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Abstract

Stapedotomy is a surgical procedure aiming at the treatment of hearing impairment, where the latter is due to
otosclerosis, by drilling a hole through the stapes bone in the inner ear in order to insert a prosthesis. Safety
requires knowledge of the non-measurable stapes thickness. The technical goal herein has been the design of
high level controls for an intelligent mechatronics drilling tool in order to enable the estimation of stapes
thickness from measurable drilling data. The goal has been met by learning a map between drilling features,
hence no model of the physical system has been necessary. Learning has been achieved as explained in this
paper by a scheme, namely d-σ Fuzzy Lattice Neurocomputing (dσ-FLN) scheme for classification, within
the framework of Fuzzy Lattices. The successful application of the dσ-FLN scheme is demonstrated in
estimating the thickness of a stapes bone “on-line” using drilling data obtained experimentally in the
laboratory.

Index Terms - Intelligent mechatronics, stapedotomy surgery, neural networks, pattern classification, fuzzy
lattice framework, skillful tasks.

1   INTRODUCTION

As surgical procedures are increasing in complexity, the precision to which non-invasive
measurements can be obtained has increased in many cases beyond the capacity for accurate deployment of
surgical tools by manual methods. There is a need to be able to work with comparable accuracy in the
uncertain surgical environment. Dexterous and intelligent electro-mechanical, that is mechatronical, surgical
tools have been envisaged for assisting in the surgical theater.

In the above context a concrete surgical procedure is dealt with herein, that is stapedotomy.
Stapedotomy is a corrective surgical procedure whose aim is to overcome otosclerosis, where otosclerosis is
the name for excessive bone growth within the mid-ear cavity which typically leads to hearing impairment.
A stapedotomy may be performed by drilling a hole through the base, namely footplate, of the stapes bone.
Finally hearing is restored by inserting a prosthesis through the footplate of the stapes and connecting the
prosthesis appropriately. Note that the term stapedotomy may also be used for the actual hole drilled through
the stapes.
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Drilling through the stapes could be dangerous because of the potentially excessive tool protrusion, at
the end of drilling, due to deflection of the flexible stapes bone under tool action. Excessive tool protrusion
could hurt the inner ear irreparably. Such a danger can be eliminated should the thickness of stapes is
known. Nevertheless the thickness of the stapes bone cannot be determined before drilling. Herein the
problem of determining “on-line” the stapes thickness has been formulated as a classification problem. In
particular a machine-learning scheme has been employed, namely d-σ Fuzzy Lattice Neurocomputing
scheme or dσ-FLN scheme for short. To put this work in perspective, selected approaches to learning and
classification from the literature are reviewed in the sequel.

An older approach to classification in an unpredictable environment is considered in [21] by
proposing theoretically a hierarchical scheme of increasing intelligence and decreasing precision. In [17] a
learning application is shown which involves the use of a robot in brain surgery; in particular Kalman
filtering is employed for estimating with precision a robot’s geometric parameters at the time of surgery in
order to effect submillimeter accuracy in positioning the robot's end effector.

The performance of various learning and classification techniques is shown comparatively in [13]. A
similar comparative study of different machine learning, neural, and statistical classification algorithms has
been undertaken in the context of the European research project Statlog [4]. A distributed model for
learning, recognition, and prediction is provided in [7] together with a summary of various adaptive
resonance theory (ART) models. In addition, there already exist web cites summarizing comparatively
various classification algorithms [10].

Decision-making has been treated in various contexts. Lately, in the context of fuzzy set theory, the
work in [22] proposes a set-theoretic similarity measure between fuzzy sets. In the context of the Dempster-
Shafer theory of evidence, the work in [18] following a review, treats information which is uncertain,
imprecise, and occasionally inaccurate, by the fusion of sensors at the symbol level. Herein, decision making
has been dealt with in a novel framework as it is explained towards the end of this section.

The selection of the features to be fed to a pattern classifier may be a more important problem than the
classifier architecture itself; for instance the work in [12] employes the Bienenstock, Cooper, and Munro
(BCM) unsupervised network for feature extraction and it demonstrates an improved classification of
underwater acoustic signals using a conventional back propagation classifier.

The notion lattice has been employed in the literature as well for learning and decision-making. We
remark that the term lattice is not always used in the literature with respect to its strict mathematical
definition. For instance in [16] the word lattice is employed to denote a regular arrangement of points in Rn.
In what follows by lattice we mean a mathematical lattice [9]. Lattices may arise naturally when dealing
with knowledge in computer science; for instance in [2] a lattice of rules is employed for the analysis of
techniques focused on detecting termination of rule execution in a knowledge base. Lattices have also arisen
in the study of hybrid systems [6], these are systems in which the state set possesses both continuous and
discrete components. The mathematically sound framework of fuzzy lattices, or FL-framework, for learning
and decision making has been introduced in [15], [19]. A novelty of the FL-framework is that FL-framework
promotes the processing of lattice data elements. An advantage of the FL-framework is its inherent capacity
to cope with disparate types of data including numbers, symbols, fuzzy sets, etc.; such a capacity is expected
by the authors to be important in skillful tasks including surgical procedures. In this work we have employed
the FL-framework for learning and decision making.

The layout of this article is as follows. Section 2 reviews the state-of-the-art technology in
stapedotomy. Section 3 details a feature extraction technique, it outlines aspects of the underlying theory, it
reviews the dσ-FLN scheme for learning, and it exposes the equations needed for the application of the latter
scheme. Section 4 details both data acquisition and the experiments carried out, and finally it shows the
corresponding results. Section 5 concludes this article with a discussion of the merits of the technique
proposed.
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2   STATE-OF-THE-ART IN STAPEDOTOMY

The transmission of sound from the outside world to the sense organs in the inner ear is mediated via
the three ossicular bones of the middle ear, namely Malleus, Incus, and Stapes, shown in Fig.1(a).
Otosclerosis is the excess bone growth within the mid-ear cavity especially on the stapes footplate (Fig.1(a))
and can lead to hearing impairment by partial or complete fixation of elements in the ossicular chain. The
stapedotomy surgical procedure aims at overcoming otosclerosis by opening a hole through the stapes
footplate in order to insert a prosthesis and connecting the prosthesis either to the remaining ossicular bones
or directly to the tympanic membrane as shown in Fig.1(b). Note that, safety requires a non-excessive
protrusion of the drilling tool past the far medial surface of the flexible stapes bone because an excessive
protrusion might risk further hearing impairment to the patient.

Due to its size, the flexible stapes bone is delicate and can be broken easily. Note that typically the
dimensions of the stapes are approximately 2.5 by 1.5 mm2 with a thickness of about 0.3 mm for a healthy
bone, and with thickness in the range 0.2-2.5 mm for a diseased bone. Currently there exist three main tool
types to create a stapedotomy.

1. Metal pick. Usually triangular in cross section; it is rotated back and forth to grind away the underlying
bone. The hole created is often of poor quality, and there is also a risk of mechanical trauma to the inner
ear.

2. Electric drill. It produces a good quality opening, and it is run at a subacoustic speed to prevent acoustic
trauma to the inner ear. Nevertheless care must be taken to avoid drilling past the medial surface of the
stapes footplate and the possible rupture of the underlying fluid sac.

3. Lasers. Visible light [8] and long wavelength (LW) lasers have been employed. Both types of lasers are
short of the capacity to control the depth of penetration of the beam. Additional drawbacks include the
durability of the stapedotomy as well as the risk of both thermal and acoustic traumata to the inner ear.

Our research team has opted for an electric drill to perform a stapedotomy because of the high quality
hole it produces for inserting and sustaining the prosthesis. The main disadvantage of the drilling procedure
is the potentially excessive and therefore dangerous overshoot of the drill bit at the stapes breakthrough.
Such an overshoot can be avoided if the thickness (t) of the stapes footplate is known. Nevertheless the
thickness t cannot be determined before the drilling operation.

In the past, a mathematical model of the following form has been employed with a mechatronic
surgical drill to estimate the thickness of a stapes.
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where functions f1 and f2 are algebraic expressions of their arguments, F and T stand respectively for force
and torque, γ is the cutting coefficient, β is the loss coefficient, P is a vector of the drilling parameters
including the angular velocity, the feed rate, and the drill bit radius, K is the bone stiffness parameter, and
θ=(θ1,θ2) is the vector of the near- and far- cutting surfaces angle. Estimation of the thickness (t) is achieved
by calculating iteratively improved estimates of the thickness t. For additional details the reader may refer to
[1].

The previous, model-based, method is successful in estimating the stapes thickness suffices certain
simplifying assumptions hold regarding the materials involved in the drilling. Nevertheless difficulties have
been experienced in practice because the aforementioned simplifying assumptions are not always valid.
Moreover, the above mathematical model cannot be used in the face of unexpected events like, for instance,
the existence of a tiny blood vessel within the stapes bone.
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In this work a machine-learning technique has been employed in order to estimate a stapes thickness
during the stapedotomy surgical procedure by classification as explained in section 3.3. Preliminary results
have been presented in [14]. In the following chapter specific techniques are shown for learning the stapes
thickness in the context of the framework of fuzzy lattices, or FL-framework; it is also explained how the
estimation of stapes thickness can be cast as a classification problem.

3   A MACHINE-LEARNING APPROACH FOR ESTIMATING A STAPES THICKNESS

3.1   A Feature Extraction Technique

Specific drilling features have been extracted, as explain below, and then an estimation of a stapes
thickness has been effected by classification as it is outlined next. The drilling data from a stapes of
unknown thickness are assigned to a previously learned class of drilling data all of whom correspond to the
same stapes thickness. That is, the thickness label of the learned class in question is attached to the
“unknown thickness” stapes. The remaining of this section details the specific feature extraction technique
employed.

Experimentation has shown that for various combinations of force and torque features it has not been
possible to locate clusters of drilling data of the same thickness. Moreover, experimentation has shown that
such a clustering was feasible by a linear map of force features to torque features. In particular, force
features and torque features have been arranged in two different 2×2 matrices F and T respectively. The
datum considered for “learning” has been a 2×2 matrix M so as MF=T; that is the linear operators (matrices)
M have been the data employed for learning. The entries of matrices F and T have been selected as it is
explained below. A decision to employ square matrices was taken because a useful norm-induced metric can
be defined in square matrices [5]. Herein the spectral norm ‖.‖S of square matrices has been considered

which is defined as ‖A‖S =max{ λ ,λ is an eigenvalue of A′A}, where A′ is the transpose of a matrix A with
real elements. Apparently the space M of 2×2 matrices M constitutes a linear metric space, with the spectral
metric dS(M1,M2)=‖M1-M2‖S.

Entries have been selected for matrices 
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performance in the data. Specifically, among various “candidate” entries for matrices F and T we have
selected the ones which maximize the distance between matrices M corresponding to different stapes
thickness. To illustrate the procedure of selecting suitable entries for matrices F and T consider the spectral

distance dS(M1,M2)=‖M1-M2‖S between two matrices M1 and M2. Assuming that matrix 
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maximized and δ1δ4 becomes approximately equal to δ2δ3. In conclusion the following matrices have been
employed.
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where l is the number of force (f) and torque (q) data, yf and yq are the least square linear regressors of f and
q respectively, slope(.) is the slope of its linear argument, std(.) is the standard deviation of its argument, the
square root term indicates the overall error of approximating the data by a straight line, d(l) is the current
displacement of the drilling tool, and K is the stiffness parameter of the stapes. All the aforementioned
quantities are in standard System International (SI) units but the displacement d(l) is in [mm] and the
stiffness K is in [N/mm].

In conclusion, it has been matrices M which have been employed for learning and classification. On
the one hand during learning, clusters of known matrices M corresponding to the same stapes thickness have
been located. On the other hand during classification, a matrix M′(t) corresponding to a stapes of unknown
thickness being drilled kept being assigned to a cluster, as it is explained in sections 3.3 and 4.2, and
consequently the thickness label of the cluster in question was assigned to M′(t). Therefore the measurable
input data to the dσ-FLN have been : (1) the drilling force versus displacement, (2) the drilling torque versus
displacement, and (3) the stapes stiffness. The output from the dσ-FLN scheme has been the stapes
thickness.

3.2  Theoretical Perspectives

This section constitutes a “detour” from our focal point of stapedotomy surgery in order to delineate
the mathematical tools used herein for data processing.

3.2.1 Hidden-lattices

The framework of fuzzy lattices, or FL-framework for short, has been introduced in [15], [19] for
dealing with lattice elements including conventional numbers, fuzzy sets, symbols, etc. The novel notion
hidden-lattice is introduced herein as an enhancement of the notion lattice.

Let, P be a partly ordered set, L be a lattice, and ψ: P→L be a monotone map [9]. The implied partial

ordering relation in P and L will be denoted respectively by ≤P and ≤L. Recall also that a map ψ: P→L is

called monotone if x≤Py implies ψ(x)≤Lψ(y). For x,y∈P consider an upper bound, say z, of x and y; if there

exists a unique upper bound, namely z0, of x and y in P such that ψ(z0)≤L ψ(z) for all upper bounds z∈P then
z0 is called the join of x and y in P. Note that join z0 does not have to be included in every other upper bound
of x and y in P. The notion meet of x,y∈P is defined dually; that is the meet is the unique lower bound, say
w0, of x and y in P such that ψ(w)≤Lψ(w0) for all lower bounds w of x and y in P. Likewise, note that meet w0

does not have to include every other lower bound of x and y in P. The definition of the notion hidden-lattice
follows.

Definition 1   A partly ordered set P is called hidden-lattice if there exists a lattice L, namely the underlying

lattice, and a monotone map ψ: P→L, namely the corresponding map, such that any two elements x,y∈P

have a join denoted by x ∨ Py, and a meet denoted by x ∧ Py . A hidden-lattice is complete when each of its
subsets has a meet and a join in P.

By considering the identity map on a lattice L it is implied that lattice L is a hidden-lattice;
nevertheless the converse is not always true.

The utility of a metric and an inclusion measure in learning- and decision-making- involving lattice
elements has been shown in [15], [19]. Likewise it could be useful to have both a metric and an inclusion
measure in a hidden-lattice. A positive valuation function has been employed in [15] for defining both a
metric (or, distance function) and an inclusion measure in a lattice. Recall that a valuation on a lattice L is a

real function v: L→R which satisfies v(x)+v(y)=v(x∨Ly)+v(x∧Ly), x,y∈L; a valuation is called monotone if
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and only if x≤Ly implies v(x)≤ v(y), and positive if and only if x<Ly implies v(x)< v(y). On the one hand, in a

lattice L with a positive valuation v, a metric is defined by d(x,y)= v(x∨Ly)-v(x∧Ly). On the other hand, in

[15] an inclusion measure σ is defined with regards to a complete lattice. Underneath the definition of an
inclusion measure is extended to any lattice, be it complete or not.

Definition 2   Let L be a lattice. An inclusion measure in L is a map σ: L×L→[0,1] such that

σ((x,u))≡σ(x≤Lu) satisfies the following two conditions:

   (E1) σ(u≤Lu)=1, ∀u∈L.

   (E2) u≤Lw ⇒ σ(x≤Lu)≤ σ(x≤Lw), x,u,w∈L - Consistency Property.

Consider a hidden-lattice P with underlying lattice L and corresponding map ψ. Suppose that there
exists a positive valuation function v in L. Then a metric and an inclusion measure can be defined in hidden-

lattice P as follows : (1) a metric is defined by d(x,y)≗d(ψ(x ∨ Py),ψ(x ∧ Py)), and (2) an inclusion measure is

defined by σ(x≤Py)≗
))((

))((

yxv

yv

P∨ψ
ψ

. It can be shown that ψ(x ∧ Py)≤Lψ(x ∨ Py) in L, therefore the metric in P

equals d(x,y)=v(ψ(x ∨ Py))-v(ψ(x ∧ Py)).

3.2.2 The hidden-lattice of generalized spheres in a linear metric space

Let (L,d) denote a linear metric space, where L is a linear space and d(.,.) is a metric in L. In this
section it is shown how learning can be effected in (L,d) by employing a concrete hidden-lattice defined in
(L,d). Specifically it is shown that experience can be collected and a meaningful generalization can be
attained by defining balls in L. Note that a ball centered on a vector c∈L with a (non-negative) radius r≥0 is
a set of the form {x∈L: d(x,c)≤r}, and it will be denoted by “ball(c,r)”, where c∈L and r≥0. Apparently
“ball(c,0)” is a trivial ball which contains only a single element c∈L; a trivial ball will also be called point or
atom. Let B denote the collection of balls in (L,d); we write “ball(k,a)≤Bball(c,r)” if and only if all the points
of ball(k,a) are in ball(c,r).

The utility of balls for learning in (L,d) lies on the fact that crisp sets in L can be approximated by
collections of balls. Hence learning crisp- and mutually-disjoint sets in a linear metric space (L,d) can be
pursued by a procedure of defining and enhancing collections of balls. We remark that balls have been
considered either explicitly or implicitly by various learning schemes including the adaptive resonance
theory [25], learning vector quantization (LVQ) [11], radial basis functions (RBF) [3], etc. Moreover the
Vapnik-Chervonenkis dimension of the set of balls has been calculated [24].

The set B of balls in a linear metric space is partly ordered. Nevertheless the set B is not a lattice for a
pair (ball(c,r), ball(k,a)) there is no upper bound ball contained in every other upper bound ball, that is there
is no least upper bound. Likewise for a pair (ball(c,r), ball(k,a)) there is no lower bound ball which contains
every other lower bound ball, that is there is no greatest lower bound. However, it is shown in this section
that it is possible to introduce both a metric and an inclusion measure in the partly ordered set B by mapping
B to a hidden-lattice Φ whose underlying lattice L is equipped with a positive valuation function.

More specifically, consider the set of spheres S in a linear metric space (L,d), where a sphere centered
on a vector c∈L with a (non-negative) radius r≥0, is a set of the form {x∈L: d(x,c)=r}, and it will be denoted
by “sphere(c,r)”. Apparently there exists a bijection (that is an one-to-one map and onto) bB: B↔S between
the set B of balls and the set S of spheres. Hence, a partial ordering relation is implied in S, symbolically
sphere(k,a)≤Ssphere(c,r), if and only if ball(k,a)≤Bball(c,r). The set Φ of generalized spheres is introduced as
follows.
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Definition 3   The set Φ of generalized spheres in a linear metric space (L,d) is defined by Φ={(c,r): c∈L,
r∈R}.

Note that the members of Φ are only ordered pairs (c,r), where c∈L and r∈(-∞,+∞); in other words a
member of Φ is not a set of members of L. The two elements c and r of a generalized sphere (c,r) are called
respectively center and radius of the generalized sphere.

Let Φ0
+ denote a subset of Φ such that Φ0

+={(c,r)∈Φ: r≥0}. Apparently there exists a bijection (that is
an one-to-one map and onto) b0

+: Φ0
+↔S between the sets Φ0

+ and S and consequently there exists a
bijection between the sets Φ0

+ and B. Note that to a generalized sphere (c,r) there corresponds one ball, that
is ball(c,r) namely the corresponding ball of the generalized sphere (c,r). A partial ordering relation
(c1,r1)≤Φ(c2,r2) is defined in the set Φ of generalized spheres as follows.
Case-1 : r1, r2 ≥ 0
Then (c1,r1)≤Φ(c2,r2) ⇔ ball(c1,r1)≤Bball(c2,r2).
Case-2 : r1, r2 < 0
Then (c1,r1)≤Φ(c2,r2) ⇔ ball(c2,r2)≤Bball(c1,r1).
Case-3 : r1<0, r2≥0

Then (c1,r1)≤Φ(c2,r2) ⇔ ball(c1,|r1|)∩ball(c2,r2)≠∅. The latter relation signifies that a generalized
sphere (c1,r1) with a negative radius is smaller than a generalized sphere (c2,r2) with a positive radius if and
only if the corresponding balls of the two generalized spheres intersect each other.

It can be shown that the partly ordered set Φ of generalized spheres is a hidden-lattice with underlying
lattice the set R of real numbers and corresponding map r given by the radius of a generalized sphere.
Moreover the function v(x)=x constitutes a positive valuation in R, hence both a metric and an inclusion

measure are implied in the hidden-lattice Φ.
In summary, the previous considerations imply an injective monotone map φ: B↔Φ, from the partly

ordered set B of balls to the hidden-lattice Φ; the aforementioned injective monotone map φ is given by
φ(ball(c,r))=(c,r). More specifically the injective monotone map φ implies “ball(k,a)≤Bball(c,r) ⇒
φ(ball(k,a))≤Φφ(ball(c,r)) ⇒ (k,a) ≤Φ (c,r)”. Therefore both the metric and the inclusion measure of Φ are
meaningful in B. Due to the practical orientation of this work detailed theoretical illustrations will be given
elsewhere.

3.3  The dσσ-FLN Scheme

A learning scheme has been employed, namely d-σ Fuzzy Lattice Neurocomputing scheme, or dσ-
FLN scheme for short, for the on-line estimation of stapes thickness. Note that the term “Neurocomputing”
implies a neural implementation of a learning scheme which could also be implemented otherwise, e.g.
algorithmically in software.

We remark that the dσ-FLN scheme has been introduced under the name “two-level-fuzzy-lattice (2L-
FL) scheme” in [20], where it was applied in another surgical procedure, that is the epidural puncture, for the
recognition of soft tissues. Nevertheless we have decided to switch to the name “dσ-FLN” herein so as to
adhere to the terminology established subsequently within the FL-framework. In particular, the letters “d”
and “σ” show that the training phase and the testing phase are carried out by employing a distance function
(d) and an inclusion measure (σ), respectively, the initials “FL” denote a scheme applicable within the FL-
framework, and the initial “N” signifies a neural implementation. We summarize qualitatively in the sequel
the dσ-FLN scheme for learning and classification in a hidden-lattice Φ whose underlying lattice is equipped
with a positive valuation function. A quantitative description of the dσ-FLN scheme will be shown using
specific equations in the second part of this section.
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Training-Phase of the dσ-FLN scheme
Step-S1. A “lower level” supervised clustering is carried out in the training-set of hidden-lattice Φ elements
by assuming that two training data are in the same cluster suffices their distance be less than a distance
threshold Td. Note that the initial value of Td is defined by the user. A contradiction occurs when two data
from different classes are put in the same cluster; then a decrease of Td is triggered, followed by a new
repetition of step-S1. Step-S1 keeps repeating until a contradiction-free cycle occurs which results in
homogeneous clusters, these are clusters of data from a single class.
Step-S2. The “lower level” supervised clustering concludes by the join operation ( ∨ Φ) of all hidden-lattice

Φ data in the same cluster. Hence, one hidden-lattice Φ element is defined for each lower level cluster.
Step-S3. An “upper level” supervised learning is conducted by attaching the label of a concrete stapes
thickness to each lower level cluster. The labels are attached by an external teacher. Note that more than one
clusters may be assigned the same thickness label.

The Training-Phase of the dσ-FLN scheme described above bases its decision making on a metric d.
In the sequel, to test dσ-FLN scheme’s capacity for generalization there follows the Testing-Phase which
bases its decision making on an inclusion measure σ.

Testing-Phase of the dσ-FLN scheme
All the data are fed one-by-one to the dσ-FLN scheme and their degree of inclusion is calculated in all

classes. The class which provides with the largest degree of lattice inclusion σmax is selected as the “winner
class”, provided that σmax is larger than a user-defined threshold Tσ; otherwise, if σmax<Tσ, no class is
assigned to the current input data and the latter data are declared to be of an “undefined” class.

In conclusion, “learning” by the dσ-FLN scheme is effected by supervised clustering. It has been
found experimentally that “learning” requires only a few passes through the training data, and furthermore,
“learning” claims certain neurocomputing qualities like parallel processing and generalization. The “worse
case training scenario” would be to employ training data of different classes very near to each other. Then
step-S1 of dσ-FLN scheme’s training-phase will trigger repetitive decreases of Td until all homogeneous
learned clusters correspond to a single datum. The aforementioned “worse case training scenario” might
arise as a result of “poor” data preprocessing and never occurred in the experiments described in the next
section.

In the sequel are cited the equations involved in both training and testing by the dσ-FLN scheme. The
data to be processed are in the linear metric space M of 2×2 matrices presented in section 3.1.

Equations used in the Training-Phase of the dσ-FLN scheme

• For each force-torque pair of drilling data profiles used for training matrices 
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T  are calculated, where j=1,…,n, and n is the number of training data. Note that the entries of

matrices Fj and Tj have been detailed is section 3.1 and they will not be repeated again.

• For each pair of matrices (Fj, Tj), j=1,…,n calculate matrix Mj=TjFj
-1, j=1,…,n. Matrices Mj are the data to

be clustered.

• A “lower level” supervised clustering is carried out in the set of matrices Mj, j=1,…,n by employing the
nearest neighbor clustering algorithm illustrated in step-S1 of the Training-Phase of the dσ-FLN scheme.

According to the details in section 3.1 note that the distance used between two matrices 
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• The aforementioned formulas are employed repetitively as illustrated in step-S1 of the Training-Phase of
the dσ-FLN scheme until all clusters resulting in are homogeneous.

• Let the jth homogeneous cluster include the matrices Mji, i=1,…,nj where nj is the number of matrices in the
jth (homogeneous) cluster. Consider the trivial balls, ball(Mj1,0),…,ball(Mjnj,0). Replace the aforementioned

balls by their circumscribed ball(cj,rj), where cj= ∑
=

j

i

n

i

j
j

M
n

1

1
 and rj= )},({max

1 i

j

jj

n

i
Mcd

=
.

By the conclusion of the Training-Phase, N homogeneous balls (cj,rj), j=1,…,N have been calculated,
where cj is a 2×2 matrix of real numbers and rj is a non-negative real number. Recall that each ball(cj,rj),
j=1,…,N has been assigned a stapes thickness label in step-S3.

Equations used in the Testing-Phase of the dσ-FLN scheme
• For a stapes being drilled, whose thickness is to be estimated by classification, two matrices









=

4,3,

2,1,

kk

kk
k ff

ff
F  and 








=

4,3,

2,1,

kk

kk
k tt

tt
T  are calculated are every 20 samples. Note that the entries of matrices Fk

and Tk have been detailed is section 3.1 and they will not be repeated again.

• Matrix Mk=TkFk
-1 is computed. In the sequel the degree of inclusion of ball(Mk,0) to ball(cj,rj), j=1,…,N is

calculated as follows.

• For each pair (ball(Mk,0), ball(cj,rj)), j=1,…,N calculate the circumscribed ball(cj′,rj′),where cj′=
2

1
(Mk+cj),

and rj′=
2

1
(d(Mk,cj)+rj), j=1,…,N.

• The degree of inclusion of ball(Mk,0) in ball(cj,rj) is calculated by σ(ball(Mk,0)≤ball(cj,rj))=
j

j

r

r

′
, j=1,…,N.

In conclusion matrix Mk, and consequently the stapes it has stemmed from, is classified to one ball
among ball(cj,rj), j=1,…,N, that is in particular the ball which corresponds to the largest degree of inclusion

j

j

r

r

′
, j=1,…,N, and finally the label (thickness) of the winner ball is assigned to the stapes bone being drilled.

As it will explained in the next section a winner's label might change as the drilling progresses. The decisive
classification is made at the moment of breakthrough. Note that a stapes breakthrough can be easily detected
by the rapid changes in the values of force and torque.
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4   EXPERIMENTS AND RESULTS

4.1  Data Acquisition

The data have been obtained at the University of Bristol. Different sample materials have been
considered such as metals, ceramics, various composites, plastics, and animal bones. Animal bone has been
used as the most appropriate material due to its inherent similarity to human bone. The thickness (t) of a test
piece had been in the range 0.2-2 mm, whereas the dimensions of a test piece other than thickness are
unimportant.

To acquire the data, a drill with force, torque, and position sensors was fed at a constant feed rate
through a test piece representing the stapes footplate. The drill had a spherical burr drill bit of 0.6 mm
diameter, and a linear feed actuator repeatable to within ±0.1 µm. The force was measured to an accuracy of
±0.05 N, and the torque to an accuracy of ±0.01 Nmm. Note that units of System International (SI) have been
used, these are in particular Newton (N) for the force, and Newton-millimeter (Nmm) for the torque. Both a
bone sample to be drilled and the drill unit were mounted on a test rig simulating the compliance of an in-
situ stapes. For details regarding the design and operation of the mechatronic drilling tool the reader may
refer to [1], [23].

A series of experiments was carried out for an array of parameters as explained in the following
section. The drilling data have been obtained as follows. The drill was advanced until it was in contact with
and perpendicular to a test piece. Then the drill was set in motion under computer control with a rotational
subacoustic speed of 2 Hz. The feed rate was kept constant in the range 0.1-10 mm/min. Drilling was
continuous and stopped when the drill bit was clear of the far surface. The displacement, in the range 0-6
mm, the force, in the range 0-10 N, and the torque, in the range 0-5 Nmm, were logged throughout the
drilling. Note that the measured displacement has been in a larger range (0-6 mm) than the range of the
stapes thickness (0.2-2 mm) because the flexible stapes has yielded under drilling tool action.

4.2  Experiments

Twelve groups of drilling data have been obtained for all combinations of 3 values of stapes thickness
(t) and 4 values of stapes stiffness (K). Regarding thickness, in particular, the typical values 0.5 mm, 1 mm,
and 1.5 mm have been dealt with, whereas the corresponding stiffness values had been 1030 N/m, 2440 N/m,
4900 N/m, and 11900 N/m. Each one of the 12 groups of data included 5 force/torque pairs of drilling
profiles, resulting in a total of 60 pairs of data profiles. Three outliers, that is 5 % of the data, were removed
in all subsequent experiments. Note that a group of drilling data was characterized by two labels, these labels
are (1) the corresponding stapes thickness, and (2) the corresponding stapes stiffness.

One group of drilling measurements has been treated as one class. That is 12 classes had to be learned
by the dσ-FLN scheme, where a class has been characterized by two labels : (1) a stapes thickness, and (2) a
stapes stiffness. In the sequel during testing, and since the stapes stiffness (K) is measurable before drilling,
the drilling data of a stapes had to be classified to one of the three classes which correspond to stapes
thickness 0.5 mm, 1.0 mm, and 1.5 mm. Consequently the problem of estimating the thickness of a stapes has
been treated as a pattern classification problem.

Both in the training- and in the testing- phase of the dσ-FLN scheme the measurable input data have
been : (1) drilling force versus displacement, (2) drilling torque versus displacement, (3) the stapes stiffness,
and (4) the displacement at a stapes breakthrough. Regarding the value of “displacement at a stapes
breakthrough” we remark that in the training-phase the displacement at breakthrough was given, whereas in
the testing-phase the breakthrough could be detected automatically by the rapid changes in the values of
force and torque.

Learning has been effected during the training-phase in the linear metric space M of 2×2 matrices
which map the entries of a matrix F to the entries of a matrix T as it has been explained in section 3.1. Recall
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that in this work the stiffness K of a stapes had to be measured before the drilling operation in order the
stiffness value to be employed as one of the entries of matrix T (for details see in section 3.1). Moreover, we
remark that an estimate of the stapes stiffness is not considered “dependable” for determining a stapes
thickness, because “… a (stapes) compliance value determined from a stiffness test is not always
representative of that for the drilling process as a whole … [1]”.

For each one of the 12 classes, a “training part” of data in a class has been specified comprising at
least 1 pair of force/torque drilling profiles. On the one hand, the overall training-set was the collection of
the “training parts” from all 12 classes. On the other hand, the overall testing-set comprised all the pairs of
force/torque drilling profiles. In this way, during the testing-phase it has been possible to grade both dσ-
FLN’s ability to learn and its capacity to infer sensible conclusions with regards to new and hitherto
unknown inputs.

Six learning experiments have been carried out using the dσ-FLN scheme on the 57 pairs of drilling
force/torque profiles by employing one, two, and all the force/torque profiles from each of the 12 classes of
drilling profiles in two, three, and one experiments, respectively (where applicable, the training data have
been selected randomly). After the training-phase, in each learning experiment, 12 homogeneous clusters
had been resulted in that is in particular one homogeneous cluster per group of drilling profiles. Therefore
each cluster resulting from “training” corresponded to a specific combination of stapes stiffness and stapes
thickness. During the subsequent testing-phase, a matrix M(t) was being defined on-line every 20 samples
from whatever drilling data were available up to that moment and then the degree of inclusion of M(t) in the
learned classes was being calculated. Since the stiffness of the “testing stapes” was known, the set of learned
clusters to be attended has been restricted to the clusters labeled by the same stiffness as the stiffness of the
“testing stapes”.

4.3  Results

Fig.2 shows typical testing examples for the on-line classification of stapes thickness using the dσ-
FLN scheme. The data in Fig.2 correspond to stapes thickness 0.5 mm (column a), 1 mm (column b), and 1.5
mm (column c). None of the examples in Fig.2 had been in the training set. Figures 2 (a1), (b1), (c1) and
Figures 2 (a2), (b2), (c2) show, respectively, force and torque drilling profiles. The three curves in each one
of the Figures 2 (a3), (b3), (c3) correspond to three thickness classes, in particular 0.5 mm (dotted curve), 1.0
mm (dashed curve), and 1.5 mm (solid curve). Each curve indicates the degree of inclusion of the “currently”
registered force/torque profile in the three known stapes thicknesses versus displacement.

The behavior of the classification decisions during “drilling” changes as the drilling progresses (Fig.2
(a3), (b3), (c3)). In the latter figures the dotted line (thickness 0.5 mm) leads the way, followed by the
dashed line (thickness 1.0 mm), which is followed by the solid line (thickness 1.5 mm). Nevertheless the
“winner class” at the time of stapes breakthrough, denoted in Fig.2 by a vertical dash-dotted line, assigns its
label (thickness) to the thickness of the stapes being currently drilled.

In all the experiments only one misclassification has been recorded. It occurred when the stiffness
parameter K=1030 N/m was dealt with, and one training datum per class was employed. Then one of the 57
testing pairs of profiles has been misclassified in class “0.5 mm” instead of being classified to the correct
class “1.0 mm”. The aforementioned misclassification has been attributed by the authors to the small number
of data used for training. By increasing the number of training data the performance improved to an 100 %
correct classification. Note that in all the experiments and during testing, the training data have been
classified correct in their corresponding classes.

It should be stressed that the work herein is only a feasibility study and further trials are needed for
assessing the system's performance under more realistic conditions. In any case, the presented dσ-FLN
scheme is able to produce an estimate of the stapes thickness and furthermore the scheme in question
provides a degree of certainty to the estimate it has produced by issuing a number between zero and one, that
is the inclusion measure σ. Nevertheless the final decision should be taken by the operating surgeon.
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5   DISCUSSION AND CONCLUSION

High level controls have been designed and tested for an intelligent mechatronics drill to be utilized in
stapedotomy surgery. The specific technical goal has been the on-line estimation of a stapes bone thickness
from drilling force- and torque- data.

The aforementioned technical goal has been met without employing a model of the physical system
but, instead, a machine-learning scheme for classification has been employed, namely d-σ Fuzzy Lattice
Neurocomputing (dσ-FLN) scheme. The on-line estimation of a stapes thickness has been demonstrated on
force- and torque- drilling profiles obtained experimentally.

A theoretical contribution of the work herein has been the introduction of the notions generalized
sphere and hidden-lattice. From a practical point of view, note that even though the inputs to the dσ-FLN in
this work have been solely “trivial balls”, the latter are individual point measurements, the dσ-FLN can also
accommodate non-trivial balls. Hence, “uncertainty” in the measurements can be accommodated by feeding
the dσ-FLN scheme a “ball”, that is a neighborhood of data, instead of feeding it an individual point
measurement.

A significant advantage of the dσ-FLN scheme is that disparate data can be dealt with and jointly. For
instance the data in question might include waveforms, images, etc. stemming from measurement equipment
as well as fuzzy set-, linguistic- data and/or logic statements issued by a human, thus implying a quite
sophisticated capacity for learning and decision-making by a machine. Applications other than surgical ones
could also be considered.
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Figure 1 (a) Human ear-gross anatomy.
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Figure 2 Force/torque drilling profiles and inclusion measures for thickness (a) 0.5 mm, (b) 1.0 mm, and
(c) 1.5 mm. The first and second figures in a column show respectively a force and a torque
drilling profile. The third figure in a column shows the degrees of inclusion to the three classes:
0.5 mm (dotted line), 1.0 mm (dashed line), and 1.5 mm (solid line). The maximum inclusion
measure at the time of stapes-breakthrough, the latter time is denoted in every figure by a
vertical dash-dotted line, determines the “winner class” and hence it determines the thickness
value of the stapes being drilled.
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