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Abstract - In this work it is shown how fuzzy lattice neurocomputing (FLN) emerges as a con-
nectionist paradigm in the framework of fuzzy lattices (FL¡framework) whose advantages include the
capacity to deal rigorously with: disparate types of data such as numeric and linguistic data, intervals
of values, \missing" and \don't care" data. A novel notation for the FL-framework is introduced here
in order to simplify mathematical expressions without losing content. Two concrete FLN models are
presented, namely \¾ ¡ FLN" for competitive clustering, and \FLN with tightest ¯ts (FLNtf)" for
supervised clustering. Learning by the ¾ ¡ FLN, is rapid as it requires a single pass through the data,
whereas learning by the FLNtf , is incremental, data order independent, polynomial O(n3), and it
guarantees maximization of the degree of inclusion of an input in a learned class as explained in the
text. Convenient geometric interpretations are provided. The ¾ ¡ FLN is presented here as fuzzy-
ART's extension in the FL¡framework such that ¾ ¡FLN widens fuzzy-ART's domain of application
to (mathematical) lattices by augmenting the scope of both of fuzzy-ART's choice (Weber) and match
functions, and by enhancing fuzzy-ART's complement coding technique. The FLNtf neural model is
applied to four benchmark data sets of various sizes for pattern recognition and rule extraction. The
benchmark data sets in question involve jointly numeric and nominal data with \missing" and/or \don't
care" attribute values, whereas the lattices involved include the unit-hypercube, a probability space, and
a Boolean algebra. The potential of the FL¡framework in computing is also delineated.

Keywords - Lattice theory, fuzzy set theory, self-organization, adaptive resonance theory, fast
learning, database mining, hybrid computing, computational learning.
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LIST OF SYMBOLS

L A (complete) lattice
L@ The dual of a (complete) lattice
OL (IL) Least (greatest) element of a complete lattice L
�L Inclusion relation in L
_L (^L) Join (meet) operator in L
kL Incomparable relation in a (complete) lattice L
»= An order-isomorphism between two partly ordered sets
(X ; ¹) A fuzzy set ¹ : X ! [0; 1] on the universe of discourse X
< L; ¹ > A fuzzy lattice, where (L £ L; ¹) is a fuzzy set
¾ : L £ L ! [0; 1] A lattice inclusion measure
v : L ! R A positive valuation function

k(x �L u) = v(u)
v(x_Lu)

An inclusion measure as a function of a positive valuation v

¿(L) The lattice of intervals of a lattice L
a(L) The set of atoms of a lattice L; a(L) ½ ¿(L)
f = fwigi2I A family (of lattice intervals), where wi 2 ¿(L) and I is a ¯nite index set
F¿(L) The set of families
c = [

i2I
wi De¯nition of a class, where fwigi2I = f 2 F¿(L)

C The set of classes
Q(c) The quotient of a class

aC : ¿(L) £ C ! [0; 1] A category activation function. By de¯nition, aC(x j c) , aC(x j Q(c))
Á : ¿(L) ! L £ L An injective monotone map
Z : ¿(L) ! R The size of an interval. By de¯nition, Z([a; b]) = v(b) ¡ v(a), v is a positive valu
I The unit interval of real numbers; I = [0; 1]
U The unit hypercube; U = I £ : : : £ I
g : a(L) ! D The category function, where D is a set (of labels) of ¯nite cardinality
(¢; g(¢)) A labelled datum ¢ 2 ¿(L) such that g(x) = g0 for all atoms x in ¢
¾ ¡ FLN An FLN model for competitive clustering

(it is fuzzy-ART's extension in the FL-framework)
FLNtf An FLN model for data-order-indepedent supervised clustering
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1 INTRODUCTION

Most connectionist paradigms including the Adaptive Resonance Theory (ART) [8], [14], Radial Basis
Function networks [24], n-tuple Classi¯ers [35], [54], k-Means Clustering [1], Probabilistic Neural Net-
works [61], etc. share a common feature : they are applicable either to a Boolean lattice of zeros and
ones, or to the N¡dimensional Euclidean space where one dimension corresponds to the totally-ordered
line of real numbers. In this work a di®erent approach to neurocomputing is proposed, that is the \fuzzy
lattice neurocomputing (FLN) paradigm" whose models are applicable to a fuzzy (mathematical-) lat-
tices [39], [51], [52]. More speci¯cally, an FLN model is either separately or jointly - in any combination
- applicable to: the N¡dimensional Euclidean space, a Boolean lattice of zeros and ones, a probability
space, a collection of fuzzy sets, a set of symbols, a set of propositions, etc. The long-term goal of the
\FLN approach to neurocomputing" is the capacity to accommodate jointly and rigorously disparate
types of data with a connectionist architecture.

It has been claimed by the authors in [39], [51], [52] that FLN has originated from adaptive resonance
theory (ART). This paper focuses, in part, on substantiating the aforementioned claim. In particular
it is shown here how a speci¯c FLN model, namely ¾ ¡ FLN , stems from and enhances a speci¯c
ART model, the latter is fuzzy-ART. Apart from ¾ ¡FLN another FLN model, that is the \FLN with
tightest ¯ts (FLNtf)", is introduced here and its e±ciency is demonstrated on benchmark problems.
In the rest of this section relevant work on both the ART and the FLN is outlined.

The theory of adaptive resonance (ART) began with an analysis of human cognitive information
processing and stable coding in a complex input environment [29], [30]. The original work on ART has
triggered a lasting research activity and several models have been introduced, studied comparatively,
implemented in hardware, and applied to various practical problems. In particular, ART1 was intro-
duced in [8] for self-organizing recognition categories for arbitrary sequences of binary input patterns.
The ART2 model [9] pursued the same objective as ART1 but for either binary or analog inputs. In [6]
ART2's learning algorithm was presented in analogy with k-means clustering. ART2's principles have
been employed in [53] to implement a neural network, whereas an ART2 model was studied in [65]
comparatively to a self-organizing neural network namely \Dignet". Precipitation of data processing in
the ART2 architecture has been a®ected by the ART 2-A algorithm [15]. The ART3 neural network has
implemented both fast and slow learning with either distributed or compressed code representations
[10]. The fuzzy-ART architecture has been introduced in [14] for self-organizing analog patterns in the
N¡dimensional unit-hypercube.

The ARTMAP architecture for supervised learning in [12] has demonstrated a capacity to learn
sequences of binary vectors. The fuzzy-ARTMAP [11], [13] extended the applicability domain of
ARTMAP to analog patterns. Various learning properties of the fuzzy-ART algorithm have been
studied in [34]. The e®ect of the choice parameter on the order of category selection in both fuzzy-
ART and fuzzy-ARTMAP has been studied in [26]. In [19] a procedure has been introduced that
identi¯es an order of presentation of the training data for fuzzy-ARTMAP in order to improve fuzzy-
ARTMAP's generalization performance. The Gaussian-ARTMAP [66] employed ART's choice function
as the discriminant function of a Gaussian classi¯er to achieve noise resistant parallel computing. A
fairly detailed list of various ART models and their application to an array of learning and pattern
recognition tasks has been given in [7] where, in addition, dART with distributed code representations
is introduced as a generalization of both fuzzy-ART and fuzzy-ARTMAP. Lately, the ARTMAP-IC
model has been introduced [16] for resolving the problem of \con°icting" training data by instance
counting.

A hardware implementation of an ART model has been the outcome of various e®orts. For instance,
the work in [60] illustrates a hardware implementation of a modi¯ed ART1 algorithm. Older hardware
implementations of ART1 have been shown in [36] and [64]. The work in [4] has proposed a more
compact and faster hardware implementation for fuzzy-ART.
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Furthermore, the basic ART learning algorithm has been employed by researchers in di®erent learn-
ing contexts. For instance learning by self-organizing ART models has been presented as a speci¯c
learning instance in the Mean Risk Functional framework [44]. In [42] a hybrid network is proposed
by integrating a conventional fuzzy ARTMAP neural network and a probabilistic neural network.
The FALCON-ART algorithm in [43] employes ART synergistically with backpropagation for struc-
ture/parameter learning and automatic control applications. The LAteral Priming ART (LAPART),
which is functionally similar to fuzzy-ARTMAP, is combined with the stack interval network in [32] in
order to verify and validate the learned rules.

Despite ART's many advantages for learning [28], the underlying applicability domain of an ART
model remains invariably the N¡dimensional Euclidean space and quite often the N¡dimensional
unit hypercube, in particular. Note that the unit hypercube includes Boolean vectors of zeros and
ones, and moreover, as it has been shown in [14], fuzzy-ART's learning algorithm reduces to ART1's
learning algorithm when only binary input vectors are dealt with. It turns out that the learning and
decision making capacities of ART can be retained when disparate types of data such as N¡dimensional
vectors of real numbers, images, fuzzy sets, symbols, propositional statements, etc. are treated either
separately or jointly in any combination. To the aforementioned end the theory of (mathematical)
lattices provides a suitable framework.

Lattice theory [2], [20], [57] has been employed practically in the past in various contexts. For
instance, lattice theory is employed in [47] for describing acquisition of mental models. In [58] lattice
theory is employed for rules' learning, while in [18], [22], [25], [27] it is employed for \decision making
under ambiguity" in the context of fuzzy logic. Furthermore, it can be argued that ART models deal
implicitly with mathematical lattices as detailed in section 5.

The authors of this paper have introduced a novel framework for learning in lattices, that is the
framework of fuzzy lattices or FL framework for short [39], [51], [52] which is delineated in section 2.
In section 3 are presented the ¾ ¡ FLN model for competitive clustering as well as the \FLN with
tightest ¯ts", or FLNtf for short, for data order independent supervised clustering. Section 4 provides
geometric interpretations of the basic tools and techniques of the FL-framework. Section 5 shows an
\in depth" comparison of fuzzy-ART and ¾¡FLN in the unit hypercube and it explains how ¾¡FLN
has evolved from fuzzy-ART. The learning capacity of the novel FLNtf model is demonstrated on four
benchmark data sets in Section 6. Finally, section 7 concludes this work with a discussion of the overall
qualities of both FLN and FL-framework as well as of their potential future utility.

2 FUZZY LATTICE FRAMEWORK: ANEW FOUNDATION FOR
LEARNING AND DECISION MAKING

The framework of fuzzy lattices, or FL-framework for short, has been introduced elsewhere [39], [51],
[52]. In this section the theoretical foundations of the FL-framework are delineated using a novel
symbolism which allows for simpler and more elegant mathematical expressions without losing content.
It has been recognized lately that the notion dual lattice, which is de¯ned in this section, is central
in the FL-framework. Failure to use dual lattices in [39], [51], [52] has made the exposition of useful
techniques needlessly complicated. Therefore the notion dual lattice is employed explicitly in this
section in order to simplify notation as shown underneath. In addition, an enhanced terminology
is employed, for instance the notion \family activation function" in [52] has been replaced here by
the more useful notion \category activation function", as well as novel and useful notions have been
introduced as explained in this section. Any theoretical results are summarized in this section without
mathematical proof, nevertheless the proofs in question can be sought in cited references. Finally, it
has to be pointed out that the terminology used in the FL-framework is based on \set theory" rather
than on a \domain speci¯c theory" for learning and decision making.
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2.1 Fuzzy lattices

An important notion in the FL-framework is the notion partly ordered set which is de¯ned as follows.

De¯nition 1 A partly ordered set is a set in which a binary relation x � y is de¯ned, which
satis¯es the following conditions for all x; y; z

P1. For all x, x � x. (Re°exive)
P2. If x � y and y � x, then x = y. (Antisymmetry)
P3. If x � y and y � z, then x � z. (Transitivity)

Mapping one partly ordered set to another one is useful. The following maps have been considered.

De¯nition 2 Let P and Q be partly ordered sets. A map Ã : P ! Q is said to be
(i) order-preserving (or, alternatively, monotone), if x � y in P implies Ã(x) � Ã(y) in Q;
(ii) an order-isomorphism, if both \x � y in P , Ã(x) � Ã(y) in Q" and \Ã is onto Q".

When there is an order-isomorphism from P to Q, then P and Q are called order-isomorphic,
symbolically P »= Q. The notion conventional lattice (or, alternatively, crisp lattice) is cited next for
the reader's convenience.

De¯nition 3 A conventional lattice, or alternatively crisp lattice, is a partly ordered set any two
of whose elements have a greatest lower bound or meet denoted by x ^ y and a least upper bound or
join denoted by x _ y.

The partial ordering relation in a crisp lattice L is denoted in the FL-framework by �L, whereas
the join and meet operators in a crisp lattice L are denoted, respectively, by _L and ^L. Instrumental
to a simpli¯ed theoretical exposition of the work here is the notion dual crisp lattice. The dual of a
crisp lattice L has, by de¯nition, the same underlying set but its partial ordering is the converse of L.
In this work the dual of a lattice L is denoted by L@ [20]. For a; b 2 L it follows a _L b = a ^L@ b and
a ^L b = a _L@ b.

De¯nition 2(ii) regarding \order-isomorphism" applies, as well, to crisp lattices; hence an isomorphic
relation between two crisp lattices A and B will be denoted by A »= B. The work in this paper deals
with complete lattices. A lattice L is complete when each of its subsets has a least upper bound and
a greatest lower bound in L. A non-void complete lattice L contains a least and a greatest element
denoted, respectively, by OL and IL.

Another useful notion is the product lattice of two crisp lattices A and B denoted by A £ B and
de¯ned such that (xA; xB) �A£B (yA; yB) if and only if xA �A yA and xB �B yB [2], [20], [57]. The
meet in A £ B is given by (xA; xB) ^A£B (yA; yB) = (xA ^A yA; xB ^B yB), and the join is given by
(xA; xB) _A£B (yA; yB) = (xA _A yA; xB _B yB) [2], [20]. The product of N lattices ensues likewise.
Apparently if L is a lattice then L £L is a product lattice. Furthermore if L is a complete lattice then
so are lattices L £ L, L@, and L@ £ L. The least element in L £ L is OL£L = (OA; OA), whereas its
greatest element is IL£L = (IL; IL).

If x; y 2 L then either \x and y are comparable", that is either x �L y or y �L x, or \x and y are
incomparable", that is neither x �L y nor y �L x. Two incomparable elements x; y 2 L are denoted
by x kL y. Note that the subscript in all of �L, _L, ^L, and kL is meant to explicitly identify the
underlying lattice. When �, _, ^, and k are used in this work without a subscript they refer to the
set R of real numbers. Note that R is a lattice such that for x; y 2 R it follows x ^ y = minfx; yg and
x _ y = maxfx; yg. Furthermore xky is always false in R hence the elements of R are conventionally
called totally ordered and R is called a chain (lattice) [2], [31].

The concept fuzzy lattice has been introduced by the authors of this work in order to extend the
lattice ordering relation to all pairs (x; y) 2 L £ L of a crisp lattice L. Such an extended relation may
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be regarded as a fuzzy set on the universe of discourse L £ L [67]. Note that in this work a fuzzy set is
denoted by (X ; ¹), where X is the universe of discourse and ¹ is a membership function ¹: X ! [0; 1].
Hence, the aforementioned extended lattice ordering relation implies a fuzzy set (L £ L; ¹), which is
de¯ned under condition \¹(x; y) = 1 if and only if x �L y". The de¯nition of a fuzzy lattice follows.

De¯nition 4 A fuzzy lattice is a pair hL; ¹i, where L is a crisp lattice and (L £ L; ¹) is a fuzzy set
such that ¹(x; y) = 1 if and only if x �L y.

Note that if hL; ¹i is a fuzzy lattice then its dual fuzzy lattice is de¯ned as hL; ¹@i with ¹@(a; b) =
¹(b; a). The collection of all fuzzy lattices is referred to by term framework of fuzzy lattices or FL-
framework for short. The signi¯cance of the above de¯nition is that it allows one to specify a degree
of inclusion of a crisp lattice's element to any other element. Note that ¹(x; y) = 1 in a fuzzy lattice
hL; ¹i does not necessarily imply ¹(y; x) = 0 and it could well be ¹(y; x) > 0. Regarding transitivity
in a fuzzy lattice hL; ¹i note that the conventional transitivity property holds only in the sense that
¹(x; y) = 1 and ¹(y; z) = 1 jointly imply ¹(x; z) = 1. However, when it is either ¹(x; y) 6= 1 or
¹(y; z) 6= 1 then ¹(x; z) could be any number in [0; 1]. The following de¯nition will eventually enable
the fuzzi¯cation of a crisp complete lattice.

De¯nition 5 Let L be a complete crisp lattice with least and greatest elements OL and IL, respectively.
An inclusion measure ¾ on L is a map ¾ : L £ L ! [0; 1] such that for u;w; x 2 L the following
conditions are satis¯ed

(C1) ¾(x;OL) = 0, x 6=OL,
(C2) ¾(x; x) = 1, 8x 2 L, and
(C3) u �L w ) ¾(x; u) � ¾(x;w) (Consistency Property).

It follows ¾(x; IL) = 1, 8x 2 L [51]. It can be argued that ¾(x; u) indicates the degree of inclusion
of x in u, therefore notations ¾(x; u) and ¾(x �L u) will be employed interchangeably. To de¯ne an
inclusion measure in a crisp lattice L a real number will be attached to each element of L through a
valuation function. Recall that a valuation on a crisp lattice L is a real-valued function v : L ! R
which satis¯es v(x) + v(y) = v(x _L y) + v(x ^L y), x; y 2 L. A valuation is monotone if and only if
x �L y implies v(x) � v(y), and positive if and only if x <L y implies v(x) < v(y) [2], [57]. Here
it has been assumed v(OL) = 0 for a positive valuation because if v(OL) 6= 0 then another positive
valuation v+ with v+(OL) = 0 can always be de¯ned out of v by simply subtracting v(OL) from all
v(x); x 2 L. A positive valuation v on a lattice L renders L a metric space with metric (distance):
d(x; y) = v(x _L y) ¡ v(x ^L y), x; y 2 L [2], [57]. The following result from [52] de¯nes an inclusion
measure in L.

Theorem 6 The existence of a positive valuation function v on a (crisp) complete lattice L, with

v(OL) = 0, is a su±cient condition for function k(x; u) = v(u)
v(x_Lu)

to be an inclusion measure in L.

Recall that k(x; u) can be employed for indicating the degree of inclusion of x in u, therefore in the
sequel k(x; u) will also be denoted by k(x �L u). Note that function k(x �L u) equals 1 if and only
if x �L u. Therefore if v is a positive valuation function on a complete lattice L then the pair hL; ki
implies a fuzzy lattice.

Regarding neurocomputing in fuzzy lattices (FLN) note that \learning" can be attained by a
procedure which handles (closed) lattice intervals, where a (closed) non-empty lattice interval [a; b] is
de¯ned as a set of lattice elements, in particular [a; b] = fx : x 2 L and a �L x �L bg.

Consider a function ¿ which maps a lattice L to the collection of non-empty intervals including the
empty set. The following result is from [52].
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Proposition 7 If L is a complete lattice then ¿(L) is a complete lattice. The least element in ¿(L)
is the empty set which is denoted by O¿(L) = [IL; OL], whereas the largest element in ¿(L) is I¿(L) =
[OL; IL]. The implied lattice inclusion relation [a; b] �¿ (L) [c; d] in ¿ (L) is equivalent to \c �L a and
b �L d". For two intervals [a; b]; [c; d] 2 ¿(L) their lattice join is given by [a; b]_¿ (L)[c; d] = [a^Lc; b_Ld],
and their lattice meet is given by [a; b] ^¿(L) [c; d] = [a _L c; b ^L d] if a _L c �L b ^L d, otherwise it is
[a; b] ^¿(L) [c; d] = O¿ (L).

Of particular interest will be subset a(L) of ¿(L) which includes all trivial intervals (singletons).
Note that a(:) can be regarded as a function which maps a lattice L to its collection of singletons [x; x];
x 2 L. An element t0 2 a(L) is always larger than O¿ (L) and since relation \O¿(L) <¿ (L) x <¿(L) t0"
holds for no x 2 ¿(L) it is said that an element t0 of a(L) covers O¿(L), hence the elements of a(L) are
called atoms and a(L) is the set of atoms in ¿(L) [2]. In the FL-framework the following term has been
coined for referring to some collections of intervals in a lattice.

De¯nition 8 Let L be a lattice. A family (of lattice intervals) denoted by f = fwigi2I is a collection
of lattice intervals, that is wi 2 ¿(L) for all i 2 I, where I is an index set of ¯nite cardinality.

If f = fwigi2I is a family, the wi's are called constituent intervals of family f . The collection of
families (of lattice intervals) in a lattice L will be denoted by F¿(L). A useful notion is implied from
considering the set-union of the members in a family (of intervals). The terms class and category have
been reserved and they are used interchangeably in the FL-framework to denote the set-union of the
members in a family of intervals [52].

De¯nition 9 Let L be a lattice. A class (or, alternatively, category) c in L is de¯ned by c = [
i2I

wi,

where fwigi2I is a family in F¿(L), and [ is the set-union operator.

The set of classes in a lattice L will be denoted by C. Apparently C is a subset of the power set of L,
where by \power set" is meant the set of all subsets of L. Note that one class c 2 C might have many
decompositions in ¯nitely many lattice intervals, in other words many families of intervals in F¿ (L)
may specify the same class. If for two di®erent families of intervals f1 = fujgj2J and f2 = fwigi2I , it
holds [

j2J
uj = [

i2I
wi then it is said that both families of intervals f1 and f2 represent the same class;

in other words fujgj2J and fwigi2I are two distinct decompositions of the same class. It is shown in
[51] that for a class c 2 C there exists a unique family, namely quotient of c denoted by Q(c), such that
Q(c) includes every other family representing class c. A category activation function with respect to a
concrete inclusion measure ¾ in ¿(L) is de¯ned next.

De¯nition 10 A category activation function with respect to an inclusion measure ¾ in
¿(L) is de¯ned as a real valued function aC : ¿(L)£C ! [0; 1], such that aC(x j c) , aC(x j Q(c)) ,max

i2I
¾(x �¿(L) qi), where Q(c) = fqigi2I is the quotient of class c.

Note that a speci¯c class c 2 C implies fuzzy set (¿(L); aC) on the universe of discourse ¿(L) whose
membership function is aC(x j c). Given a c 2 C, the value of the category activation function aC(x j c)
for a speci¯c x 2 ¿ (L), in the context of fuzzy lattice neurocomputing (FLN), can be thought of as
the activation of class c at the presence of x, and in this case aC(x j c) is interpreted as the degree of
inclusion of an interval x 2 ¿(L) to class c 2 C.

From the previous analysis it follows that an inclusion measure in lattice ¿(L) will be useful.
Nevertheless, the only known way to the authors of this paper for de¯ning an inclusion measure in a
crisp lattice is via a positive valuation function. It has been proven in [52] that a positive valuation
function in L can not imply a positive valuation in ¿(L). The de¯ciency of a positive valuation function
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in ¿(L), when there exists one in L, has been mended by employing a monotone map Á from ¿(L) to
another lattice where a positive valuation exists. The details are elaborated in the following.

Let v be a positive valuation on a complete lattice L. The following proposition from [52] guarantees
the existence of a positive valuation on L £ L.

Proposition 11 If v is a positive valuation in lattice L then function V (a; b) = v(a) + v(b), a; b 2 L
de¯nes a positive valuation in lattice L £ L.

Let µ be an isomorphism µ : L@ ! L. Furthermore consider the lattice of abstract (or, alterna-
tively, generalized) intervals which is de¯ned underneath.

Lemma 12 Let L be a complete crisp lattice. Then L@ £ L is a complete lattice, namely lattice of
abstract intervals (or, alternatively, lattice of generalized intervals).

Obviously, the implied partial ordering relation in L@ £ L is [a; b] �L@£L [c; d] if and only if (a �L@

c , c �L a) and b �L d. Recall that if L is a complete lattice then L@ £L is a complete lattice as well.
The least element in L@ £ L is OL@£L = [IA; OA] and its greatest element is IL@£L = [OA; IA].

The aforementioned isomorphism µ establishes an isomorphism between lattices L £ L and L@ £ L
such that, (1) an element (a; b) of L £ L is mapped to element [µ(a); b] of L@ £ L, and (2) an element
[a; b] of L@ £ L is (inverse-) mapped to element (µ(a); b) of L £L. To distinguish between the elements
of the aforementioned lattices, an element of lattice L £ L will be denoted within parentheses as in
(a; b), a; b 2 L whereas an element of lattice L@ £ L will be denoted within braces as in [a; b]; a; b 2 L.

At last, consider subset Lt of L@ £ L de¯ned by Lt = f[a; b] : a; b 2 L and a �L bg [ f[IL; OL]g. It
follows that lattice Lt is a sublattice of L@ £ L, where the notion sublattice is de¯ned underneath.

De¯nition 13 A subset S of a crisp lattice L is called sublattice of L if a; b 2 S imply a ^L b 2 S
and a _L b 2 S.

Note that lattice Lt does not specify sets of lattice L elements. Nevertheless it is quite straight-
forward to establish an isomorphism between lattices Lt and ¿(L), where lattice ¿(L) of intervals
speci¯es sets of lattice L elements. The following relation summarizes all previous conclusions

¿(L) »= Lt µ L@ £ L »= L £ L (ISO)

A map Á : ¿(L) ! L £ L given by Á([a; b]) = (µ(a); b) implies that if [a; b] �¿(L) [c; d] in ¿(L) then
Á([a; b]) �L£L Á([c; d]) in L£L; in other words Á is an injective monotone map [52]. Recall that by virtue
of proposition 11 a positive valuation v in L implies a positive valuation V in L £ L, and consequently
it implies an inclusion measure k in L £L by Theorem 6. In other words, based on the aforementioned
isomorphic relations (ISO) it follows that k is a valid inclusion measure in ¿ (L). That is, an inclusion
measure ¾([a; b] �¿(L) [c; d]) can be de¯ned in ¿(L) by ¾([a; b] �¿ (L) [c; d]) = ¾(Á([a; b]) �L£L Á([c; d])).

All the analysis in this section has been carried out with regards to lattice L. However, it has to
be pointed out that L could itself be the Cartesian product of N lattices, namely constituent lattices,
symbolically L = L1 £ : : : £ LN . If lattices L1; : : : ;LN are all complete with least/greatest elements
OL1=IL1; : : : ; OLN=ILN , respectively, then L is a complete lattice with least element (OL1 ; : : : ; OLN ) and
greatest element (IL1 ; : : : ; ILN ).

Proposition 14 If v1; : : : ; vN are valuations on lattices L1; : : : ;LN , respectively, then function v =
v1 + : : : + vN is a valuation on the product lattice L = L1 £ : : : £ LN .
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Note that it su±ces to be all valuations v1; : : : ; vN monotone so as valuation v = v1 + : : : + vN to
be monotone as well. If at least one of the monotone valuations v1; : : : ; vN is, in addition, a positive
valuation then v is a positive valuation on the product lattice L [52].

To simplify notation a convention was made regarding the elements of lattices L £ L and L@ £ L
when L is a product lattice. Then an element of lattice L £ L will be denoted by (a1; b1; : : : ; aN ; bN),
where (a1; b1) 2 L1£L1; : : : ; (aN ; bN ) 2 LN £LN ; whereas an element of lattice L@ £L will be denoted
by [a1; b1; : : : ; aN ; bN ], where [a1; b1] 2 L1 £ L1; : : : ; [aN ; bN ] 2 LN £ LN . To allow for a quantitative
speci¯cation of the magnitude of a lattice interval the following de¯nition is given.

De¯nition 15 The size of a lattice interval [a; b] 2 ¿(L) with respect to a speci¯c positive
valuation v on lattice L is de¯ned as a real valued function Z : ¿(L) ! R given by Z([a; b]) =
v(b) ¡ v(a).

We remark that the size of a lattice interval can be regarded as some type of a Hamming distance.
If tr = [a; a] is an atom in a(L) ½ ¿(L) then it follows Z(tr) = Z([a; a]) = v(a) ¡ v(a) = 0, that is
the size of an atom is zero. Furthermore note that the size of the least element [IA; OA] in ¿(L) is
Z([IL; OL]) = v(OL) ¡ v(IL) = ¡v(IL) since it has been assumed v(OL) = 0.

2.2 A fuzzy lattice in the unit-hypercube

The results obtained in the FL-framework are valid in a mathematical lattice su±ces the lattice in
question is a complete one, and two functions are available namely a positive valuation function v
and an isomorphic function µ. In this section a complete lattice is shown equipped with the afore-
mentioned functions. More speci¯cally, a lattice, denoted by U, is de¯ned on the N-dimensional
unit-hypercube with partial ordering (x1; : : : ; xN ) �U (y1; : : : ; yN ) , x1 � y1; : : : ; xN � yN ; where
(x1; : : : ; xN); (y1; : : : ; yN ) 2 U. In the interest of simplicity the dimension of the unit-hypercube will
be suppressed therefore the corresponding lattice will be denoted simply by U.

Lattice U is the product of N identical constituent lattices, these are the chains I = [0; 1], where
the implied lattice ordering relation � is the conventional \less than or equal to" relation between
real numbers. Recall that a chain is a lattice characterized by a total ordering of its elements [2],
[31]. Moreover each of the N (lattice) chains I, is a complete one with least element OI = 0:0 and
greatest element II = 1:0. Fig.1 illustrates some notions of the FL-framework with reference to lattice
U in the case N = 2, that is the unit-square on the plane. Note that a rectangle (a box) corresponds
to an interval in lattice U. Fig.1 (a) and Fig.1(b) demonstrate the partial ordering relation in U.
Fig.1(c) shows how di®erent classes inside the unit-square can be de¯ned by the set-union of families
of overlapping boxes.

On the one hand, any monotone increasing function on the unit interval [0; 1] is a positive valuation
on chain I. In this paper, linear positive valuations of the form vi(xi) = cixi; i 2 f1; : : : ;Ng with
ci > 0 have been considered, resulting in positive valuations of the form v(x1; : : : ; xN) = c1x1 +
: : : + cNxN , where ci > 0; i 2 f1; : : : ;Ng in lattice U. Note that when de¯nition 15 is applied in
lattice U with positive valuation v(x1; : : : ; xN ) = x1 + : : : + xN then the size Z([a; b]) of a hyperbox

[a; b] = [(a1; : : : ; aN ); (b1; : : : ; bN )] is given by Z([a; b]) = v(b)¡v(a) = v(b1; : : : ; bN )¡v(a1; : : : ; aN ) =
NP
i=1

(bi ¡ ai). In the aforementioned speci¯c case, the size of the least element [IU; OU] in lattice U equals
Z([IU; OU]) = ¡v(IU) = ¡N .

On the other hand, the isomorphic function µI(x) = 1 ¡x; x 2 [0; 1] has been employed in lattice I.
Furthermore, µI(x) implies an isomorphic function, denoted by µU(:), in the product lattice U as follows
µU((a1; : : : ; aN )) = (µI(a1); : : : ; µI(aN )) = (1 ¡ a1; : : : ; 1 ¡ aN). Note that there exist in¯nitely many
isomorphic functions which can be used. For instance any member in the family (1 ¡ x)n of functions,
where n is a positive integer and x 2 [0; 1], is an eligible isomorphic function in I. Apparently,
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alternative isomorphic functions can be devised, and the authors hold that the choice of a \good"
isomorphic function as well as the choice of a \good" positive valuation function is problem dependent.

2.3 A fuzzy lattice in a probability space

Here is shown another example of a fuzzy lattice. Consider the triplet (­; F; q) where ­ is an abstract
space, F is a ¯eld of sets, and q is a measure; if it holds in particular q(­) = 1 then q is a probability
measure [21]. Apparently F is a complete crisp lattice, where the underlying lattice ordering relation
is the conventional set-inclusion relation (µ). The least element in F is the empty set, denoted by ®,
and the greatest element in F is the abstract space ­ itself, that is OF = ® and IF = ­. Moreover note
that q constitutes a positive valuation function on F, therefore the pair hF; ki de¯nes a fuzzy lattice,

where k is de¯ned as usual by k(A;B) = k(A µ B) = q(B)
q(A[B) , A; B 2 F.

There exists an isomorphic function µ in F, that is in particular µ(X) = Xc, where Xc denotes the
complement of \set X". Note that intervals can be de¯ned in crisp lattice F as [X;Y ], where X; Y 2 F
and X µ Y . The complete lattice of all intervals will be denoted by ¿(F) whereas the least and the
greatest element in ¿(F) are denoted, respectively, by O¿(F) = [­;®] and I¿(F) = [®;­].

In conclusion, all previous results drawn in the framework of fuzzy lattices are valid in a probability
space. The latter underlines the wide scope and utility of the FL-framework.

2.4 Dealing with \missing" and \don't care" attribute values in the data

\Missing" and \don't care" values in the data is a part of reality in applications. Using the terminology
of the FL-framework note that in an application there might be \missing" values and/or \don't care"
values for some constituent lattices L1; : : : ; LN of a product lattice L = L1 £ : : : £ LN . A \missing"
value may be interpreted as an \unknown" (unavailable) value for an attribute, whereas a \don't care"
value may be interpreted as \all possible" attribute values. \Missing" values have been dealt with in
the FL-framework by replacing them with the least-element-, and \don't care" values have been dealt
with by replacing them with the greatest-element of the corresponding constituent lattice. For instance,
had the constituent lattice been the chain of real numbers I = [0; 1] then in place of a \missing" value
interval OI = [1; 0] will be used, whereas in place of a \don't care" value interval II = [0; 1] will be
used. Furthermore note that for a concrete number, say number x in [0; 1], atom [x; x] will be used.

3 TWO FLN MODELS

Several FLN models have already been introduced and applied for learning and recognition on various
data sets including benchmark-, synthetic- [39], [50], [51] and medical data sets [38], [40], [49]. In this
section two FLN models are presented, where learning is a®ected by clustering. A function g : a(L) ! D
is employed in this section, namely category function g, where a(L) is the set of atoms in lattice L, and
D is a set of ¯nite cardinality which contains all possible category labels for an atom in a(L). Recall
that an atom has been de¯ned in subsection 2.1 as a trivial interval tr = [x; x] in the lattice ¿(L) of
intervals. Hence, function g assigns to each atom one category label among a ¯nite number of such
labels available.

The domain of function g can be extended to the lattice ¿(L) of intervals as follows: if ¢ 2 ¿(L)
and g0 2 D then g(¢) = g0 if and only if g(tr) = g0 for all atoms tr �¿ (L) ¢. Likewise the domain of g
can be extended to the collection F¿(L) of families as follows: if f = fwigi2I 2 F¿ (L) and g0 2 D then
g(f ) = g0 if and only if g(wi) = g0 for all i 2 I. Finally, if g(f) = g0 2 D for all families fwigi2I 2 F¿ (L)
which represent a single class c = [

i2I
wi then it is eligible to write g(c) = g0, in other words, under the

aforementioned condition, the domain of function g has been extended to classes in C.
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The training data to an FLN model underneath consist of pairs (¢; g(¢)), where ¢ 2 ¿(L) -
typically ¢ is an atom in a(L), and g(¢) is the category (label) of ¢.

3.1 The ¾ ¡ FLN model for competitive clustering

The ¾¡FLN model has been inspired from fuzzy-ART [14]. Both learning and testing by the ¾¡FLN
are a®ected by employing an inclusion measure ¾ in ¿(L). Note that the ¾¡FLN has been introduced
in the past under the names FLN [39], FLNN [51], and ¾¡FLL [52] where the good performance of its
application to disparate data sets has been demonstrated. Despite its a±nity with fuzzy-ART and its
origins in the biologically motivated adaptive resonance theory (ART) [8], [30], the ¾ ¡ FLN remains,
in e®ect, a learning scheme in the framework of fuzzy lattices (FL-framework) [39], [51], [52], where
the latter framework has emerged as a cross-fertilization of the theory of lattices [2], [20], [57] with the
theory of fuzzy sets [67]. Note that the FL-framework employes a novel-, set-theoretic terminology which
\¯ts" its wide applicability domain of mathematical lattices [51], [52]. For the previous reasons, the
terminology employed by an \FL-framework based model" may not fully correspond to the terminology
employed by another model based on a di®erent theory for learning and decision making such as the
adaptive resonance theory (ART). For instance, the terms category and class are used as synonyms in
the FL-framework [52] while in ART they have distinctive meaning. Consequently it is eligible to use
as synonyms, in the FL-framework, the terms category activation and class activation while in ART
only the term category activation is meaningful. The a±nity of ¾ ¡ FLN with fuzzy-ART as well as
some important di®erences with fuzzy-ART are summarized in the following.

The architecture of ¾ ¡ FLN is depicted in Figure 2 for the reader's convenience. The names and
roles of its various subsystems are analogous to the names and roles of the corresponding subsystems in
an ART model and they are explained in [51]. Note that there exist signi¯cant and inherent di®erences
with ART. For instance both the inputs and the weights of the ¾ ¡ FLN architecture are speci¯ed
by pairs of data indicated by double lines in Fig.2. Regarding the N¡dimensional Euclidean space, in
particular, an input to the ¾ ¡FLN is a vector of N intervals, that is an N¡dimensional hyperbox. It
is clear that an individual N¡dimensional point (x1; : : : ; xN ) corresponds to the trivial N¡dimensional
vector of intervals ([x1; x1] : : : ; [xN ; xN ]). Note that the practical advantage of dealing with a vector of
intervals is that it may compensate for the uncertainty of measurements since an interval speci¯es a
neighborhood of values.

Pairs of weights also appear in the bottom-up and the top-down weights between the category
layer and the input layer of the ¾ ¡ FLN architecture (Fig.2). Note that a bottom-up pair of weights
connecting an F1 layer node and an F2 layer node equals the top-down pair connecting the same nodes.
However the ¯rst end, say x, of an interval [x; y] must be encoded by its isomorphic lattice element
µ(x) on a pair of ¾ ¡ FLN weights. In particular for the Euclidean space the latter implies that an
interval [x; y] can be encoded by storing the numbers \1 ¡ x", \y" in a pair of weights, respectively.

Another signi¯cant di®erence with ART is the type of the data the ¾ ¡ FLN can deal with, these
data are elements of a mathematical lattice. For instance, they can be real numbers but they can
also be fuzzy sets, events in a probability space, whole images, wave-forms, propositions, symbols,
etc. Note that two lattice intervals in two di®erent constituent lattices de¯ne yet another interval in
the corresponding product lattice, and the latter accounts for ¾ ¡ FLN 's capacity to process jointly
disparate types of data [51] including symbols [52].

Learning, by the ¾ ¡ FLN , is carried out rapidly by a single pass through the training data [52].
Nevertheless a potential disadvantage of learning by ¾ ¡ FLN might be that the clusters it learns (in
particular their total number, their size, and location) depends on the order of presentation of the
training data. The following FLN model remedies the aforementioned potential disadvantage at the
\price" of polynomial learning complexity.
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3.2 The FLN with tightest ¯ts (FLNtf) model for supervised clustering

3.2.1 Background

The \FLN with tightest ¯ts", or FLNtf for short, has been inspired from the probably approximately
correct (PAC) statistical learning model, in particular the Rectangle Learning Game [5], [41]. A basic
asumption by the FLNtf is that a training datum belongs to no more than one category. The FLNtf
a®ects learning by ¯nding the collection of tightest ¯ts, de¯ned underneath, in the training data, whereas
testing is a®ected by employing an inclusion measure ¾ in ¿(L).

De¯nition 16 A ¯t, say ¯t T , over a set f(¢i; g(¢i))gi2f1;:::;ng, where ¢i 2 ¿(L) and g is a category
function, is an interval T 2 ¿(L), which satis¯es the following two conditions

( i) T =_¢s
s2S

, where S is a subset of f1; : : : ; ng such that g(¢s) = g0; s 2 S for some constant g0.

( ii) For all ¢j ; j 2 f1; : : : ; ng with g(¢j) 6= g0 it holds ¢j ^¿ (L) T = ®.
A ¯t is called tightest ¯t if it satis¯es the following condition in addition.
(iii) For all ¢k; k 2 f1; : : : ; ng with g(¢k) = g0 (other than those ¢k in (i)) it holds (T _¿ (L)

¢k) ^¿(L) ¢j 6= ® for some j 2 f1; : : : ; ng with g(¢j) 6= g0.

Illustrations of the de¯nition above are provided in the following. Condition (i) requires that a ¯t
has to be the lattice join of a number of training data intervals that all belong to the same category g0.
Condition (ii) requires that there should be no contradiction between a ¯t and a training datum, where
a contradiction between two pairs (T; g(T )) and (¢; g(¢)) with g(T ) 6= g(¢) implies that intervals T
and ¢ share an atom. Condition (iii) requires that a ¯t T is tightest, in the sense that no other datum
of the same category can be accommodated in T without contradicting a training datum. The notion
tightest ¯t is explained schematically in Fig.3. Fig.3(a) shows a collection of points (atoms) partitioned
in two categories labelled respectively by \*" and \o" in the unit square. Fig.3(b) shows the tightest
¯ts which correspond to the aforementioned points. The term rule will also be used alternatively for a
tightest ¯t. Note that de¯nition 16 implies that if all the training data are in the same category, that
is if g(¢1) = g(¢2) = : : : = g(¢n) = g0, then the corresponding tightest ¯t is given by T = _¢s

s2f1;:::;ng
.

The following FLNtf algorithm implies that for a ¯nite training set f(¢i; g(¢i))gi2f1;:::;ng the
collection of tightest ¯ts exists and it is unique. Illustrations are provided underneath with reference
to Fig.4. In particular, it is shown that the collection of tightest ¯ts is identical to the set of leaves of
a tree structure which grows according to the following algorithm.

The FLNtf algorithm

1. Consider the next training pair (¢i; g(¢i)) at level-0, i = 1; : : : ; n of Fig.4.

2. At level-1 consider all the join-intervals, those are the \lattice joins" ¢j _¿(L) ¢i where g(¢j) =
g(¢i) and ¾(¢j �¿(L) ¢i) < 1.

3. Delete join-intervals which are contradictory2 to training data.

4. If all the join-intervals are contradictory then ¢i is a tree leaf, that is a tightest ¯t.

5. Otherwise, for each (non-contradictory) join-interval ¢ go down to level-2 in Fig.4 and calculate
¢j _¿(L) ¢ where g(¢j) = g(¢) and ¾(¢j �¿ (L) ¢) < 1.

6. Delete join-intervals which are contradictory to training data.

2Two intervals ¢i;¢j 2 ¿(L) are called contradictory when ¢i overlaps ¢j and g(¢i) 6= g(¢j). The test for verifying
whether ¢i and ¢j contradict each other is called here a comparison.
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7. If all the join-intervals of a ¢ are contradictory then ¢ is a tree leaf, that is a tightest ¯t.

8. The previous steps (5 thru 7) are repeated for each node at each level of the tree in Fig.4 for a
maximum number of n levels.

9. In conclusion all the tightest ¯ts that include ¢i will be calculated.

Step 8 above guarantees that the FLNtf algorithm will terminate in a ¯nite number of steps since
the number of levels is bounded by n that is the total number of training data.

3.2.2 The FLNtf neural architecture

The FLNtf algorithm presented previously can be implemented as shown in Fig.5 on a neural archi-
tecture consisting of three layers, namely the Tightest Fits/Rules Layer (Ftf), the Hypothesis Testing
Layer (Fh), and the Training Data Layer (Fd), plus an Input Bu®er which latches one training datum
at a time. The Training Data Layer is employed as a long-term memory for storing permanently the
training data one-by-one as they enter. The Tightest Fits Layer is employed as a long-term memory for
storing the tightest ¯ts that correspond to the training data presented so far. Note that the contents
of the latter layer may change as a result of learning, and the tightest ¯ts it holds may be interpreted
as \rules" extracted from the training data. Finally the Hypothesis Testing Layer is employed as the
system's short-term memory. In particular in the latter layer it is tested, as it will be explained shortly,
whether a lattice interval appearing in a level of the FLNtf algorithm's tree structure (Fig.4) is a
tightest ¯t or not. In other words, in the Hypothesis Testing Layer Fh are carried out successively the
computations corresponding to successive levels in the conceptual tree structure of Fig.4.

Two consecutive layers of the FLNtf neural architecture (Fig.5) are fully interconnected. There
are no interconnections between non-consecutive layers. A node in the FLNtf architecture is a simple
¾ ¡ FLN model with N + 1 input (F1) nodes and only one category (F2) node (see Fig.2). The ¯rst
N weights of one of the aforementioned ¾ ¡ FLN(s) are employed to store a lattice interval with N
constituent lattices, that is a hyperbox in the N¡dimensional Euclidean space in particular, while the
last weight in a ¾ ¡ FLN stores the category of a lattice element.

In Fig.5 the links marked by a small circle and interconnecting two \¾ ¡ FLN nodes" denote a
bunch of N + 1 links used for \conducting" the elements of N constituent lattices plus the index of
the corresponding category from one ¾ ¡ FLN to another. The unmarked links from the Hypothesis
Testing Layer to the Training Data Layer are used for transmitting \binary acknowledgment" signals
as explained in the sequel. The nodes in the Hypothesis Testing Layer are ¾ ¡ FLN(s) which appear
only during learning and the number of these nodes may vary drastically during learning in the same
way as the number of nodes varies in a level of the FLNtf algorithm's tree structure (Fig.4). However,
when the learning concludes then the nodes in the Hypothesis Testing Layer cease to exist. That is
the reason those nodes are shown by dotted lines in Fig.5.

The FLNtf neural architecture shown in Fig.5 implements a scheme of serial/parallel neurocom-
puting. In particular, the serial part of the processing carries out successively in the Hypothesis Testing
Layer (Fig.5) the computations corresponding to successive \conceptual levels" of Fig.4. That is why
the number of ¾ ¡ FLN(s) appearing in the Hypothesis Testing Layer Fh during learning equals suc-
cessively the number of nodes which appear in a level of the tree structure in Fig.4. Since there exist
at most n consecutive such \levels" in Fig.4 it follows that there will be carried out no more than n
consecutive serial processing steps in the Hypothesis Testing Layer. The time required for one such
serial processing step is a constant and the term processing cycle (PC) has been reserved to denote it.
All previous operations are summarized in the following algorithm (At any instant t let there be L(t)
tightest ¯ts ¤j; j = 1; : : : ; L(t) < 1 and let g(¤j) denote the category of tightest ¯t ¤j). Note that the
training data enter the FLNtf one-by-one, and moreover no initalization of the FLNtf is necessary
for learning to commence.
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3.2.3 FLNtf for learning

1. The next pair (¢i; g(¢i)); i = 1; ¢ ¢ ¢ ; n enters the Input Bu®er.

2. Copy permanently a new pair (¢i; g(¢i)) to the Training Data Layer Fd.

3. If g(¢i) is a new category then copy (¢i; g(¢i)) to the Tightest Fits Layer Ftf .

4. Copy temporarily all tightest ¯ts ¤j; j = 1; : : : ; L(t) < 1 to the Hypothesis Testing Layer Fh.

5. Contradiction Condition : If ¢i ^¿(L) ¤j 6= ® for a tightest ¯t ¤j with g(¤j) 6= g(¢i) then go to
step-11 below to manage contradictions.

6. Store in the Hypothesis Testing Layer Fh only a single datum from the Input Bu®er.

7. For all the intervals residing in the Hypothesis Testing Layer Fh, namely roots, calculate their
lattice joins, namely potential leaves, with each of the training data of the same category which
are not included in the root (while there exist such data).

8. Delete from the Hypothesis Testing Layer all the potential leaves which either contradict a training
datum or are inside a tightest ¯t.

9. If all the potential leaves of one speci¯c root have been deleted, then the root in question is by
de¯nition a tightest ¯t, and therefore it is copied to the Tightest Fits Layer Ftf .

10. Go to step 1.

11. (steps 11 thru 14 below manage contradictions) By top-down \binary acknowledgment"signals
from the Layer Fh to Layer Fd \mark" all the training data which are inside contradictory tightest
¯ts.

12. Among all \marked" training data (from previous step 11) keep \marked" only the last training
datum as well as those \marked" training data which are included solely in contradictory tightest
¯ts.

13. Delete all contradictory tightest ¯ts ¤j . Replace the contents of the Tightest Fits Layer with the
contents of the Hypothesis Testing Layer.

14. Halt any external inputs and go to step-1 to re-feed sequentially all the \marked" data from
Layer Fd.

15. After all the training data have been presented, ¯nd the quotient of the tightest ¯ts in Layer Ftf .

Note that \marking data" in the Training Data Layer Fd in steps 11 and 12 above, can be a®ected
by raising a proper °ag. We remark that the above scheme implements the FLNtf algorithm incre-
mentally. That is, when for n training data f(¢i; g(¢i))gi2f1;:::;ng their collection of tightest ¯ts has
been found, then based on that knowledge, the above algorithm calculates the unique collection of
tightest ¯ts which corresponds to the data set f(¢i; g(¢i))gi2f1;:::;n+1g.

Any order of presentation of n speci¯c training data f(¢i; g(¢i))gi2f1;:::;ng will yield the same collec-
tion of tightest ¯ts. Nevertheless, from the above algorithm it follows that, depending upon a particular
order of presentation, the intermediate collections of tightest ¯ts might be di®erent for di®erent data
orders but by the time all the training data f(¢i; g(¢i))gi2f1;:::;ng will have been presented, the same
collection of tightest ¯ts will result in.

In the ¯nal step (step-15) of the above algorithm, the collection of tightest ¯ts residing in the
Tightest Fit Layer Ftf (Fig.5) is replaced by its quotient in order to maximize the degree of inclusion
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of an interval ¢ 2 ¿(L) in a class c 2 C [51]. Since the quotient of a family is unique it follows that the
quotient corresponding to the tightest ¯ts is independent of the order of presentation of the training
data.

The previous learning scheme is memory based (step-2) like the n-tuple classi¯er [35], [54], neverthe-
less the decision-making of FLNtf is not of statistical nature like the one of the n-tuple classi¯er since
the FLNtf can generalize using a lattice inclusion measure ¾. Moreover the tightest ¯ts approach to
learning by FLNtf implies local learning in a lattice; note that the biological relevance and signi¯cance
of local learning has been debated lately [56].

Copying the tightest ¯ts from the Tightest Fits Layer Ftf to the Hypothesis Testing Layer Fh (step
4) could be avoided by fully interconnecting the Tightest Fits Layer Ftf with the Training Data Layer
Fd (Fig.5). Nevertheless it has been decided by the authors to avoid the latter interconnection in order
to keep a simple neural architecture.

It is calculated in the following, the \worse case upper bound" for the data processing complexity in
terms of the previously de¯ned Processing Cycle (PC). The worse case training scenario for an on-line
implementation of the FLNtf occurs when each training datum contradicts all the existing tightest ¯ts
causing a re-feeding of all the previous training data. It is known that a \contradiction free" training
datum at the Input Bu®er requires O(n) PC(s), hence a contradictory training datum would require
O(n2) PC(s). In the aforementioned \worse case scenario" when all the training data contradict all
the existing tightest ¯ts, there would be required O(n3) PC(s), that is the complexity for the FLNtf
model.

3.2.4 FLNtf for testing

The testing phase for the FLNtf is the same as the one employed by the ¾ ¡ FLN [52], that is the
activation aC(¢ j ck), k = 1; : : : ; MF of each class ck is calculated at the presence of ¢ 2 ¿(L), and ¢
is attached the label of the winner class.

In all, (1) the FLNtf calculates intervals/rules in a data order independent fashion, (2) the FLNtf
guarantees, by de¯nition, 0% recognition error on the training data, (3) the FLNtf guarantees maxi-
mization of the degree of inclusion of the testing data in a class due to the employment of the quotient
of a class, and (4) the FLNtf can deal with disparate lattice elements.

3.3 A functional comparison with fuzzy-ARTMAP

At this point it is instructive to delineate a functional comparison of FLNtf with the fuzzy-ARTMAP
neural model for supervised learning [11]. The authors of this paper need to point out that FLNtf is
functionally di®erent than fuzzy-ARTMAP. On the one hand, recall that fuzzy-ARTMAP consists of
two interconnected fuzzy-ART modules and its \learning" depends on the order of data presentation
[11], [13]. On the other hand, note that the FLNtf architecture includes a number of simple ¾ ¡FLN
modules in its layers (Fig.5) and, most important, \learning" by the FLNtf is e®ected by calculating
the tightest ¯ts in the training data set in a data order independent fashion. A neural architecture
for supervised learning corresponding to fuzzy-ARTMAP within the FL-framework would include two
¾ ¡ FLN modules interconnected likewise as the two fuzzy-ART modules of fuzzy-ARTMAP. Note
that the name \¾ ¡FLNMAP" has been reserved by the authors to denote the enhanced extension of
fuzzy-ARTMAP in the FL-framework, nevertheless a study of ¾¡FLNMAP as well as its comparison
with fuzzy-ARTMAP are topics of future research.

Nevertheless, since both FLNtf and fuzzy-ARTMAP neural networks are meant for supervised
learning, it is meaningful to compare their capacity for classi¯cation on the same data set. Such a
comparison is shown in subsection 6.1.
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4 GEOMETRIC INTERPRETATIONS

Geometric interpretations have been given for various ART models [7], [14]. In this section are illus-
trated geometrically on the plane tools and techniques employed by an FLN model. Note that functions
v(x) = x and µ(x) = 1¡x have been selected in each constituent lattice for a positive valuation function
and an isomorphic function, respectively, as it has been explained in subsection 2.2.

4.1 The utility of the inclusion measure

For both Fig.6(a) and Fig.6(b) it holds [0:5; 0:6; 0:3; 0:4] = u �U w = [0:4; 0:9; 0:2; 0:8]. Therefore for
any box x it follows ¾(x �U u) � ¾(x �U w), that is x is included in w more than it is in u. The
latter inequality is veri¯ed underneath for both Fig.6(a) and Fig.6(b) when x is a trivial interval (an
atom) in the unit square. In Fig.6(a) for x = [0:2; 0:2; 0:2; 0:2] = (0:8; 0:2; 0:8; 0:2) it follows

¾(x �U u) = v(u)
v(x_Uu)

= v(0:5;0:6;0:7;0:4)
v((0:8;0:2;0:8;0:2)_U(0:5;0:6;0:7;0:4))

= v(0:5;0:6;0:7;0:4)
v(0:8;0:6;0:8;0:4) = 2:2

2:6 ¼ 0:846. Likewise,

¾(x �U w) = v(w)
v(x_Uw)

= v(0:6;0:9;0:8;0:8)
v((0:8;0:2;0:8;0:2)_U(0:6;0:9;0:8;0:8))

= v(0:6;0:9;0:8;0:8)
v(0:8;0:9;0:8;0:8) = 3:1

3:3 ¼ 0:939. Hence

¾(x �U u) � ¾(x �U w).
In Fig.3(b) an x inside w but outside u has been selected, in particular x = [0:8; 0:8; 0:7; 0:7] =

(0:2; 0:8; 0:3; 0:7). It follows

¾(x �U u) = v(u)
v(x_Uu)

= v(0:5;0:6;0:7;0:4)
v((0:2;0:8;0:3;0:7)_U(0:5;0:6;0:7;0:4))

¼ 0:814, and

¾(x �U w) = v(w)
v(x_Uw)

= v(0:6;0:9;0:8;0:8)
v((0:2;0:8;0:3;0:7)_U(0:6;0:9;0:8;0:8))

= 1:0. Hence ¾(x �U u) � ¾(x �U w).
It can be veri¯ed likewise by example that the previous inequality still holds even when x is not an

atom but rather x is a rectangle in the unit square. Nevertheless, it might be useful to demonstrate that
a similar consistency of inequalities is not retained by the implied lattice metric (distance) function d.
For instance, from Fig.6(a), it follows

d(x; u) = v(x _U u) ¡ v(x ^U u) = v(0:8; 0:6; 0:8; 0:4) ¡ v(0:5; 0:2; 0:7; 0:2) = 2:6 ¡ 1:6 = 1:0, and
d(x; w) = v(x _U w) ¡ v(x ^U w) = v(0:8; 0:9; 0:8; 0:8) ¡ v(0:6; 0:2; 0:8; 0:2) = 3:3 ¡ 1:8 = 1:5, hence

d(x; u) � d(x;w), whereas from Fig.6(b) it follows
d(x; u) = v(x _U u) ¡ v(x ^U u) = v(0:5; 0:8; 0:7; 0:7) ¡ v(0:2; 0:6; 0:3; 0:4) = 2:7 ¡ 1:5 = 1:2, and
d(x; w) = v(x _U u) ¡ v(x ^U u) = v(0:6; 0:9; 0:8; 0:8) ¡ v(0:2; 0:8; 0:3; 0:7) = 3:1 ¡ 2:0 = 1:1, hence

d(x; u)¸d(x; w).
In conclusion, the lattice distance function d is not consistent in the sense of the lattice inclusion

measure ¾ (consistency property (C3) of de¯nition 5).

4.2 Illustrating ¾ ¡ FLN 's operation and the technique of maximal expansions
Assume that the ¾ ¡ FLN has already stored two distinct classes c1 = w1 and c2 = w2 in its category
layer as shown in Fig.7(a) and let a new input x, that is a rectangle in general, enter. The two
classes c1 and c2 compete with one another by comparing their inclusion measures ¾(x �U c1) and
¾(x �U c2), and let c1 be the winner class. Assume that the \assimilation condition" fails then class c1
is reset. Searching for a winner class continues, class c2 is selected next (Fig.7(b)), and let c2 meet the
\assimilation condition". Then w2 is replaced by w

0
2 = x_Uw2. Note that rectangles w1 and w

0
2 overlap.

Consequently, w1 and w
0
2 are put in the same family of lattice intervals that de¯nes a single class, namely

class-c1, and hence the technique of maximal expansions is \triggered". The aforementioned technique
considers the intersection w1 ^U w

0
2 and it expands it maximally in both dimensions as illustrated in

Fig.7(c). Note that the technique of maximal expansions has been introduced in [51] as an optimization
technique, more speci¯cally its goal is to maximize the degree of inclusion of an interval input in class
c1 2 C. The aforementioned optimization/maximization can be met by representing class c1 2 C by its
quotient Q(c1).
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To further the example illustrated in Fig.7, a single class c1 is speci¯ed consisting of four rectangles
c1 = fw1; w

0
2; w3; w4g, where rectangle w1 is speci¯ed by its four corners 6-11-3-12, rectangle w

0
2 is

speci¯ed by its corners 1-9-8-10, rectangle w3 is speci¯ed by 5{6-7-8, and rectangle w4 by 1{2-3-4.
The degree of inclusion of a new input y in class-c1, as shown in Fig.7(d), is given by maxf¾(y �U
w1); ¾(y �U w

0
2); ¾(y �U w3); ¾(y �U w4)g.

4.3 The utility of the technique of maximal expansions

It has been explained above that the technique of maximal expansions is, in e®ect, an optimization
technique for it maximizes the degree of inclusion of an interval in a class c 2 C. The aforementioned
goal is attained by representing a class c 2 C by its quotient Q(c). It should be pointed out explicitly
that the technique of maximal expansions does not change the de¯nition of class c, but rather the
technique in question only changes the actual representation of class c by employing the unique family
Q(c) in F¿ (L) which includes any other family representing the same class c [51].

A potential quality of the technique of maximal expansions is illustrated in Fig.8, where three
rectangles w1 = [0:15; 0:35; 0:05; 0:3], w2 = [0:30; 0:40; 0:15; 0:25], w3 = [0:55; 0:85; 0:15; 0:45], and an
input x = [0:47; 0:47; 0:20; 0:20] are shown. Two classes c1 and c2 are speci¯ed as c1 = w1[w2 and c2 =
w3. Note that the conventional Euclidean distances of x from the nearest edge of the three rectangles
are: \distance from x to w1" =j 0:47 ¡ 0:35 j= 0:12, \distance from x to w2" =j 0:47 ¡ 0:40 j= 0:07,
and \distance from x to w3" =j 0:47 ¡ 0:55 j= 0:08. Hence it makes sense to classify x in class¡c1.
Nevertheless, based on the inclusion measure ¾ in Fig.8(a) and without employing the technique of
maximal expansions, input x is classi¯ed in class c2 = w3 because in Fig.8(a) it holds

¾(x �U w1) = v(w1)
v(x_Uw1)

= 2:45
2:57 ¼ 0:953,

¾(x �U w2) = v(w2)
v(x_Uw2)

= 2:2
2:27 ¼ 0:969 , and

¾(x �U w3) = v(w3)
v(x_Uw3)

= 2:6
2:68 ¼ 0:970.

The above \counter-intuitive" classi¯cation decision can be corrected using the quotient family rep-
resentation fw1; w02g, as shown in Fig.5(b), with w02 = [0:15; 0:40; 0:15; 0:25] produced by the technique
of maximal expansions. Winner now will be class c1 = w1 [ w

0
2 over class c2 = w3, because

¾(x �U w1) ¼ 0:953,

¾(x �U w02) =
v(w02)

v(x_Uw
0
2)

= 2:35
2:42 ¼ 0:971 , and

¾(x �U w3) ¼ 0:970.
Therefore the technique of maximal expansions could make a positive di®erence in pattern recog-

nition problems since it can imply automatically \common sense" decisions.

4.4 Illustrating the tightest ¯ts calculated by the FLNtf model

The training data shown in Fig.9(a) are fed to the FLNtf model. The data in question are 2-
dimensional atoms within the unit square and they belong to two classes which are denoted respectively
by an \*" (that is class-c1 with data 1; 2; 3; 4) and by an \o" (that is class-c2 with data a; b; c; d) in
Fig.9(a). Fig.9(b) shows the tightest ¯ts on the aforementioned data. Note that two tightest ¯ts
assigned to di®erent classes may overlap, for example the tightest ¯ts a _ b and 2 _ 3 _ 4 overlap each
other. That is, even though intervals a _ b and 2 _ 3 _ 4 are in di®erent categories their overlapping
is eligible because the overlapping in question does not imply a contradiction with any training data.
Fig.9(c) shows the maximal expansions of the tightest ¯ts of Fig.9(b), in particular the tightest ¯t a_b
of Fig.9(b) has been expanded maximally in Fig.9(c).

Fig.9(d) considers two more data in category \*", these are data 5 and 6, and Fig.9(d) also shows the
corresponding tightest ¯ts. Note that datum 5 in Fig.9(d) has caused the deletion of tightest ¯t a_b of
Fig.9(b) because the latter tightest ¯t (a_b) now contradicts with training datum 5. Furthermore, note
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that datum a of class-c2 now stands \alone" in Fig.9(d). In Fig.9(e) one more datum from category \o"
shows up, that is datum e, and the corresponding tightest ¯ts are shown in Fig.9(e). Finally Fig.9(f)
shows the maximal expansions of the tightest ¯ts of Fig.9(e), in particular interval e_d in Fig.9(e) has
been expanded maximally in Fig.9(f).

5 FUZZY-ART COMPARED WITH ¾ ¡ FLN LEARNING

The objective of ¾¡FLN is to identify competitively sets of elements of a (complete) lattice by the set-
union of crisp lattice intervals. Because the intension in this section has been to compare ¾¡FLN with
fuzzy-ART, most of the illustrations will be given in the N¡dimensional unit hypercube. Therefore
the previously stated objective can be rephrased by saying that the ¾ ¡ FLN aims at identifying sets
of points within the unit hypercube by the set-union of hyperboxes, or boxes for short.

Note that fuzzy-ART employes implicitly the notion mathematical lattice. We copy from the caption
of Figure 6(b) in [14]: \During fast learning, RJ expands to RJ©a, the smallest rectangle that includes
RJ and a, ...". The authors of this paper note that the smallest rectangle that includes RJ and a is, by
de¯nition, the lattice join of RJ and a. Furthermore, an implicit employment of a mathematical lattice is
also made by the technique of \rule annihilation" of FALCON-ART [43] in order to delete unnecessary or
redundant rules. More speci¯cally, \rule similarity" in [43] is determined on a dimension-by-dimension
comparison process in order to calculate heuristically the degree of inclusion of one hyperbox into
another and the notion mathematical lattice is employed again implicitly. Note that the FL-framework
supplies a sound tool, namely inclusion measure ¾, for de¯ning in principle the degree of inclusion of
a hyperbox/rule into another one.

5.1 Interpreting fuzzy-ART's \complement coding" within the FL-framework

Based on the FL-framework, fuzzy-ART's \complement coding" acquires a new interpretation as il-
lustrated in the following. In order to de¯ne an interval on the line of real numbers two numbers are
required. Nevertheless, had the two numbers in question been used without any preprocessing the ben-
e¯t stemming from the existence of a positive valuation would be lost. Recall that the aforementioned
bene¯t is the existence of an inclusion measure in the lattice ¿(L) of intervals. It has been explained in
subsection 2.1 that, an isomorphic function µ : L@ ! L guarantees the existence of a positive valuation
in L £ L and hence it implies an inclusion measure in the lattice ¿(L) of intervals.

It has been further explained in section 2.2 that function µI(x) = 1¡x constitutes a valid isomorphic
function for ¾ ¡ FLN . Note that isomorphic function µI(x) = 1 ¡ x refers directly to fuzzy-ART's
complement coding technique, the latter is a preprocessing normalization procedure which replaces a
vector (a1; a2) by (a1; a2; 1¡a1; 1¡a2), and likewise in more dimensions, in order to avoid the category
proliferation problem [14]. Hence, in the FL-framework fuzzy-ART's complement coding acquires a
new-, set-theoretic meaning. Furthermore note that µI(x) = 1 ¡ x is only one of the in¯nitely many
isomorphic functions which can be used as it has been explained in subsection 2.2. The authors of
this paper expect that the choice of a \good" isomorphic function µ is problem dependent for both the
¾ ¡ FLN and fuzzy-ART.

5.2 ART's Choice (Weber) function and Match function versus FLN's Inclusion
Measure function.

Both of ART's choice (Weber) function and the match function correspond to ¾ ¡ FLN 's inclusion
measure function ¾, and the correspondence in question runs quite deep as explained in the follow-
ing. A couple of \common ground assumptions" need to be made in order to compare meaningfully
the abovementioned functions. More speci¯cally the aforementioned \common ground assumptions"
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include: 1) considering only trivial inputs (atoms), and 2) considering only fuzzy-ART's fast learning
mode of operation.

Consider in the N¡dimensional Euclidean space, ART's choice (Weber) function and the match
function:

Choice (Weber) Function :
jI^wj j
®+jwj j

Match Function : jI^wj
jIj ¸ ½

Note that operator (^) is used by fuzzy-ART as the min operator in the totally ordered set of real
numbers [14]. It is known that the role of (the very small positive) parameter \a" in the denominator
of the choice function is to break ties in order to select the \F2 node" with the smallest size [37]. The

same result can be attained by the following double test : that is (after calculating the numbers
jI^wj j
jwj j

for all nodes in layer F2 - without an a in the denominator), ¯rst, select the node with the largest
activation, and second, break ties by selecting the F2 node with the smallest size. Note that a \double
test" is employed explicitly by ¾ ¡ FLN in order to select its winner node in layer F2. Moreover
¾¡FLN 's inclusion measure ¾ implies a sound set-theoretic interpretation, in particular the ¾ ¡FLN
identi¯es an F2 node whose code \includes the most" the current input x as determined by the lattice
inclusion measure ¾(x �U w) = v(w)

v(x_Uw)
, while ties are broken by selecting the F2 winner code with the

smallest size.
Regarding fuzzy-ART's Match Function note that fuzzy-ART's match criterion accepts (rejects) a

winner node when the ratio jI^wj
jIj is larger (smaller) than ART's vigilance parameter ½ART . It is shown

in the following that fuzzy-ART's complement coding implies an implicit comparison of the winner
node's size to a threshold size. Following fuzzy-ART's notation for a code norm in the N¡dimensional

Euclidean space [14] it follows j w j=
NP
i=1

(wi + wci ), in particular for an input I it follows j I j= N .

Recall that the size Z of a code in the FL-framework is given by Z(w) =
NP
i=1

[(1 ¡ wci ) ¡ wi], and

hence it relates to its norm as Z(w) =
NP
i=1

[1 ¡ (wci + wi)] = N¡ j w j. In particular, for an input I

it follows j I j= N , Z(I) = 0. Therefore fuzzy-ART's match criterion becomes: jI^wj
jIj ¸ ½ART )

N¡Z(I^w)
N ¸ ½ART ) Z(I ^ w) � N(1 ¡ ½ART ). In words, fuzzy-ART's code I ^ w is accepted when

its size is less than or equal to an implicit threshold code size Z0 = N(1 ¡ ½ART ). Otherwise, if
Z(I ^ w) > Z0 = N(1 ¡ ½ART ), \reset" is triggered and the search for a new winner resumes.

Regarding the ¾ ¡ FLN , its \assimilation condition" suggests an explicit comparison with a user
de¯ned size threshold. However, assuming complement coding with µI(x) = 1 ¡ x and N¡dimensional
inputs (atoms), an implicit employment of a vigilance parameter, denoted by ½¾FLN , is implied by
¾ ¡ FLN as shown in the following. A relation is found in the ¯rst place between a code's positive

valuation and its size: Z(w) =
NP
i=1

[w2i ¡ (1 ¡ w2i¡1)] = v(w) ¡ N . Because there have been assumed

point inputs (atoms) x with size Z(x) = 0 it follows v(x) = N . The ¾ ¡ FLN re¯nes an existing code
w to x _U w by an input x if and only if the size of x _U w is less than or equal to a user-de¯ned size
threshold Zcrit, that is Z(x _U w) � Zcrit ) N

Z(x_Uw)+N
¸ N

Zcrit+N
. The latter ratio is ¾ ¡ FLN 's

implicit vigilance parameter value, that is ½¾FLN = N
Zcrit+N

. Note that since Zcrit is in the interval of
real numbers [0;N ] ¾ ¡ FLN 's vigilance parameter ½¾FLN is in the interval of real numbers [0:5; 1]. It
is remarkable that the previous result is valid in a general lattice su±ces the inputs to the ¾ ¡ FLN
are trivial intervals (atoms). There is much more in inequality N

Z(x_Uw)+N
¸ ½¾FLN = N

Zcrit+N
than

merely showing the existence of an implicit vigilance parameter ½¾FLN for ¾ ¡FLN . It all stems from
noting that ratio N

Z(x_Uw)+N
speci¯es, in e®ect, the degree of inclusion ¾(w �U x) of the winner code

w to an input atom x.
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To recapitulate note that when the inputs to the ¾¡FLN are singletons, these are atoms x = [a; a],
then a competition takes place among layer F2 nodes and the competition in question concludes by
calculating the node which includes the current input x more than any other node, that is ¾(x �U w)
is the maximum. Consequently the winner is accepted if and only if it is included inside the input code
x more than an implicit vigilance parameter, that is ¾(w �U x) ¸½¾FLN . Such a \double role" of the
lattice inclusion measure function ¾ signi¯es a deep set-theoretic interpretation for winner choice and
winner match for both the ¾ ¡ FLN and the fuzzy-ART.

It should be noted that the following extended choice (Weber) function: v(x^Lw)
v(w)

has also been

considered for employment by ¾ ¡ FLN instead of the inclusion measure k(x �L w) = v(w)
v(x_Lw)

.

Nevertheless, such an \extended choice (Weber) function" su®ers from a potentially serious drawback

compared to ¾ ¡ FLN 's conventional inclusion measure k(x �L w) = v(w)
v(x_Lw)

. The aforementioned
drawback appears when the lattice meet of two elements is the least lattice element OL, whose positive
valuation has been assumed to be zero (v(OL) = 0) as shown by the following example in a probabilistic
context. Consider the intersection of the two sets A = fa; b; cg and B = fd; eg in the power set of
X = fa; b; c; d; e; fg, that is their lattice meet A \ B = ®. Then the employment of the extended

choice (Weber) function v(A\B)
v(B) will only conclude that the sets A and B are disjoint but it will not

quantify the a±nity of the two sets. On the other hand, ¾ ¡ FLN 's conventional inclusion measure
k(x �L u) indicates by a single number and with respect to a concrete positive valuation \by how much
a lattice element u is de¯cient in including another lattice element x". Note that the aforementioned
de¯ciency does not arise in the Euclidean space because the lattice meet (^) and the lattice join (_)
of two numbers is their minimum and their maximum, respectively, for instance, 0.3^0.8=0.3 and
0.3_0.8=0.8. Hence, due to fuzzy-ART's restriction to the unit hypercube the aforementioned inherent
de¯ciency of ART's choice (Weber) function could not be identi¯ed in a conventional ART model.

5.3 Advantages of the ¾ ¡ FLN
The ¾¡FLN appears to be more comprehensive than fuzzy-ART in the sense that ¾¡FLN can handle
inputs both atoms and intervals, whereas fuzzy-ART deals solely with atoms. The advantage of dealing
with intervals stems from the fact that an interval de¯nes a set of neighboring atoms therefore it might
be possible to compensate for the uncertainty of the inputs by feeding to the neural network a whole
set, in particular a neighborhood, of measurements instead of feeding it a single point measurement.

The ¾¡FLN appears to be more °exible than fuzzy-ART in the sense that it is possible to calibrate
¾ ¡ FLN 's behavior by altering somehow the underlying positive valuation function vI(x), where I is
the chain I = [0; 1] and x 2 [0; 1]. It has been shown in subsection 2.2 that any monotonically
increasing function vI is a valid positive valuation function. Nevertheless, the \best" choice among
candidate positive valuations is expected to be problem dependent. On the other hand, fuzzy-ART
employs (implicitly and solely) always the same positive valuation function vI(x) = x. The authors
of this paper hold that fuzzy-ART's learning and decision making behavior can also be calibrated
by adjusting its underlying positive valuation function vI(x) = x. The same arguments extend to
isomorphic function µI(x) = 1 ¡ x for both fuzzy-ART and the ¾ ¡ FLN . Regarding fuzzy-ART
in particular, an employment of a di®erent isomorphic function than µI(x) = 1 ¡ x will occasion a
di®erent \coding technique" than fuzzy-ART's conventional \complement coding". Another aspect of
¾ ¡ FLN 's °exibility is that the ¾ ¡ FLN proposes a sensible method for dealing with \missing" and
\don't care" attribute values in the data as it has been explained in subsection 2.4. Such a capacity is
\vital" for real world applications.

But most of all, note that the ¾¡FLN appears to be overwhelmingly more versatile in principle than
fuzzy-ART in the sense that ¾¡FLN can handle lattice elements in addition to handling real numbers.
In other words, fuzzy-ART can be applied solely in the unit Euclidean hypercube whereas the ¾¡FLN
is applicable to a lattice domain including fuzzy-ART's domain. However, the reader is cautioned that
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due to the aforementioned modi¯cations of ART's basic equations, such as the replacement of both
of ART's choice (Weber) and match functions by inclusion measure ¾, the learning behavior of the
¾ ¡ FLN in the unit hypercube is not expected to be identical to fuzzy-ART's learning behavior.

6 LEARNING EXAMPLES

The capacity for learning by the ¾ ¡ FLN has been demonstrated elsewhere [39], [51], [52]. In the
experiments of this work the FLNtf model has been employed solely. The learning experiments
presented in this section have been carried out on benchmark data sets from the UCI repository of
machine learning data sets [46]. Note that some of the benchmarks treated here by the FLNtf can
not be treated, as they are, by the majority of other neural networks including ART models because
the benchmarks in question are characterized by combinations of numeric and nominal data.

\Missing" attribute values in a constituent lattice Li are denoted in a benchmark data set by a
question mark \?" and they have been replaced by the least element OLi of Li, whereas \don't care"
attribute values are denoted by an asterisk \*" and they have been replaced by the greatest element
ILi of Li. Recall that numeric and nominal data are allowed to intermingle freely in the FL-framework
as elements of disparate constituent lattices without the need to convert one type of data to another.
Note that a rigorous (mathematical) treatment of disparate types of data as suggested here constitutes
an innovation, since in practice researchers typically convert one type of data to another. For instance,
in the \mushroom" learning example presented with the ARTMAP in [12], nominal data have been
converted to numeric data. A like conversion has been practised with both the \animal identi¯cation"
data and the \DNA promoter" data presented with the Cascade ARTMAP [63]. On the other hand,
for the \cylinder bands" data presented to a decision tree in [23] numeric data have been converted to
nominal data.

6.1 Cleveland's HEART disease benchmark

This benchmark consists of 303 data vectors collected by Robert Detrano for the V.A. Medical Center,
Long Beach and the Cleveland Clinic Foundation. This benchmark is characterized by \missing" values
in a few of its data attributes. The goal is to diagnose the presence of heart disease in a patient from
certain vital signs and attributes. The severity of a heart disease is denoted by an integer valued from
0 (no presence) to 4. The distribution of instances into the ¯ve classes is respectively 164, 55, 36, 35,
and 13 records of data. Past experiments have only tried to distinguish between absence (value 0)
from presence (values 1,2,3,4) of heart disease, the latter is referred to here as \2 categories problem".
The \5 categories problem" is the classi¯cation problem which considers all 5 categories in order to
diagnose not only the presence of heart disease but also its severity.

Results of processing by various algorithms have been reported for this benchmark's 14-attribute
version. Table 1 summarizes the classi¯cation results by di®erent methods reported in the literature for
the \2 categories problem". More speci¯cally, results by probability analysis, logistic-regression-derived
discriminant function, instance-based prediction (both NTgrowth and C4), and CLASSIT conceptual
clustering are reported in the documentation that accompanies this benchmark in the UCI repository
[46]. Results by the ARTMAP-IC, the ARTMAP, and the K Nearest Neighbor (KNN) are detailed in
[16]. Note that the aforementioned ARTMAP models have been simulated with 10 voters [16].

This benchmark has been processed by the FLNtf using di®erent training and testing sets and
the corresponding results are reported in Table 2. In order to provide a good basis for comparison
with the results by other methods, including a direct comparison to the ARTMAP results, a series of
experiments has been carried out for the \2 categories problem", where 250 data have been randomly
\kept in" for training. The previous training case has been dubbed for simplicity \keep-250-in (case)".
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For the keep-250-in case, 100 experiments have been carried out and an average classi¯cation
accuracy of 77.88% was recorded as shown in Table 2 with corresponding standard deviation 4.58. The
average number of rules/boxes was 53.80 with standard deviation 4.58. The \5 categories problem"
was treated next. In particular, for the keep-250-in case the recorded average in 100 experiments has
been 56.74% (Table 2) with standard deviation 7.23, whereas the average number of rules/boxes has
been 86.81 with standard deviation 4.67. In all, the performance for the \2 categories problem" has
been superior than the one for the \5 categories problem", as expected, because a larger number of
categories to be learned (5 versus 2 categories) increases the di±culty for recognition while it increases
the number of rules/boxes. Moreover, the performance by the FLNtf for the \2 categories problem"
is comparable to the best of other methods reported in Table 1.

In addition, a 10-fold cross-validation has been carried out by partitioning the ¯rst 300 data of this
benchmark into 10 consecutive parts of 30 data each. One part has been employed for testing while
the rest of the data in the benchmark have been employed for training. This experiment was repeated
10 times, that is each one of the ten parts has been employed for testing. Due to the odd number of
data in this benchmark the last 3 data were always used for training but never for testing. The average
classi¯cation accuracy of the testing data in the 10 trials has been 79.34 % with a standard deviation
5.84. The statistics of the corresponding number of rules/boxes in the 10 trials have been an average
of 60 with standard deviation 3.52. The 10-fold cross-validation experiment has been repeated also for
the \5 categories problem". The average testing classi¯cation accuracy in 10 trials has been 57.34 %
with standard deviation 12.15. The average number of rules/boxes in the 10 trials has been 95.90 with
standard deviation 3.41. Again, as expected by the FLNtf , a larger number of rules/boxes resulted
in the \5 categories problem".

Further, the distribution of the testing data for both the \2 categories-" and the \5 categories-"
classi¯cation problem and 10-fold cross-validation has been found in the following. Table 3 shows in a
confusion matrix the distribution of the (testing) data for the \2 categories problem", whereas Table 4
shows, likewise, the distribution of the data for the \5 categories problem". By treating categories 1, 2,
3 and 4 as a single category which corresponded to a \heart patient" Table 4 reduced to Table 5, where
number \94" within parentheses in Table 5 corresponds to misclassi¯cations among categories 1, 2, 3
and 4. A comparison of Table 3 and Table 5 leads to the interesting conclusion that the total number
of misclassi¯cations by the FLNtf remains approximately the same, that is in particular 32+30=62
versus 23+43=66 misclassi¯cations, but the internal distribution of misclassi¯cations between \healthy
subjects" and \heart patients" changes substantially from 32:30 to 23:43, respectively, in Table 3 and
Table 5.

6.2 SHUTTLE landing control benchmark

The SHUTTLE benchmark is a tiny data set consisting of 15 data vectors only. This benchmark has
been donated to the UCI database [46] by Bojan Cestnik of Jozef Stefan Institute of Ljubljana, Slovenia.
The goal is to decide whether landing a space shuttle should be an automatic or a non-automatic task.
The data consist of 6 nominal attributes plus a class label per data vector. The attributes in a
data vector determine 6 conditions for space shuttle landing, and the class label determines whether
landing should be automatic or manual. The meaning of the 6 nominal attributes is explained in the
documentation that accompanies this benchmark [46]. About 29% of the attribute values are \don't
care" and denoted in the data set by an asterisk \*". Six and nine data vectors correspond to landing
\by manual control" and \by automatic control", respectively. No training set is given explicitly.

In our experiments, one constituent lattice has been considered for each nominal attribute thus
implying, in all, 6 constituent lattices. Note that for this particular benchmark the nominal data
are totally ordered and they are represented by real numbers in the UCI database [46]; the same
real numbers have been employed as positive valuation functions in the learning experiments with the
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FLNtf .
The FLNtf has been employed in the leave-1-out mode. That is, one of the 15 data vectors

was left out for testing, and the remaining 14 data vectors have been employed for training. The
experiment was repeated leaving, in turn, all data out for testing. Several di®erent linear positive
valuations have been tried heuristically and the best results have been obtained for the linear coe±cients
(c1; c2; c3; c4; c5; c6) = (1; 2; 1; 1; 1; 1); in the latter experiment 1 and 2 data have been misclassi¯ed
from the classes \automatic landing" and \manual landing", respectively. Note that for the linear
coe±cients (c1; c2; c3; c4; c5; c6) = (1; 1; 1; 1; 1; 1) exactly 4 misclassi¯cations have been recorded. In
di®erent experiments, the number of tightest ¯ts (rules) calculated for class \automatic control" has
been between 2 and 4, whereas the corresponding number of tightest ¯ts (rules) for class \manual
control" has been between 3 and 5.

In conclusion, the FLNtf has demonstrated a capacity to generalize from a limited number of 14
data with nominal attributes and it has been able to decide successfully on 12 out of 15 data vectors,
in other words 80% of new and hitherto unknown totally ordered nominal data have been classi¯ed
correctly.

6.3 CYLINDER BANDS benchmark

A number of neural networks could have been employed with the previous two examples provided
that the neural networks in question can deal with both \missing" and \don't care" attribute values.
This is due to the fact that the attribute values of the constituent lattices in the previous examples,
be it numeric or nominal, are totally ordered therefore those attribute values could be replaced by
real numbers. Nevertheless this is not the case in the following example, where numeric data are
intermingled with non-\totally ordered" nominal data.

The CYLINDER BANDS benchmark data set [46] consists of 540 data records and it has been
created by Bob Evans for the RR Donnelly & Sons Co., Gallatin, Tennessee. There exist 20 numeric
plus 20 nominal attributes per data vector. The \class" attribute is included in the nominal data and
it speci¯es one of two classes, these are the \band" and \noband" classes. In all, there exist 228 and
312 data records for the \band" and the \noband" classes, respectively. About 4.75 % of the overall
data attributes are \missing" and denoted in the data set by a question-mark \?". No training set is
given explicitly.

A qualitative description of the results obtained by processing similar data with a decision tree
induction mechanism embedded within a knowledge acquisition system called \Apos" is shown in [23]
but without detailing the corresponding performance quantitatively. Only in one instance it is cited in
[23]: \Apos rules predicted seven of the eleven banding incidents in September 1993". In addition [23]
does not specify whether the UCI benchmark has been used at all in their experiments. Finally note
that in [23] the numeric data have been converted to nominal data by interval subdivision.

The CYLINDER BANDS data set of the UCI collection of benchmarks has been processed by treat-
ing numeric attribute values as numbers and nominal attribute values as elements of the corresponding
abstract space in a probability space. In particular the constituent lattice corresponding to a nominal
feature has been de¯ned as a probability space with (1) abstract space, the set of all (¯nitely many)
values for a nominal feature, and (2) probability measure (on the power set of the underlying abstract
space), de¯ned as the frequency of occurrence of the corresponding attribute values.

The CYLINDER BANDS data have been partitioned into a training-testing pair of data sets in
six di®erent ways and the corresponding results are reported in the six lines of Table 6. The ¯rst pair
of training/testing data sets has been obtained by selecting the ¯rst datum of every 10 data in the
CYLINDER BANDS benchmark for training and leaving the rest nine data out for testing. The next
four training/testing pairs of data sets have been obtained by selecting the ¯rst datum of every 5,4,3
and 2 data respectively for training. The sixth training/testing pair of data sets, which correspond to
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line 6 of Table 6, has been obtained by selecting the ¯rst and second datum of every 3 data for training
and leaving the third datum out for testing. Likewise, as in the previous two examples of this section,
a tightest ¯t has been interpreted as a \rule". In other words, the FLNtf employs the training data
to ¯nd tightest ¯ts, those are lattice intervals [a; b] where a and b consist of both numeric and nominal
data. Such a tightest ¯t can then be interpreted as a \rule" in the sense that when a hybrid datum,
say datum x, gives the largest value ¾([x; x] �L [a; b]) for tightest ¯t [a; b] then it is concluded that the
hybrid datum x is of the same category as the category of all the training data which have given rise
to interval/rule R = [a; b].

Table 6 reports experimental results where only a part of the data has been used for training, hence
it con¯rms FLNtf 's capacity for generalization. That is, a testing datum does not have to be within a
tightest ¯t in order for the FLNtf to assigned it to a category, but a testing datum could be outside all
tightest ¯ts and still the FLNtf can assign it pointedly to its correct category as it has been veri¯ed
experimentally. In all, the FLNtf has demonstrated a very good capacity for generalization which
(capacity) was increasing as the number of the data for training was increasing as shown in Table 6.
Moreover, Table 6 reports the total number of tightest ¯ts (rules) in each experiment. An increase is
noted in the number of tightest ¯ts as the number of training data increased, nevertheless the total
number of tightest ¯ts is fairly small compared to the corresponding number of training data in each
experiment.

6.4 FOREST COVERTYPE benchmark

The size of the previous data sets has been rather small compared to potential requirements of real
world problems. Therefore a much larger data set has been considered in this section in order to address
the issue of FLNtf 's scalability and applicability to real world problems. The FOREST COVERTYPE
data set [46] contains 581,012 data records of whom 11,340 records are given for training, 3,780 are
given for validation, and 565,892 data records are given for testing. This data set has been donated by
Jock A. Blackard, Colorado State University, and it involves jointly 12 numeric and nominal attributes
per data record. A data record has stemmed from a 30£30 meter cell in the Roosevelt National Forest
of northern Colorado. The ¯rst 10 attributes are numeric cartographic variables which specify the
location of the 30£30 meter cell of forest, whereas the last 2 attributes are Boolean strings of zeros and
ones and specify both the corresponding wilderness area and soil type. The \class" of a data record is
denoted by an integer between 1 and 7, that is there exist seven underlying classes which specify the
forest cover type. There are no missing attribute values.

Previous uses of this benchmark have employed linear discriminant analysis as well as backpropaga-
tion [3] and the corresponding results are summarized in Table 7. The FLNtf has been employed for
learning, and the numeric attributes have been treated as numbers whereas for each nominal attribute
the corresponding Boolean lattice of zeros and ones has been considered. Note that for such a Boolean
lattice the positive valuation function employed has been the normalized sum of ones in a string of
zeros and ones. Note that only the \training data" have been used for learning by FLNtf , resulting
in a classi¯cation accuracy equal to 62.58 % on the testing data as well as 3684 tightest ¯ts (rules),
that is a 3.07:1 compression on the training data. Table 8 displays a confusion matrix, where the latter
matrix shows the distribution of the 565,892 testing data in the 7 categories learned by the FLNtf .

We remark that no problem of over¯tting the training data has been noted in this work because
the results on the testing sets have been very satisfactory in all the experiments.

6.5 A comment on FLN's potential for data discrimination

The FLN models, be it the ¾ ¡ FLN or the FLNtf , have demonstrated a capacity for data discrimi-
nation. The latter capacity is attributed to the practical e±ciency of the inclusion measure ¾ and the
technique of maximal expansions [51], [52]. Nevertheless another reason should be pointed out as well,
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that is an FLN model's capacity to deal with mathematical lattices. Note that it has been a practice
in the past to introduce extra dimensions to nonlinearly separable classi¯cation problems \hoping" to
achieve linear separability in more dimensions. For instance Pao's functional link net (unfortunately
after having launched the acronym FLN we have discovered that the same acronym had been used
for the functional link net, as well) creates automatically new dimensions by introducing products of
the feature values (see \tensor models" in [45], p93). Note that the FL-framework suggests an addi-
tional \tool" for pattern separability by mapping feature values on the partially ordered constituent
lattices instead of mapping features on the totally ordered real line. Such a map of disparate features
to di®erent constituent lattices may be regarded as a preprocessing step aiming at a more e±cient data
separability. The experiments in this work corroborate an enhanced e±ciency for data separation.

7 DISCUSSION & CONCLUSION

It has been argued by mathematicians that \lattice theory will play a leading role in the mathematics of
the twenty-¯rst century" [55]. This work has demonstrated, by experimenting with a concrete neural
model on a number of benchmark data sets, that lattice theory can be useful as well for versatile-
automated- learning and decision making.

An assortment of issues have been dealt with in this paper including a novel notation for the
framework of fuzzy lattices (FL-framework) in order to simplify mathematical expressions, and hence
to enhance their utility, without losing content. Neurocomputing models in the context of FL-framework
are labelled by acronym \FLN". In this paper two FLN models have been dealt with, these are the
¾ ¡ FLN model for competitive clustering and the \FLN with tightest ¯ts (FLNtf )" for supervised
clustering. Convenient geometric interpretations have been given on the plane.

The ¾¡FLN , introduced elesewhere [51], [52], has been presented here as an enhanced extension of
the fuzzy-ART model in the FL-framework as explained in section 5. Despite ¾¡FLN 's rapid learning
in \one pass" through the data its performance depends on the order of data presentation. Because
some applications might call for a learning capacity independent of the order of data presentation, the
FLNtf model has been introduced in this work which, while retaining all of ¾¡FLN 's aforementioned
advantages, can compute incrementally the same intervals in the training data independent of the order
of presentation at the \price" of polynomial complexity O(n3), where n is the number of training data.
Nevertheless note that polynomial O(n3) complexity is not an actual problem in applications, therefore
the FLNtf can have a practical value. The FLNtf has been tested successfully here on four benchmark
data sets of various sizes containing either (or both) numeric and nominal values with \missing" and
\don't care" values. Moreover, the FLNtf can justify its answers by extracting rules in the data,
hence the FLNtf can be useful for data mining and rule extraction involving disparate types of data.
Future work on FLNtf includes the study of techniques in order to both improve performance and
reduce the number of rules. Another topic for future work includes the study of faster algorithms to
calculate the tightest ¯ts in the training data.

Due to its wide scope of applicability, the FL-framework could be employed as a platform for
unifying and/or enhancing various learning techniques across di®erent disciplines. For example, the
notion \lattice interval" could provide with novel perspectives and even enhance such rule-generation
algorithms as R-MINI [33]. Modelling \consciousness" in psychology might be another domain for
applications due to FL-framework's capacity to deal with disparate types of data such as propositional
statements, real numbers, fuzzy sets, symbols, etc. For instance, in an approach to modelling conscious-
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not imply k(
¡!
b1 µ ¡!

b2 ) = 0 and the latter could make the di®erence in decision making. Regarding
another model of consciousness which employs the notion of `bubbles' of activity [62], note that the
\lattice domain" applicability of an FLN model might be particularly useful in modelling the higher
stages of consciousness after the consciousness' emergence from sensory data transformations in lower
stages. By the same token, the FLN could be the platform for launching hybrid neural models whose
utility has been argued in [59]. Moreover note that FL-framework's mathematical tools, including its
positive-valuation-based metric, might allow for a rigorous mathematical treatment of such learning
issues as \convergence in the limit", etc.

Furthermore note that the most widely employed form of today's computing is based on Boolean
logic and it is implemented on silicon electronics. Nevertheless \silicon electronics computing" is not
unrivaled for all computing tasks. For instance due to its processing speed, optical computing is more
suitable for Fast Fourier Transforms. The synergistic coexistence of optical- with electronics- computing
has been argued for in [17]. We remark that the collection of images on a plane de¯nes a mathematical
lattice. In conclusion, both the Boolean algebra, implemented on silicon electronics, and the images,
used in optical computing, imply a mathematical lattice. Alternative mathematical lattices can be
considered in applications. Therefore the FL-framework could be considered as a useful platform for
computing in practice.

Regarding neurocomputing in fuzzy lattices (FLN) in particular, note that in order to implement
an FLN model in hardware the so called \representation problem" must be resolved. That is the
problem of how to store and process a lattice element. It is likely that the best implementation for an
FLN model is an analog rather than a digital implementation if one is to take full advantage of FLN's
capacity for massive parallel processing of disparate types of data. Perhaps the key to \brain-like"
behavior by arti¯cial neural networks lies as well in the sound, synergistic combination of disparate
types of data as exempli¯ed by FLN models.
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TABLE 1
Performance of various methods reported in the literature in classifying the Cleveland's

HEART Benchmark. The methods are arranged in a decreasing order of success.

Pattern Classi¯cation Algorithm % Classi¯cation
Accuracy

Probability Analysis 79
Conceptual Clustering (CLASSIT) 78.9
ARTMAP-IC 78
Discriminant Analysis 77
Instance Based Prediction (NTgrowth) 77
Instance Based Prediction (C4) 74.8
Fuzzy ARTMAP 74
KNN 67

TABLE 2
Performance of FLNtf in classifying the Cleveland's

HEART Benchmark. The results are arranged in a decreasing order of success.

Statistics of
Pattern Classi¯cation Algorithm % Classi¯cation Accuracy Number of Rules

Average Standard Average Standard
Deviation Deviation

FLNtf , 2 Categories (10-fold Cross-Validation) 79.34 5.84 60 3.52
(10 experiments)

FLNtf , 2 Categories. Keep-250-in 77.88 4.58 53.80 4.58
(100 experiments with random data orderings)
FLNtf , 5 Categories (10-fold Cross-Validation) 57.34 12.15 95.90 3.41

(10 experiments)
FLNtf , 5 Categories. Keep-250-in 56.74 7.23 86.81 4.67

(100 experiments with random data orderings)

TABLE 3
Confusion matrix for the Cleveland's HEART Benchmark in

the \2-categories problem" and 10-fold cross-validation.

Number of Data Number of Data to Category
from Category 0 1

0 131 32
1 30 107
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TABLE 4
Confusion matrix for the Cleveland's HEART Benchmark in

the \5-categories problem" and 10-fold cross-validation.

Number of Data Number of Data to Category
from Category 0 1 2 3 4

0 140 15 4 4 0
1 29 12 9 2 2
2 8 11 9 8 0
3 5 10 9 7 3
4 1 1 5 2 4
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TABLE 5
Confusion matrix for the Cleveland's HEART Benchmark in the \5-categories problem"

and 10-fold cross-validation. Category 0 (healthy subjects) remained intact.
Categories 1,2,3,4 (heart patients) were arranged in a single category. In that arrangement the

94 misclassi¯cations among the categories 1,2,3,4 are no longer considered to be misclassi¯cations.

Number of Data Number of Data to Category
from Category 0 1

0 140 23
1 43 (94)
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TABLE 6
The testing success percentage is shown on 6 di®erent partitions of the CYLINDER

BANDS benchmark into a training set of an ever increasing size and a testing set. The last
column shows the number of tightest ¯ts (rules) found in the training data.

Testing
# Data (band+noband) Misclassi¯cations % Success # Clusters/Rules
Training Testing (band+noband)

1 23+31= 54 205+281=486 113 + 39 68.72 2
2 46+62=108 182+250=432 63 + 50 73.84 2
3 58+77=135 170+235=405 74 + 27 75.06 3

4 78+102=180 150+210=360 21 + 97 67.22 3
5 114+156=270 114+156=270 46 + 8 80.00 15
6 148+212=360 80+100=180 29 + 9 78.88 10
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TABLE 7
Performance of various methods in classifying the FOREST COVERTYPE Benchmark.

The methods are arranged is a decreasing order of success.

Pattern Classi¯cation Method % Classi¯cation
Accuracy

Backpropagation 70
FLNtf 62.58
Linear Discriminant Analysis 58

TABLE 8
Confusion matrix for the FOREST COVERTYPE testing data.
Only the \training data set" has been employed for learning.

Number of Data Number of Data to Category
from Category 1 2 3 4 5 6 7

1 126,541 45,235 150 0 3,766 730 33,258
2 64,403 169,859 8,410 195 22,297 8,104 7,873
3 26 954 24,895 2,023 507 5,189 0
4 0 0 53 524 0 10 0
5 446 1,281 145 0 5,311 148 2
6 111 493 3,765 664 387 9,787 0
7 1,031 103 0 0 1 0 17,215
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Figure 1: (a) Points (a1,a2) and (b1,b2) are comparable, in particular it is (a1; a2) �U (b1; b2). (b)
Points (c1,c2) and (d1,d2) are incomparable, that is neither (c1; c2) �U (d1; d2) nor (d1; d2) �U (c1; c2).
(c) Overlapping boxes were put in the same class, but it could be otherwise.
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Figure 2: The two layer ¾¡FLN architecture for competitive clustering in the lattice ¿(L) of intervals.
L, is the number of Category Layer neurons which equals the total number of intervals used to de¯ne
M classes. A Category Layer neuron employs a lattice inclusion measure s as an activation function.
N, is the number of the Input Layer neurons. The two layers are fully interconnected by pairs of lattice
weighted links that ¯lter -up or -down the activity in a layer. A \reset" node is used for resetting the
activity of a node is the Category Layer.
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Figure 4: The above tree structure is calculated by the FLNtf algorithm in order to ¯nd the tightest
¯ts on a training data set f(¢i; g(¢i))gi2f1;:::;ng. A node of the tree corresponds to the lattice join (_L)
of a category's subset. Tree-nodes that contradict training data do not grow further. A \leaf" of the
tree corresponds to a tightest ¯t. The total number (n) of the training data upper-bounds the size of
the tree.
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Figure 8: (a) The trivial interval (atom) x is included more in class-c2 than in class-c1. (b) The technique
of maximal expansions is an optimization technique which replaces the family decomposition fw1; w2g
of class c1 = w1 [ w2 by the quotient family decomposition Q(c) = fw1; w02g of class c1 = w1 [ w02
in order to maximize the degree of inclusion of any interval to class c1. As a result, in this particular
example, x is now included more in class-c1 than it is in class-c2.
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Figure 9: Illustrating "learning" by the FLNtf model. (a) Eight labeled training data partitioned,
by four, in two classes are fed to the FLNtf . (b) The classes c1 and c2 are \located" in the training
data by calculating the tightest ¯ts. Note that overlapping of two tightest ¯ts of di®erent categories
is allowed (notice for example the overlapping of a _ b and 2 _ 3 _ 4) as long as no training data are
contradicted. (c) Learning concludes by calculating the maximal expansions of the tightest ¯ts of all
training data fed so far. (d) Additional data 5, 6 are fed to the FLNtf . The tightest ¯t a _ b is
deleted because it contradicts training datum 5. (e) Additional datum e is fed to the FLNtf . The
new tightest ¯ts are calculated as usual. (f) Learning concludes by calculating the maximal expansions
of the tightest ¯ts on the training data fed so far.
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