node and a satellite node equals n. Only 1st-order s-Graphs have been

considered in this work and the graphs in question are called graphs for simplicity. Note that a singleton

graph is a graph with a single core node only.

Clustering by σ-FLN in the reduced MOBY Thesaurus has been effected by feeding the σ-FLN with

a series of its 11,769 root terms. Each root term has been presented as a singleton graph with as many

satellite nodes as the synonyms of the root term in question are. The algorithm described in section 4 by

function trainFLN(S,ρ) has been applied in principle during the experiments reported in the sequel.

Nevertheless, in order to produce hyperwords which contain semantically related terms the following

conjunctive condition has been considered, in addition, in line 7 of function trainFLN(S,ρ):

“(s(Ri≤GCj)≥ρ1) for all singleton graphs Cj⊆GJ”.AND.“(s(Ri≤GCj)≥ρ2) for at least one singleton graph

Cj⊆GJ”, where both ρ1 and ρ2 are in the range [0,1]. The reason for employing the aforementioned

conjunction is to keep a minimal semantic affinity of a new term to be incorporated in a hyperword to all

other terms in the hyperword in question. Note also that the aforementioned conjunction can be easily

accommodated in hardware in σ-FLN architecture’s “reset subsystem” (Fig.3), by employing two

comparators and an AND gate.

It should be pointed out that in this particular application of σ-FLN for graph clustering, inclusion

measure 
)(

)(
)(

xv

uxv
ux,s L∧

=  has given better results than inclusion measure 
)(

)(
),(

uxv

uv
uxk

L∨
=  because

the hyperwords computed using s(x,u) include only terms semantically related to each other, whereas it

has been verified experimentally that the hyperwords produced using k(x,u) may include terms which are

semantically quite different from one another. The reason for the latter difference is that for two disjoint

graphs x and u, k(x,u) implies a non-zero degree of inclusion of x in u, whereas s(x,u) implies a zero

degree of inclusion of x in u and hence it implies a better decision-making in computing hyperwords.
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A graph can be represented in the computer memory using a sparse square “adjacency matrix”.

Nevertheless, since the total number of nodes and links could vary substantially during learning by σ-

FLN, a graph has been represented in the experiments underneath by a linked list which implies dynamic

memory allocation. Furthermore, due to the inherently hierarchic and modular nature of the σ-FLN

scheme, an object oriented programming language, in particular C++, has been employed for simulating

the σ-FLN scheme. Certain mechanisms of an object oriented programming language including 1)

inheritance, and 2) operator overloading, have been particularly useful and convenient in implementing in

software the inherently hierarchic and modular σ-FLN.

5.3 Computation of Hyperwords

A series of experiments has been carried out for learning clusters of semantically related words, that

is for learning hyperwords, by σ-FLN with vigilance parameters ρ1 and ρ2 as explained in the previous

section. It has been confirmed experimentally that the collection of hyperwords calculated by σ-FLN

depends on the order of presenting the 11,769 root terms of the reduced MOBY Thesaurus. Such a data

order dependence is a well-known property of σ-FLN [Petridis99]. Three different data orderings have

been employed for clustering by the σ-FLN with vigilance parameters ρ1=0.001 and ρ2=0.1, and the

corresponding results are reported in Table 1. In particular, for data ordering DO1 the 11,769 root terms

have been presented in alphabetical order. A total number of 7,833 hyperwords were calculated with

cardinalities ranging from 1 to 213. Data ordering DO2 reported in Table 1 has been obtained by

arranging the 11,769 root terms of the reduced MOBY Thesaurus in a decreasing order in their number of

synonyms. That is, a root term with more synonyms has been presented before another root term with

fewer synonyms, while two root terms with an equal number of synonyms have been presented at

random. A total number of 8,899 hyperwords were calculated with cardinalities ranging from 1 to 232.

Finally, data ordering DO3 has been obtained by reversing the order of data in DO2. That is, in DO3 a

root term with fewer synonyms has been presented before another root term with more synonyms,

resulting in a total number of 2,601 hyperwords with a number of core nodes ranging from 1 to 192. In

conclusion, data ordering DO3 has resulted in the largest data compression from 11,769 root terms in the

Thesaurus down to 2,601 hyperwords. The smaller granularity of learning implied by data ordering DO3

compared to the corresponding granularities implied by either DO1 or DO2 is attributed to the initial

memorization by σ-FLN in DO3 of graphs with a smaller number of synonyms. Hence, due to the

conjunction which includes two vigilance parameters ρ1 and ρ2 described in the previous section, fewer

hyperwords have been computed for data ordering DO3. Moreover, data ordering DO3 has resulted in

hyperwords which include semantically similar terms as explained in the following.
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TABLE 1
Three different orderings DO1, DO2, and DO3 of the records in the reduced MOBY

thesaurus have resulted in, as explained in the text, different sets of hyperwords.

Data
Ordering

Granularity
of Learning

min cardinality
of a hyperword

max cardinality of
a hyperword

Processing Time [in
min]

DO1 7,833 1 213 126
DO2 8,899 1 232 231
DO3 2,601 1 192 103

On the one hand, the hyperwords produced by either data ordering DO1 or data ordering DO2 have

included several terms with different, even conflicting, semantics. On the other hand, data ordering DO3

has resulted in hyperwords including terms semantically similar to each other as shown in Table 2 which

shows selected hyperword labels for hyperwords of various cardinalities together with the corresponding

terms they cluster. It should also be noted that data ordering DO3 has resulted in a shorter data processing

time as shown in Table 1. In particular, data ordering DO3 required 103 min, whereas data orderings DO1

and DO2 required 126 min and 231 min, respectively, on a Pentium III at 500 MHz with 128 RAM.

Hence, in addition to providing with fewer hyperwords including terms which are semantically more

similar to each other, data ordering DO3 is computationally the least expensive. Two figures with

histograms are provided in the following in order to illustrate quantitatively the learning of hyperwords by

σ-FLN with data ordering DO3 and vigilance parameters ρ1=0.001 and ρ2=0.1.
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TABLE  2
Hyperwords, these are clusters of semantically related words, have been calculated by “σ-FLN for clustering” on the reduced MOBY

thesaurus with parameters ρ1=0.001, ρ2=0.1. The words were fed to σ-FLN in data ordering DO3 as explained in the text.

Hyperword ID Root terms included in a hyperword

hw#24 (with 4 core nodes) agriculture farming agrarian rural
hw#74 (with 6 core nodes) housekeeper caretaker jailer keeper warden guardian
hw#138 (with 14 core nodes) paranoid neurotic psychotic maniac demented maniacal touched deranged hysterical unbalanced lunatic distracted distraught

mental
hw#157 (with 5 core nodes) autocrat despot dictator oppressor tyrant
hw#269 (with 10 core nodes) versus toward against across contra confronting inverse polar facing obverse

hw#401 (with 3 core nodes) chauvinist dogmatist bigot

hw#405 (with 5 core nodes) considerably greatly highly exceedingly awfully
hw#410 (with 30 core nodes) dynamite decapitate disassemble unmake incinerate dismantle devastate vandalize vaporize pulverize devour demolish pillage

slaughter shatter butcher batter atomize maul dissolve assault consume disintegrate overwhelm ravage spoil wreck kill confound
destroy

hw#988 (with 29 core nodes) amazing marvellous arresting wondrous memorable celebrated astonishing miraculous unusual esteemed puzzling uncommon
phenomenal enigmatic wonderful remarkable noteworthy conspicuous salient unique noticeable marked notable singular
outstanding special exceptional rare strange

hw#1059 (with 20 core nodes) amazed captivated mesmerized spellbound charmed enthralled bewitched astounded surprised fascinated entranced aghast
dumbfounded puzzled bewildered overwhelmed enchanted stupefied resigned confounded

hw#1079 (with 24 core nodes) moratorium impasse obstacle congestion wait deterrent hindrance detention respite fixation closure impediment lag obstruction
interruption restriction interference repression stoppage resistance suppression pause delay suspension

hw#1118 (with 67 core nodes) corrupting damaging deleterious lethal pernicious detrimental baleful destructive hurtful poisonous injurious mischievous
malevolent ominous harmful baneful distressing malignant noxious painful malign hateful ill dreadful villainous deadly
deplorable fatal virulent killing miserable heinous sinister dire noisome grievous wretched wicked fell shocking terrible fierce
vicious nasty black sad vile rotten grim offensive outrageous flagrant harsh atrocious dirty sore dark monstrous evil grave wrong
bad severe gross rough foul heavy

hw#1253 (with 14 core nodes) mirth enjoyment recreation fruition amusement glee euphoria well-being elation joy exhilaration happiness gaiety fun
hw#1562 (with 14 core nodes) adulterated incomplete lacking damaged impaired blemished wanting unfinished partial imperfect deficient inadequate cracked

defective
hw#1615 (with 10 core nodes) inkling indication clue suspicion intimation symptom tinge tincture hint suggestion

hw#1765 (with 5 core nodes) unbridled immoderate exorbitant excessive intemperate
hw#1883 (with 3 core nodes) inexact inaccurate imprecise

hw#1925 (with 5 core nodes) intention ambition inspiration motive aspiration

hw#2211 (with 4 core nodes) infamous shameful notorious scandalous
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On the one hand, Fig.4 shows the number of hyperwords versus hyperword cardinality. Note that

there are 1502 hyperwords with cardinality “1” which account for approximately 57.74% of the total

number of 2,601 hyperwords. Since the number of hyperwords decreases almost exponentially with

hyperword cardinality, Fig.4 has been broken to Fig.4(a) for cardinalities 1 to 10, and Fig.4(b) for

cardinalities 11 to 200.

(a)

(b)

Figure 4
The histograms above show
(a) The number of hyperwords versus hyperword cardinality for cardinality sizes 1 to 10.

Hyperwords with cardinality “1” account for approximately 57.74% of the total number of
2,601 hyperwords computed on the reduced MOBY Thesaurus.

(b) The number of hyperwords versus hyperword cardinality for cardinality sizes 11 to 200.
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On the other hand, Fig.5 displays the number of root terms versus hyperword cardinality. Note that

1502 root terms, that is approximately 12.67% of the total number of 11,769 root terms in the reduced

MOBY Thesaurus, correspond to hyperwords with cardinality “1”. Likewise as in Fig.4, and for the same

reason, Fig.5 is broken to two parts, these are Fig.5(a) and Fig.5(b). In both Fig.4(b) and Fig.5(b) it is

shown that there is a single outlier hyperword with cardinality 192.

(a)

(b)

Figure 5
The histograms above show
(a) The number of root terms versus hyperword cardinality for cardinality sizes 1 to 10.

Hyperwords with cardinality “1” represent approximately 12.76% of the total number of
11,769 root terms in the reduced MOBY Thesaurus.

(b) The number of root terms versus hyperword cardinality for cardinality sizes 11 to 200.
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It is quite important to note that the vigilance parameters ρ1 and ρ2 can be used for fine-tuning the

granularity of learning by σ-FLN in a specific application. Various experiments have been carried out and

the corresponding results are reported in the Table 3 for data ordering DO3. An increase in either ρ1 or ρ2

has implied an increase of the granularity of learning as shown in Table 3 due to the conjunction which

involves the two vigilance parameters ρ1 or ρ2 as it has been described in the previous section.

TABLE 3
For data ordering DO3 various combinations of
values of the vigilance parameters ρ1 and ρ2 have
resulted in a different granularity of learning as
explained in the text.

Vigilance
parameter ρ1

Vigilance
parameter ρ2

Granularity of
Learning

0.001 0.1 2,601
0.001 0.2 2,792
0.001 0.3 3,638
0.001 0.4 5,486
0.01 0.1 2,802
0.05 0.1 3,694
0.1 0.1 4,329

A final remark concerns the definition of positive valuation function v(.), that is the definition of

weights wn and wl for a node and a link, respectively. Note that the significance of choosing a “good”

positive valuation function in clustering by σ-FLN has been reported for inclusion measure

)(

)(
),(

uxv

uv
uxk

L∨
=  in [Petridis99]. Nevertheless, it is expected theoretically that all positive valuation

functions imply the same results of clustering when inclusion measure 
)(

)(
)(

xv

uxv
ux,s L∧

=  is employed.

In particular given x, note that the ordering of numbers 
)(

)( i

xv

uxv L∧
 does not change for different positive

valuation functions hence it is expected that σ-FLN always provides with identical clustering results for

any underlying positive valuation function. The latter theoretically expected result has been verified

experimentally, as well, using different positive valuation functions which have been defined for different

values of a node weight (wn) and a link weight (wl).
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5.4  Document Classification Based on Hyperwords

This section builds on the previous experimental results and empirical evidence is provided

regarding the merit of hyperwords for document classification. For the experiments described in the

following documents were drawn randomly from “Reuters-21578, Distribution 1.0” benchmark collection

of documents [Lewis], and the following three document classification problems have been dealt with.

Problem-1:
A total number of 148 documents were drawn from the three categories: “colombia”, “singapore”, and

“taiwan” from the PLACES set of categories of Reuters-21578. Approximately 2/3 of the total number of

documents have been employed for training and the remaining 1/3 of the documents have been used for

testing. The classification problem was to learn predicting the correct category of a document in the

testing set.

Problem-2:
A total number of 143 documents were drawn from the two categories: “nasdaq”, and “nyse” from the

EXCHANGES set of categories of Reuters-21578. Approximately 2/3 and 1/3 of the total number of

documents have been used, respectively, for training and testing.

Problem-3:
A total number of 169 documents were drawn from the two categories: “opec”, and “worldbank” from the

ORGS set of categories of Reuters-21578. Likewise as above, approximately 2/3 and 1/3 of the total

number of documents have been used for training and testing, respectively.

Note that in each problem, the corresponding categories were represented by approximately equal

numbers of documents. Moreover, note that only the text between tags <BODY> and </BODY> of a

document has been used in this work for classification.

All documents have been preprocessed using a standard stoplist of words so as to remove trivial

words such as letters, articles, etc. After preprocessing by a stoplist, the documents in problem-1

contained, respectively, an average of 71.79 words with standard deviation 51.59, whereas the documents

in problems -2 and -3 contained, respectively, an average of 37.58 words with standard deviation 34.47,

and an average of 95.77 words with standard deviation 51.11 as shown in Table 4. Preprocessing

concluded by applying the Porter algorithm for stemming [Porter].

The vocabulary of stemmed words in a document classification problem included all different

stemmed words, ordered alphabetically, which appear in all the documents of the problem in question.

The sizes of the vocabularies of stemmed words have been 2482, 1585, and 3066 in problems 1, 2, and 3,

respectively. In conclusion, a document has been represented by a vector of integers, where a vector-entry

corresponded to a specific word in the vocabulary of stemmed words, and the (integer) value of a vector-

entry indicated the number of occurrences of the stemmed word in question in a document.



26

In order to validate comparatively the effectiveness of hyperwords, out of each one of the

preprocessed documents of stemmed words another document has been generated by replacing a stemmed

word by its corresponding hyperword. Note that the “Porter algorithm for stemming” had to be applied on

the list of hyperwords (see in Table 2) in order to compute the stemmed words corresponding to each

hyperword. The vocabulary of hyperwords in a document classification problem included all different

hyperwords which appear in all the documents of the problem in question. The sizes of the vocabularies

of hyperwords have been 642, 491, and 712 in problems 1, 2, and 3, respectively. We remark that the

employment of hyperwords has resulted in a reduction of order 4:1 in the number of features.

For document classification the σ-FLN neural network has been employed again, but this time the σ-

FLN was applied in the lattice “N-dimensional unit hypercube”, where N is the vocabulary length in a

document classification problem. For details of applying the σ-FLN in the N-dimensional unit hypercube

the reader may refer to [Kaburlasos97], [Petridis98], [Petridis99]. Since the classification performance of

σ-FLN depends on the order of data presentation [Petridis99] an ensemble of 9 σ-FLN neural modules has

been employed and, during testing, a datum was assigned to the category which received most “votes”.

Each σ-FLN module has been trained using a different random permutation of the same training data set

with vigilance parameter ρ=0.90. The time required to train one σ-FLN module on a Pentium III at 500

MHz with 128 RAM was in the range 1 sec to 3 secs depending on the problem. The average number of

hyperboxes calculated by an ensemble of 9 σ-FLN modules is shown in Table 4. Hence, “words” resulted

in an average of 13, 12.55, and 15.11 hyperboxes, respectively, in problems 1, 2, and 3, whereas

“hyperwords” resulted in an average of 21.77, 17.22, and 27.55 hyperboxes in problems 1, 2, and 3,

respectively. The larger number of hyperboxes, resulting in when “hyperwords” were employed has been

attributed to the smaller dimension of the corresponding vectors of features; in particular, since the same

value of the vigilance parameter ρ=0.90 was employed in both experiments, that is with words and with

hyperwords, it follows that the maximum allowable hyperbox size is smaller with hyperwords than with

words and proliferation of hyperboxes was implied in the experiments with hyperwords. Note that the

relation between 1) the vigilance parameter ρ, and 2) a hyperbox size, during learning by σ-FLN will be

detailed in a future publication.

The document classification results are shown in Table 4 for the three problems. In particular, in

problem-1 the employment of hyperwords resulted in better results than the employment of words, that is

81.03% versus 77.58%. In problem-2 it has been the employment of words, which resulted in better

classification results, the corresponding percentages have been 95.74% versus 91.48%. Finally, in

problem-3 the employment of hyperwords has provided with better classification results, in particular

96.55% versus 94.82%. It might be worthwhile noting that problems 1 and 3 involve longer documents

than problem 2 as shown by the corresponding “Average” Statistics in Table 4. By experimental evidence
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it seems that the differences in performance are related to the length of the corresponding documents in a

problem. More specifically, the employment of words seems to favor document classification problems

involving short documents, whereas the employment of hyperwords seems to favor document

classification problems involving longer documents. An explanation might be that in shorter documents

fewer semantically related words are expected than in longer documents, hence by replacing different

words by the same hyperword in a short document is more prone to a steep deterioration in performance

due to error.

TABLE 4
Statistics of three document classification problems and comparative performance in each problem using either
words of hyperwords. The σ-FLN neural network has been employed in the unit N-dimensional hypercube with
vigilance parameter ρ=0.90. The average number of hyperboxes computed by an ensemble of 9 σ-FLN’s is also

shown. For longer documents the employment of hyperwords has demonstrated better classification results.

Statistics of document
length (no. of words)

Classification Performance Using

Problem Number of Words Hyperwords

Categories Average Standard
Deviation

Average no. of
Hyperboxes

Success Average no. of
Hyperboxes

Success

1 3 71.79 51.59 13 77.58 % 21.77 81.03 %
2 2 37.58 34.47 12.55 95.74 % 17.22 91.48 %
3 2 95.77 51.11 15.11 94.82 % 27.55 96.55 %

It is useful to discuss comparatively document classification results obtained by other methods. Note,

in the first place, that the computation of hyperwords in this work implies a clustering of (semantically

related) words. Another method for clustering words based on a similarity of their corresponding

probability distributions over the categories of a text classification problem has been reported in [Baker].

The method in question, namely distributional clustering, is shown to reduce, in a specific problem, the

dimensionality of feature vectors by three orders of magnitude while performance remains 2% lower than

the performance attained when the full vocabulary is used. Moreover, the document classification

performance by “distributional clustering” is compared with performance by other feature selection

algorithms based on information-gain, mutual-information, etc. The best document classification

performances reported in [Baker] are in the area of 80% for different methods when a few thousand of

features are used; nevertheless only distributional clustering is reported to retain 80% classification

performance using even less than 100 features. Nevertheless a disadvantage of distributional clustering

appears to be the long preprocessing time required for calculating the probability distribution of each

individual word in a vocabulary of 62,258 words stemming from “20 Newsgroups” benchmark collection

of documents for classification involving 20 categories and 20,000 documents; moreover the probability
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distributions in question have to be re-calculated in practice should new documents for training become

available. On the other hand, the calculation of hyperwords for document classification as described in

this work needs to be carried out only once for all different document classification problems.

Furthermore, the employment of hyperwords, as explained in this work, has demonstrated as well the

potential to exceed the performance of using the full vocabulary as it has been reported in Table 4 for

problems 1 and 3.

6  Discussion and Conclusion

A survey of six World Wide Web (WWW) search engines has shown that any one engine indexes

less than about one-third of the “indexable Web”, and the latter contained an estimated lower bound of

320 million homepages in early 1998 [Lawrence]. A more recent estimate in June 2000 brings the number

of web pages up to more than one billion [Guersey]. There is a need to keep up with the accelerating pace

of electronic document proliferation in various tasks including automated information retrieval, electronic

routing, etc [Weiss].

A connectionist scheme, namely σ- Fuzzy Lattice Neurocomputing (σ-FLN) scheme has been

presented in this work as a promising tool for document classification based on semantics. In particular,

the σ-FLN is characterized by a capacity to cluster directed graphs stemming from a master-graph. A

master-graph has emanated from a Thesaurus of the English language synonyms, where a word in the

Thesaurus corresponds to a node- and a synonym implies a link- in the master-graph in question.

Experimental work reported here has demonstrated that the clusters computed by σ-FLN are sets of

semantically related words, namely hyperwords. The arithmetic parameters of σ-FLN can be adjusted so

as to tune the granularity of learning in a specific application. The utility of hyperwords has been

demonstrated in three document classification problems, where the hyperwords have implied a 4:1

reduction in the number of features and, moreover, the hyperwords have demonstrated the capacity for

good document classification performance. In this work a Thesaurus of the English language has been

used, nevertheless the techniques presented here are applicable in principle with a Thesaurus of other

natural languages.

The computation of hyperwords as well as their employment for efficient-, content-based document

classification by a connectionist scheme amounts to an innovation. It should also be pointed out that in

this work the contents of a specific node have been neglected during clustering because such contents do

not exist. Hence clustering by σ-FLN has been effected based solely on master-graph’s topology rather

than based, as well, on node contents. Nevertheless, the σ-FLN can potentially accommodate the contents



29

of a node by employing an additional constituent lattice. Note that neurocomputing by σ-FLN in a master-

graph using both master-graph’s topology and nodes’ contents, might be useful in applications involving

the World Wide Web (WWW) where the nodes might be web-pages and the links are hyperlinks between

web-pages. The later is a topic for future research.

Appendix

Proof of Theorem 6

The following proof is valid for any complete lattice L with a positive valuation function v such that

v(OL)=0. It is shown underneath that function 
)(

)(
)(

xv

uxv
ux,s L∧

=  satisfies the three conditions (E0) thru

(E2) of definition 4, therefore s(x,u) is an inclusion measure.

(E0) s(x,OL)=
)(

)(

xv

Oxv LL∧
=

)(

)(

xv

Ov L =
)(

0

xv
=0, for x≠OL. Note that s(x,OL) is guaranteed to be equal to 0

(for x≠OL) only if v is a positive, and not merely a monotone, valuation in lattice L.

(E1) s(u,u)=
)(

)(

uv

uuv L∧
=

)(

)(

uv

uv
=1, ∀u∈L. For u= OL, s(u,u) is assumed to be equal to 1 by definition.

(E2) In any lattice L the operation of meet (∧L) is monotone [Birkhoff], that is, u≤Lw ⇒ x∧Lu ≤L x∧Lw,

x,u,w∈L. Hence, u≤Lw ⇒ x∧Lu ≤L x∧Lw ⇒ v(x∧Lu) ≤ v(x∧Lw) ⇒ 
)(

)(

xv

uxv L∧
 ≤ 

)(

)(

xv

wxv L∧
 ⇒

s(x,u) ≤ s(x,w), for x,u,w∈L and x≠OL.

∇
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