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Abstract

A basis for rigorous versatile learning is introduced theoretically, that is the framework of fuzzy lattices or
FL-framework for short, which proposes a synergetic combination of fuzzy set theory and lattice theory. A
fuzzy lattice emanates from a conventional mathematical lattice by fuzzifying the inclusion order relation.
Learning in the FL-framework can be effected by handling families of intervals, where an interval is treated
as a single entity/block the way explained herein. Illustrations are provided in a lattice defined on the unit-
hypercube where a lattice interval corresponds to a conventional hyperbox. A specific scheme for learning
by clustering is presented, namely σ- fuzzy lattice learning scheme or σ-FLL (scheme) for short, inspired
from the adaptive resonance theory (ART). Learning by the σ-FLL is driven by an inclusion measure σ of
the corresponding Cartesian product to be introduced herein. We delineate a comparison of the σ-FLL
scheme with various neural-fuzzy and other models. Applications are shown to one medical data set and two
benchmark data sets, where σ-FLL's capacity for treating efficiently real numbers as well as lattice-ordered
symbols separately or jointly is demonstrated. Due to its efficiency and wide scope of applicability the σ-
FLL scheme emerges as a promising learning scheme.

Index Terms - Lattice theory, fuzzy set theory, learning systems, clustering methods.

1   INTRODUCTION

Learning has been treated in different domains such as the Euclidean space, the Boolean space, etc. As
a rule, learning has been dealt with in the literature in a single domain but not in a combination of them. The
present authors maintain that the capacity to consider jointly several domains, including disparate ones,
could improve the efficiency of learning. We approached learning in a unifying manner by considering
partly ordered sets, in particular mathematical lattices, as the learning domain. Note that a lattice does not
only imply a wide scope for applicability but also it is equipped with the mathematical tools necessary for
defining rigorously useful properties.

Lattices have drawn attention lately in certain scientific disciplines including logic, discrete
mathematics, and computer science. Some deeper theoretical results have been considered such as the
Knaster-Tarski Fixpoint Theorem [10]. Regarding applications, lattices have been employed for describing
acquisition of mental models [32], and also they have been employed in fuzzy logic [12], [15]. To the best
of the present authors’ knowledge, the diversity of a learning domain which employs jointly several
disparate lattices has not been considered in applications to-date. An older approach which deals with a
lattice learning domain, specifically in neurocomputing, is noted in [22]. Nevertheless the work in [22] is
primarily oriented towards medical applications rather than towards a theoretical substantiation. On the
other hand the work herein maintains an established lattice theory terminology, it reaches new theoretical
results, and it gains new insights while demonstrating pilot experimental results.
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This work begins with the introduction of the novel notion fuzzy lattice, that is a lattice which fuzzifies
its conventionally binary inclusion relation. A fuzzy lattice is different from an L-fuzzy set [16], the latter is
also called type 2 fuzzy set [25]. An L-fuzzy set is a mapping from a universe of discourse onto a lattice and
as such it is a generalization of a conventional fuzzy set which is, more strictly, a mapping from a universe
of discourse onto the unit interval of real numbers [0,1]. On the other hand a fuzzy lattice stems from a
“conventional lattice universe of discourse” by fuzzifying, in a conventional fuzzy set sense as it will be
explained herein, its crisp binary inclusion relation. Hence the framework of fuzzy lattices or FL-framework
for short, to be defined in this work, emerges as a new, hierarchic, and versatile domain for the development
of learning schemes.

We have treated learning in the FL-framework herein as a procedure which defines crisp sets of points
by intervals of lattice elements. However we have allowed for generalization regarding points outside crisp
intervals. Note that an interval in the N-dimensional Euclidean space/lattice is a hyperbox. Learning
schemes that define and/or enhance hyperboxes in the Euclidean space have been proposed and studied to-
date in various contexts. For instance, the fuzzy adaptive resonance theory (fuzzy ART) with complement
coding [9], the fuzzy ARTMAP [6], as well as the min-max neural networks [39], [40], learn either in an
unsupervised or in a supervised fashion by defining and/or by enhancing hyperboxes in Euclidean space. In
[2] the class of axis-parallel rectangles in N-dimensional Euclidean space is treated and it is shown that this
class is efficiently probably approximately correct (PAC) learnable. Outside the Euclidean space, learning
intervals is considered implicitly in [45] where PAC learning occurs by defining intervals in a Boolean
lattice, in particular conjunctive normal forms (CNF) are learned. All the previous learning schemes
consider explicitly a single learning domain, be it the Euclidean space or the Boolean space. On the other
hand a learning scheme of the FL-framework is applicable in many domains, even jointly, including the
previously mentioned spaces.

Several learning schemes in the FL-framework have been proposed already by the present authors. For
instance in [36] the fuzzy lattice neurocomputing (FLN) scheme is presented and it is applied on benchmark
data sets in the Euclidean space, in [23] the operation of the FLN is substantiated theoretically and FLN’s
applicability is shown in a lattice of fuzzy sets, in [37] the two-level fuzzy lattice (2L-FL) scheme for
supervised clustering is presented. In the current work a lattice-applicable learning scheme is shown, that is
the σ- fuzzy lattice learning (σ-FLL) scheme, inspired from the biologically motivated Adaptive Resonance
Theory (ART) [3]. ART is a well-known neurocomputing paradigm. Various models of the ART family
have been presented to-date including clustering, binary [3], analog [4], [5], and fuzzy [9] versions.
Supervisory learning of either binary [7] or analog [6], [8], [43], [44] Euclidean patterns has also been
considered. Lately, bounds on the learning complexity of the fuzzy ART have been specified [19].

The emphasis of this paper is mainly on the theoretical introduction and substantiation of the FL-
framework but we also introduce the σ-FLL scheme. Section 2 carries the main theoretical contribution and
it introduces rigorously novel concepts while it includes brief discussions of elementary lattice theory; the
proofs of the new theorems and propositions are given in the Appendix. In section 3 a complete lattice in the
unit-hypercube is shown and the lattice in question is decomposed into its constituent (lattice) chains, to be
defined herein, in order to facilitate the analysis. We decided, in part, to keep illustrations with reference to
the unit-hypercube in order to provide a more intelligible demonstration of the mechanics of the σ-FLL
scheme. In section 4 the σ-FLL scheme is described with reference to unit-hypercube. Section 5 puts the σ-
FLL scheme in perspective with selected neural-fuzzy and other models, and it delineates future extensions
of our current work. The learning capacity of the σ-FLL is demonstrated in section 6 where the σ-FLL is
applied for learning and recognition to two data sets in the Euclidean space and a third one involving jointly
real numbers and lattice-ordered symbols. Eventually, in the conclusion-section 7, the main achievements
are summarized.
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2   FUZZY LATTICES AND A NOVEL LEARNING FRAMEWORK

In addition to the novel theoretical perspective for “automated learning” shown in this section we also
include brief discussions regarding elementary lattice theory, for a reference purpose.

Recall that a lattice is a partly ordered set any two of whose elements have a greatest lower bound or
“meet” denoted by x∧y, and a least upper bound or “join” denoted by x∨y. Such an ordering is called herein
lattice ordering. Regarding lattice theory the reader may refer to [1], [10], [38]. In this work we will be
dealing primarily with complete lattices. A lattice is called complete when each of its subsets has a least
upper bound and a greatest lower bound in the lattice in question. A nonvoid complete lattice contains a
least element and a greatest element denoted herein by “O” and “I”, respectively, as suggested in [1], [38].
Note that sometimes the symbols “⊥” and “⊤” are used in the literature to denote respectively the least and
greatest elements of a complete lattice [10]. Some useful notational conventions are introduced next.

Typically a single capital letter is employed in the literature to denote a lattice [1], [10], [38].
Denoting a lattice by a single letter herein would simplify later notation but at the risk of confusing the
reader. In particular, a risk stems from the fact that we consider two different lattice orderings of the same
underlying set. Therefore in our notation for a lattice in this introductory paper we decided to discriminate
an underlying set from a lattice ordering on its elements. Consequently we denote a lattice by an ordered
pair <A,≤A>, where A is the underlying set and ≤A is a lattice ordering (binary) relation on the set A; that is ≤A

is a subset of A×A such that the reflexive, antisymmetry, and transitive laws hold and the above definition for
a lattice applies. Two lattices sharing a common underlying set, say A, will be distinguished by the subscript
of their ordering relations; for example <A,≤A,1> and <A,≤A,2>. A lattice <A,≤A> will be called herein
conventional lattice or crisp lattice. The join and meet operations in a crisp lattice <A,≤A> will be denoted
respectively by ∨A and ∧A. Note that the subscript in all of ≤A, ∨A, and ∧A, is meant to explicitly identify the
lattice in question, whereas in the interest of simplicity we may omit using the subscript “A” for a lattice
element. An exception to the latter rule is only the least and the greatest elements in a complete lattice
<A,≤A> which will always be denoted respectively by OA and IA.

Instrumental to a simplified theoretical exposition of the work herein is the notion dual crisp lattice.
The dual of a crisp lattice <A,≤A> has by definition the same underlying set but its partial ordering is the
converse of ≤A. In this work we denote the dual of a lattice <A,≤A> by <A,≤∂

A>. Likewise, the meet and join
operations in <A,≤∂

A> are denoted respectively by ∧∂
A and ∨∂

A. Note that for a,b∈<A,≤A> it is both
a∨Ab=a∧∂

Ab and a∧Ab=a∨∂
Ab.

Another useful notion is the product lattice of two crisp lattices <A,≤A> and <B,≤B>, that is in
particular a crisp lattice defined on the Cartesian product A×B such that (xA,xB)≤A×B(yA,yB) if and only if
xA≤AyA and xB≤ByB [1], [10], [38]. The meet in the product lattice <A,≤A>×<B,≤B> is given by (xA,xB)∧(yA,yB)=
(xA∧yA,xB∧yB), whereas the join is given by (xA,xB)∨(yA,yB)= (xA∨yA,xB∨yB) [1]. [10]. The product of N lattices
ensues likewise. Apparently <A,≤A>×<A,≤A> is a product lattice, and it will be denoted by <A×A,≤A×A,1>
where the number 1 was used in the subscript so as to distinguish that lattice from a different one on A×A to
be defined later in this section. Note that lattice <A×A,≤A×A,1> is a complete one if <A,≤A> is a complete
lattice. The least element in <A×A,≤A×A,1> is OA×A,1=(OA,OA) and its greatest element is IA×A,1=(IA,IA).

Denoting succinctly a collection of lattice elements will be handy. Specifically assuming that I is an
index set we denote a collection of elements of a lattice <A,≤A> by {ai}i∈I. When <A,≤A> is in particular a
complete lattice then we denote the least upper bound of {ai}i∈I by ∨A{ai}i∈I and the greatest lower bound of
{ai}i∈I by ∧A{ai}i∈I. Regarding additional notation, by writing x∈<A,≤A> we mean that x is an element of
lattice’s underlying set A. When x,y∈<A,≤A> are related by ≤A we write either x≤Ay or (x,y)∈≤A For two
elements x,y of a crisp lattice <A,≤A> note that either “x and y are comparable”, that is either x≤Ay or y≤Ax, or
“x and y are incomparable” that is neither x≤Ay nor y≤Ax. In other words, when x and y are comparable either
(x,y)∈≤A or (y,x)∈≤A, whereas when x and y are incomparable both (x,y)∉≤A and (y,x)∉≤A. The symbol ∥A
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denotes incomparability in lattice <A,≤A>, in particular for incomparable lattice elements x,y∈<A,≤A> we
write x∥Ay.

An example of an all familiar lattice is <R,≤>, where R is the set of real numbers. When ≤, ∨, ∧, and ∥
are used in this work without a subscript then they refer to the set of real numbers. The meet and join in
<R,≤> are given respectively by x∧y=min{x,y} and x∨y=max{x,y}, where the operator min defines the
minimum of its operands, and the operator max defines the maximum of its operands. Note that x∥y is
always false in <R,≤> and for this reason we call the set R a chain or, alternatively, totally ordered set [18].

The notion fuzzy lattice is introduced in order to extend, as explained in the sequel, the lattice ordering
relation to all pairs (x,y) in the Cartesian product A×A including pairs of incomparable lattice elements. Such
an extended relation may be regarded as a fuzzy set on the universe of discourse A×A [50]. In this work a
fuzzy set will be denoted by (X,µ) where X is the universe of discourse and µ is a (membership) function µ:
X→[0,1]. Hence, the aforementioned extended relation is denoted by (A×A,µR), and it is defined under the
condition that it be ‘compatible’ with the crisp lattice’s ordering relation ≤A in the sense that µR(x,y)=1 if and
only if x≤Ay. Hence the crisp lattice ordering relation ≤A corresponds to the fuzzy set (A×A,µL), where
µL(x,y)=1 if and only if x≤Ay, otherwise µL(x,y)=0. Note that the fuzzy sets (A×A,µL) and (A×A,µR) are related
by (A×A,µL)⊆(A×A,µR) in the sense [48], that is µL(x,y)≤µR(x,y) for all (x,y)∈A×A. The definition of a fuzzy
lattice follows naturally.

Definition 1
A fuzzy lattice is a triplet <A,≤A,µR>, where <A,≤A> is a crisp lattice and (A×A,µR) is a fuzzy set such that
µR(x,y)=1 if and only if x≤Ay.

�
We remark that if <A,≤A,µR> is a fuzzy lattice then its dual fuzzy lattice is defined as <A,≤∂

A,µ∂
R> with

µ∂
R(a,b)= µR(b,a). We will refer to the collection of all fuzzy lattices by the term framework of fuzzy lattices

or FL-framework for short. The significance of definition 1 is that it allows us to specify a degree of
inclusion of a crisp lattice’s element to any other, even when these two elements are incomparable. A further
practical consequence is that via a fuzzy lattice we can deal with data other than vectors of real numbers;
such data include symbols, propositions, etc.

Definition 1 stipulates only that the subset (A×A,µL) of the fuzzy set (A×A,µR) defines a crisp lattice
ordering. No other restrictions apply whatsoever. Therefore µR(x,y)=1 in a fuzzy lattice <A,≤A,µR> does not
necessarily imply µR(y,x)=0 and it could well be µR(y,x)>0. Regarding transitivity in the fuzzy lattice
<A,≤A,µR> we note that the conventional transitivity property holds only in the sense that µR(x,y)=1 and
µR(y,z)=1 jointly imply µR(x,z)=1. Whereas if, on the other hand, it is either µR(x,y)≠1 or µR(y,z)≠1 then
µR(x,z) could be any number in [0,1].

The following definition for an inclusion measure will eventually enable the fuzzification of a crisp
complete lattice.

Definition 2
An inclusion measure σ in a complete lattice <A,≤A> is a mapping σ: <A,≤A>×<A,≤A>→[0,1] such that it
satisfies the following conditions,
(C1) σ(x,OA)=0, x≠OA,
(C2) σ(x,x)=1, ∀x∈<A,≤A>, and
(C3) u≤Aw ⇒ σ(x,u)≤σ(x,w), u,w,x∈<A,≤A> (Consistency Property).
where OA is the least element in the complete lattice <A,≤A>.

�
If IA denotes the greatest element of a complete lattice <A,≤A> then it can be shown that σ(x,IA)=1,

∀∈<A,≤A>. The truth of the latter equation is shown as follows: it is x≤AIA, ∀∈<A,≤A>, and from conditions
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(C2) and (C3) it can be inferred x≤AIA ⇒ σ(x,x)=1≤σ(x,IA) ⇒ σ(x,IA)=1. The definition of the inclusion
measure has been inspired from the notions “possibility measure” [49], [50] and “fuzzy measure” [25]. It
can be argued that σ(x,u) indicates the degree of inclusion of x in u. From henceforth the notations σ(x,u)
and σ(x≤Au) will be employed interchangeably.

In the rest of this section we study sufficient conditions for the existence of an inclusion measure in a
complete lattice. Along the way we also illustrate the context inside which an inclusion measure will be
useful. The following notions will be needed.

Definition 3
Let P and Q be partly ordered sets, that is sets where the reflexive, antisymmetry, and transitive laws hold
[10]. A mapping ψ: P→Q is said to be
(i) order-preserving (or, alternatively, monotone), if x≤y in P implies ψ(x)≤ψ(y) in Q;
(ii) an order-isomorphism, if both “x≤y in P ⇔ ψ(x)≤ψ(y) in Q”, and “ψ is onto Q”.

�
When there is an order-isomorphism from P to Q, we say that P and Q are order-isomorphic and we

write P≅Q. The same terminology applies to crisp lattices, hence an isomorphic relation between two crisp
lattices will be denoted by <A,≤A>≅<B,≤B>. Note that an “order-preserving” mapping had been called
“isotone” in older texts on lattice theory [1], [38]; nevertheless herein we have employed instead the more
modern term “monotone” [10] throughout.

Definition 4
Let <A,≤A> and <B,≤B> be lattices. A mapping f: <A,≤A>→<B,≤B> is said to be a (lattice-) homomorphism if
f is join-preserving and meet-preserving, that is, for all x,y∈<A,≤A>, f(x∨y)=f(x)∨f(y) and f(x∧y)=f(x)∧f(y).

�
Note that a bijective (one-one) homomorphism is a (lattice-) isomorphism [10].
To pursue our quest for an inclusion measure in <A,≤A> a real number will be attached to each of its

elements by a valuation function. A valuation on a crisp lattice <A,≤A> is a real-valued function v:
<A,≤A>→<R,≤> which satisfies v(x)+v(y)=v(x∨Ay)+v(x∧Ay), x,y∈<A,≤A> [1], [38]. A valuation is monotone
if and only if x≤Ay implies v(x)≤v(y), and positive if and only if x<Ay implies v(x)<v(y). It is known [1], [38]
that a positive valuation v on a lattice <A,≤A> renders the lattice in question a metric space with metric
(distance) d(x,y)=v(x∨Ay)-v(x∧Ay), x,y∈<A,≤A>.

Consider the function k(x,u)=v(u)/v(x∨Au), where x,u∈<A,≤A>, and v is a positive valuation on a
complete lattice <A,≤A> with v(OA)=0. Note that if for a positive valuation v it is v(OA)≠0, then another
positive valuation v+ with v+(OA)=0 can always be defined out of v by simply subtracting v(OA) from v(x),
∀x∈<A,≤A>. We have assumed v(OA)=0 for all the positive valuations considered in the sequel. The
following theorem states that the function k(x,u) defines an inclusion measure in <A,≤A>.

Theorem 5
The existence of a positive valuation function v on a complete lattice <A,≤A>, with v(OA)=0, is a sufficient
condition for the function k(x,u)=v(u)/v(x∨Au) to be an inclusion measure in <A,≤A>.

�
The proof of theorem 5 is given in the Appendix.
We remark that k(x,u) can be employed for showing the degree of inclusion of x in u, therefore in the

sequel k(x,u) will also be denoted by k(x≤Au). Note that the function k(x≤Au) equals 1 if and only if x≤Au.
Therefore if v is a positive valuation function on a complete lattice <A,≤A> then the triplet <A,≤A,k> defines
a fuzzy lattice. Theorem 5 shows one way for constructing an inclusion measure on a complete lattice
<A,≤A>, and thus fuzzifying it, suffices the existence of a positive valuation in <A,≤A>. When more positive
valuation functions are available in a specific application then the issue arises of selecting a suitable one.
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Note that the selection of a suitable positive valuation function in a specific application can be regarded as a
solution to an “optimization problem” for defining the function σ=k.

In the current work we have considered learning in the FL-framework as a procedure which handles
(closed) lattice intervals as it is shown in section 4. One non-empty interval, say [a,b] with a,b∈<A,≤A> and
a≤Ab, is defined to be the non-empty set [a,b]≜{x∈<A,≤A> : a≤Ax≤Ab}. In the sequel we study the set of
lattice intervals, then we propose ‘constructions’ of one or more intervals.

We, first, note that a single interval [a,b] of <A,≤A> is a sublattice of <A,≤A>, where the notion
‘sublattice’ is defined next.

Definition 6
A lattice <S,≤S> is called sublattice of another lattice <A,≤A> if both S⊆A and a,b∈S ⇒ a∧Ab∈S, a∨Ab∈S.

�
The set VA of (closed) intervals in a complete lattice <A,≤A> augmented by the empty set, implies yet

another crisp complete lattice as suggested by the following proposition.

Proposition 7
Let <A,≤A> be a complete lattice. Then the set VA of (closed) intervals in <A,≤A> augmented by the empty
set OVA, implies another complete lattice denoted by <VA,≤VA> with its least element denoted by OVA

=[IA,OA]. The implied lattice inclusion relation [a,b]≤VA[c,d] in <VA,≤VA> is “c≤Aa and b≤Ad”. For two
intervals [a,b], [c,d]∈<VA,≤VA>, their lattice join is given by [a,b]∨VA[c,d]=[a∧Ac,b∨Ad]; and moreover their
lattice meet is given by [a,b]∧VA[c,d]=[a∨Ac,b∧Ad] if a∨Ac≤Ab∧Ad, otherwise it is [a,b]∧VA[c,d]=OVA.

�
The proof of proposition 7 is given in the Appendix.
In the FL-framework we have coined a term for referring to a finite collection of elements in a lattice

as the following definition implies.

Definition 8
Let <A,≤A> be a lattice. A family (of lattice <A,≤A> elements) denoted by f={wi}i∈I, is a finite collection of
lattice <A,≤A> elements, that is wi∈<A,≤A> for all i∈I, and I is a finite index set.

�
The set of families corresponding to a lattice <A,≤A> will be denoted by FA. Of particular interest in

this work will be the set FVA whose elements are families of lattice intervals. An interesting notion stems
from considering the set-union of the members in a family of intervals. The terms class and category have
been reserved and they are used interchangeably in the FL-framework to denote the set-union of the
members in a family of intervals.

Definition 8
Let <A,≤A> be a lattice. A class (or, alternatively, category) c in <A,≤A> is defined as c=∪i∈Iwi, where {wi}i∈I

is a family in FVA, and ∪ is the set-union operator.
�

The set of classes in a lattice <A,≤A> will be denoted by CVA. Note that one class c∈ CVA might have
many decompositions into lattice intervals, that is many families of intervals may specify the same class. If
for two different families of intervals f1={uj}j∈J and f2={wi}i∈I it holds ∪j∈Juj=∪i∈Iwi then we say that both
families of intervals f1 and f2 represent the same class; in other words {uj}j∈J and {wi}i∈I are two distinct
decompositions of the same class. In this work we have restricted learning in lattices to the set FVA rather
than to the set CVA, nevertheless we intend to employ the set CVA in the future.

A family activation function with respect to a concrete inclusion measure σ in <VA,≤VA> is defined
now.
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Definition 10
A family activation function with respect to a concrete inclusion measure σ in <VA,≤VA> is defined to be a
real valued function aF: <VA,≤VA>×FVA→[0,1], such that aF(x|fc)= aF(x|{wi}i∈I)≜maxi∈I{σ(x≤VAwi)}.

�
Note that a specific family fc∈FVA implies a fuzzy set, that is the fuzzy set (VA,aF(x|fc)) on the universe

of discourse VA. Given a fc∈FVA the value aF(x0|fc) for a specific x0∈<VA,≤VA> shows the degree of
membership of x0 in the fuzzy set (VA,aF(x|fc)) and it can be interpreted as the activation of a family fc at the
presence of x0.

The previous analysis implies that an inclusion measure in the lattice <VA,≤VA> will be useful.
Nevertheless, the only known way to the present authors for defining an inclusion measure is via a positive
valuation. However there is no positive valuation in <VA,≤VA>, even when one exists in <A,≤A>. Further
below, after the introduction of all the required mathematical tools we substantiate rigorously the claim that
“a positive valuation in a complete lattice <A,≤A> can not imply another one in the complete lattice
<VA,≤VA>”.

The deficiency of an inclusion measure in <VA,≤VA> (starting from a positive valuation in <A,≤A>) was
mended by introducing an injective monotone mapping of the lattice <VA,≤VA> to another lattice where an
inclusion measure is available. To that end, (i) we assumed an isomorphism θ: <A,≤∂

A>→<A,≤A>, and (ii) we
introduced the lattice of generalized (or, alternatively, abstract) intervals <A×A,≤A×A,2>. Those issues are
elaborated in the sequel.

Lemma 11
Let <A,≤A> be a complete lattice, then <A×A,≤A×A,2>=<A,≤∂

A>×<A,≤A> is a complete lattice, namely the
lattice of generalized intervals (or, alternatively, lattice of abstract intervals).

�
Note that the implied partial ordering relation in <A×A,≤A×A,2> is [a,b]≤A×A,2[c,d] if and only if a≤∂

Ac ⇔
c≤Aa and b≤Ad, whereas the meet and join in lattice <A×A,≤A×A,2> are respectively [a,b]∧A×A,2[c,d]=
[a∧∂

Ac,b∧Ad]= [a∨Ac,b∧Ad] and [a,b]∨A×A,2[c,d]=[a∨∂
Ac,b∨Ad]= [a∧Ac,b∨Ad]. Moreover the least and the

greatest elements in the complete lattice <A×A,≤A×A,2> are given respectively by [O∂
A,OA]=[IA,OA] and

[I∂
A,IA]=[OA,IA].

The aforementioned isomorphism θ: <A,≤∂
A>→<A,≤A> implies that lattices <A×A,≤A×A,1>=

<A,≤A>×<A,≤A> and <A×A,≤A×A,2>= <A,≤∂
A>×<A,≤A> are isomorphic to each other. In particular assuming

that IdA is the identity mapping on A consider an isomorphic mapping θ×IdA: <A,≤∂
A>×<A,≤A>→

<A,≤A>×<A,≤A>given by (θ×IdA)(a,b)=(θ(a),b). Hence in conclusion <A×A,≤A×A,1>≅<A×A,≤A×A,2>.
We study now the relation between the lattices <VA,≤VA> and <A×A,≤A×A,2>=. To this end we will need

an injective monotone mapping i: <VA,≤VA>→<A,≤∂
A>×<A,≤A> given by i(∆)=[∧A∆,∨A∆], where

∆∈<VA,≤VA>, ∧A∆ is the greatest lower bound of ∆ and ∨A∆ is the least upper bound of ∆ in the complete
lattice <A,≤A>.

We now conclude our quest for an inclusion measure in lattice <VA,≤VA>. Hence the composite
injective monotone mapping φ=(θ×IdA)∘i: <VA,≤VA>→<A,≤A>×<A,≤A> needs to be considered, where θ×IdA
and i have been given above. If we could find an inclusion measure σ in <A,≤A>×<A,≤A>=<A×A,≤A×A,1> then
this same σ would be a valid inclusion measure in <VA,≤VA> due to the monotone mapping φ=(θ×IdA)∘i. In
other words x,y∈<VA,≤VA> implies that both their order-preserving images φ(x) and φ(y) are in <A×A,≤A×A,1>
therefore it would make sense to calculate the number σ(x≤VAy)= σ(φ(x)≤A×A,1φ(y)). It is easy to verify that
such a σ in <VA,≤VA> satisfies all the conditions of definition 2; it suffices to consider the order-preserving
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φ-images of the intervals <VA,≤VA>. The following proposition 12 implies the existence of an inclusion
measure in <A×A,≤A×A,1> in conjunction with Theorem 5.

Proposition 12
If v is a positive valuation on lattice <A,≤A> then a function V: <A,≤A>×<A,≤A>→<R,≤>, given by
V(a,b)=v(a)+v(b), a,b∈<A,≤A> defines a positive valuation on the lattice <A,≤A>×<A,≤A>=<A×A,≤A×A,1>.

�
The proof of proposition 12 is given in the Appendix.
To recapitulate, the objective had been the definition of an inclusion measure σ in the lattice <VA,≤VA>

of intervals in order to make available a family activation function according to definition 10. The logical
steps followed towards the aforementioned objective are enumerated underneath but not in the order given
previously in the text.

1. A positive valuation v on <A,≤A> implies a positive valuation V on <A×A,≤A×A,1>=<A,≤A>×<A,≤A> by
proposition 12, and hence it implies an inclusion measure σ on <A×A,≤A×A,1> by theorem 5.

2. The lattice <A×A,≤A×A,2>=<A,≤∂
A>×<A,≤A> was defined by lemma 11.

3. We considered an isomorphism θ: <A,≤∂
A>→<A,≤A>.

4. A mapping θ×IdA: <A×A,≤A×A,2>→<A×A,≤A×A,1>, where IdA is the identity mapping on A, implied the
isomorphism <A×A,≤A×A,1>≅<A×A,≤A×A,2>.

5. We considered an injective monotone mapping i: <VA,≤VA>→<A×A,≤A×A,2>.
6. We considered the composite injective monotone mapping φ=(θ×IdA)∘i: <VA,≤VA>→<A×A,≤A×A,1>.

Hence φ maps x,y from <VA,≤VA> to their order-preserving images φ(x), φ(y) in <A×A,≤A×A,1>.
7. In conclusion an inclusion measure σ(x≤VAy) became available in lattice <VA,≤VA>, with σ(x≤VAy)=

k(φ(x)≤A×A,1φ(y)) where k is defined by theorem 5.

Our conclusion is summarized in the following Lemma.

Lemma 13
Let <A,≤A> be a complete lattice with a positive valuation v: <A,≤A>×<A,≤A>→<R,≤>, and let θ: <A,≤∂

A>→
<A,≤A> be an isomorphism. Then the function k: <VA,≤VA>×<VA,≤VA>→[0,1] given by k([a,b],[c,d])=
[v(θ(c))+v(d)]/[v(θ(a∧Ac))+v(b∨Ad)] defines an inclusion measure in the complete lattice <VA,≤VA> of
intervals.

�
Note that lattices <A×A,≤A×A,1> and <A×A,≤A×A,2> have been both defined on the same underlying set

A×A but each one considers a different ordering of the elements of A×A. Thus lattice <A×A,≤A×A,1> orders the
elements of A×A by the relation ≤A×A,1, whereas lattice <A×A,≤A×A,2> orders the elements of the same set A×A
by the relation ≤A×A,2. To distinguish the elements of these two lattices we have made a convention. That is
an element of lattice <A×A,≤A×A,1> is embraced by parentheses as in (a,b) with a,b∈<A,≤A>, whereas an
element of lattice <A×A,≤A×A,2> is embraced by brackets as in [a,b] with a,b∈<A,≤A>.

It is interesting to note that the injective monotone mapping i is a join-preserving but not a meet-
preserving mapping. To see that i is join-preserving recall that the join of [a,b] and [c,d] is given by
[a∧Ac,b∨Ad] in both lattices <VA,≤VA> and <A×A,≤A×A,2>. To see that i is not meet-preserving apply it to the
meet of two different one-point intervals.

At this point we substantiate our previous claim that “a positive valuation in <A,≤A> can not imply
another one in <VA,≤VA>”. Hence consider the composite mapping V∘(θ×IdA)∘i: <VA,≤VA>→<R,≤>, where V
is the positive valuation on <A×A,≤A×A,1>=<A,≤A>×<A,≤A> shown in proposition 12, and φ=(θ×IdA)∘i has
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been defined previously. Due to the fact that the mapping i is not meet-preserving we conclude that
V∘(θ×IdA)∘i is not a valuation on <VA,≤VA>, let alone a positive valuation.

All the analysis in this section was carried out regarding a lattice <A,≤A>. However, it has to be
pointed out that <A,≤A> could itself be the product of N lattices, called constituent lattices. In such a case
and in line with the notation already introduced we write <A,≤A>=<A1,≤A1>×…×<AN,≤AN>. If all the lattices
<A1,≤A1>,…,<AN,≤AN> are complete with respective least/greatest elements OA1/IA1,…, OAN/IAN then <A,≤A>
is a complete lattice with least element (OA1,…, OAN) and greatest element (IA1,…, IAN) [1].

Proposition 14
Let v1,…,vN be valuations on lattices <A1,≤A1>,…,<AN,≤AN>, respectively. Then a function v: <A1,≤A1>×…×
<AN,≤AN>→<R,≤> given by v(x1,…,xN)=v1(x1)+…+ vN(xN), where xi∈<Ai,≤Ai>, i=1,…,N, defines a valuation
on <A,≤A>=<A1,≤A1>×…×<AN,≤AN>.

�
The proof is analogous to the proof of proposition 12. Note that it suffices to be all the valuations

v1,…,vN monotone so as the valuation v to be monotone as well. If at least one of the monotone valuations
v1,…,vN is, in addition, a positive valuation then v is a positive valuation.

To simplify notation we have made a convention regarding the elements of lattices <A×A,≤A×A,1> and
<A×A,≤A×A,2> when <A,≤A> is a product lattice. Then we denote an element of lattice <A×A,≤A×A,1> by
(a1,b1,…,aN,bN), where (a1,b1)∈<A1×A1,≤A1×A1,1>,…,(aN,bN)∈<AN×AN,≤AN×AN,1>; whereas we denote an
element of lattice <A×A,≤A×A,2> by [a1,b1,…,aN,bN], where [a1,b1]∈<A1×A1,≤A1×A1,2>,…, [aN,bN]∈
<AN×AN,≤AN×AN,2>.

3   A COMPLETE LATTICE IN THE UNIT-HYPERCUBE

In the previous section, aspects of the framework of fuzzy lattices or FL-framework have been
detailed. The theory presented is valid for any mathematical lattice suffices the lattice in question is a
complete one and two functions are available: (i) a positive valuation function v: <A,≤A>→<R,≤>, where R
is the set of real numbers, and (ii) an isomorphic function θ: <A,≤∂

A>→<A,≤A>.
In this section a complete lattice will be studied equipped with the aforementioned functions. The

lattice in question is defined on the N-dimensional unit-hypercube U, with partial ordering
(x1,…,xN)≤U(y1,…,yN) ⇔ x1≤y1,…,xN≤yN, where (x1,…,xN), (y1,…,yN)∈U. In the interest of simplicity the
dimension of the unit-hypercube will not be cited explicitly therefore the corresponding lattice will be
denoted by <U,≤U>.

It is important to note that dealing with the unit-hypercube U instead of dealing with the whole set RN

is a valid assumption in “machine learning” [28] and it does not impair by default the learning capacity since
all physical quantities have upper and lower bounds, and suitable transformations to the unit hypercube can
be found. An interval in lattice <U,≤U> is an N-dimensional hyperbox, or hyperbox for short, in the unit-
hypercube. Recall that the learning objective is to identify sets of points in <U,≤U> which (sets) can be
represented as families of hyperboxes, the latter are finite collections of hyperboxes.

Lattice <U,≤U> is the product of N identical constituent lattices, these are the chains <I,≤>, where
I=[0,1] and ≤ is the conventional less-than or equal-to operator between real numbers. Recall that a chain
implies a total ordering relation of its elements [18], that is x∥Iy is false for all x,y in <I,≤>. Moreover note
that each of the N (lattice) chains <I,≤>, is a complete one with least element OI=0.0 and greatest element
II=1.0.

By proposition 14 in the previous section and the comments underneath it, we infer that if the vi’s,
i∈{1,…,N} are monotone valuations on the constituent (lattice) chains <I,≤> then the function
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v(x1,…,xN)=v1(x1)+…+vN(xN) defines an monotone valuation on <U,≤U>. If at least one of vi, i∈{1,…,N} is,
in addition, a positive valuation then v(x1,…,xN)=v1(x1)+…+vN(xN) is a positive valuation. Therefore the
problem of searching for a positive valuation on lattice <U,≤U> has been reduced to the problem of finding a
positive valuation on a chain <I,≤>. But the latter problem is trivial. Specifically any monotone increasing
function on the unit interval [0,1] is a positive valuation on the chain <I,≤>. In this paper, linear positive
valuations of the form vi(xi)=cixi, i∈{1,…,N} with ci>0 have been considered, resulting in a positive
valuation of the form v(x1,…,xN)=c1x1+…+cNxN, where ci>0, i∈{1,…,N} on lattice <U,≤U>.

On the other hand, the isomorphism θI(x)=1-x, x∈[0,1] was employed in lattice <I,≤>. In turn θI
implies an isomorphism, denoted by θ, in the product lattice <U,≤U> as follows : θ((a1,…,aN))=
(θI(a1),…,θI(aN))= (1-a1,…,1-aN). Thus an element (a,b)=((a1,…,aN),(b1,…,bN))=(a1,b1,…,aN,bN) of lattice
<U×U,≤U×U,1> is mapped to its isomorphic element [θ(a),b]=[θ(a1,…,aN),(b1,…,bN)]=[(1-a1,…,1-aN),
(b1,…,bN)]=[1-a1,b1,…,1-aN,bN] of lattice <U×U,≤U×U,2>. And vice-versa, an element [a,b]=[(a1,…,aN),
(b1,…,bN)]=[a1,b1,…,aN,bN] of lattice <U×U,≤U×U,2> is mapped to its isomorphic element (θ(a),b)=
(θ(a1,…,aN),(b1,…,bN))=((1-a1,…,1-aN),(b1,…,bN))=(1-a1,b1,…,1-aN,bN) of lattice <U×U,≤U×U,1>.

Figure 1 illustrates some of the notions introduced in the previous section with reference to the lattice
<U,≤U> for N=2, that is the unit-square on the plane. Note that a rectangle (a box) corresponds to an interval
in lattice <U,≤U>. Figures 1 (a) and (b) demonstrate the partial ordering relation. In Fig.1(a) the points (a1,a2)
and (b1,b2) are comparable, in particular it is (a1,a2)≤(b1,b2). Whereas in Fig.1(b) it is neither (c1,c2)≤(d1,d2)
nor (d1,d2)≤(c1,c2), that is the points (c1,c2) and (d1,d2) are incomparable symbolically (c1,c2)∥U(d1,d2).
Fig.1(c) shows how two different families (of boxes) f1 and f2 inside the unit-square may be defined as
collections of boxes; in the particular case of Fig.1(c), overlapping boxes were put in the same family but it
could be otherwise. Finally Fig.1(d) illustrates the significance of the consistency property (C3, in definition
2), where box x is specified by the product of intervals [.15,.2]×[.15,.2], box u is specified by [.5,.6]×[.3,.4],
and box w is specified by [.4,.9]×[.2,.8]. Thus

σ(x≤u)= v(u)/v(x∨u)= v(.5,.6,.7,.4)/v((.85,.2,.85,.2)∨(.5,.6,.7,.4))= v(.5,.6,.7,.4)/v(.85,.6,.85,.4)= 2.2/2.7≈
0.8148, and

σ(x≤w)= v(w)/v(x∨w)}= v(.6,.9,.8,.8)/v((.85,.2,.85,.2)∨(.6,.9,.8,.8))= v(.6,.9,.8,.8)/v(.85,.9,.85,.8)=3.1/3.4≈
0.9118.

That is, as guaranteed by the consistency property, the degree of inclusion of box x in box w is larger
than the degree of inclusion of x in u, because box u is inside box w. A definition useful in the next section
regards the size of a hyperbox and is given underneath.

Definition 15
Let <VA,≤VA> be the lattice of intervals stemming from a lattice <A,≤A>, and let v be a positive valuation on
<A,≤A>. Then a function Z: <VA,≤VA>→<R,≤>, given by Z([a,b])=v(b)-v(a), defines the size of an interval
[a,b] with respect to the positive valuation v.

�
Note that if tr=[a,b] is a trivial lattice interval with a=b then it follows Z(tr)=Z([a,a])=v(a)-v(a)=0, that

is the size of a trivial interval is zero. Furthermore note that the size of the least element [IA,OA] in VA is
Z([IA,OA])=v(OA)-v(IA)=-v(IA), since it has been assumed v(OA)=0. When definition 15 is applied in particular
to lattice <U,≤U> with positive valuation v(x1,…,xN)=x1+…+xN then the size Z([a,b]) of a hyperbox [a,b]=
[(a1,…,aN),(b1,…,bN)]=[a1,b1]×…×[aN,bN] is given by Z([a,b])=v(b)-v(a)=v(b1,…,bN)-v(a1,…,aN)= Σ(bi-ai).
In this specific case the size of the least element [IU,OU] in lattice <VU,≤VU> equals Z([IU,OU])=-v(IU)=-N.



11

                1 1
c2

                b2

                                                                                    d2

                a2

                    0                 a1     b1   1                                               0         c1        d1            1

(a) (b)

(c) (d)

Figure   1 Interpretations in the 2-dimensional lattice (U,≤U), that is the unit-square.
(a) Two comparable elements of lattice (U,≤U) with (a1,a2) ≤U (b1,b2).
(b) The elements (c1,c2) and (d1,d2) of lattice (U,≤U) are incomparable. Symbolically

(c1,c2)||U(d1,d2).
(c) The families f1 and f2 are defined as collections of overlapping boxes.
(d) The consistency property guarantees that when one box u is inside another box w then a

box x is included in w more than it is in u.

4   σσ - FUZZY LATTICE LEARNING (σσ-FLL) SCHEME

In this section the σ- fuzzy lattice learning scheme (σ-FLL scheme) is presented with reference to the
lattice <U,≤U>. Even though the σ-FLL scheme is applicable to a general complete lattice <A,≤A> equipped
with (i) a positive valuation function v: <A,≤A>→<R,≤>, where R is the set of real numbers, and (ii) an
isomorphic function θ: <A,≤∂

A>→<A,≤A>, we decided to introduce the σ-FLL scheme in the context of
lattice <U,≤U> for two reasons. First, because the acquaintance with the Euclidean space is expected to help a
reader to understand easier the mechanics of the σ-FLL scheme. Second, because since the σ-FLL scheme
has been inspired from the (fuzzy) adaptive resonance theory (ART) [9] which is applicable solely in the
Euclidean space, an introduction of the σ-FLL scheme in the unit-hypercube U is expected to help those
readers who are familiar with the fuzzy ART to trace similarities with the σ-FLL. Traits of the σ-FLL
scheme are discussed in this section, whereas an explicit but brief comparison with the fuzzy ART is
outlined in section 5. A detailed comparison with the fuzzy ART is a topic for a future publication.

The goal of learning by the σ-FLL is to locate clusters in the data by hyperboxes, these are elements of
lattice <VU,≤VU> of intervals/hyperboxes in <U,≤U>. A hyperbox defines a set of akin, in the sense of
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adjacent, elements in lattice <U,≤U>. Let fk={wk,i}i∈Ik, k=1,…,M<∞  be families of hyperboxes. A hyperbox
in a family fk is called a constituent hyperbox. Only simplified families {wk,i}i∈Ik will be considered which
are defined as follows.

Definition 16
A family of hyperboxes fk={wk,i}i∈Ik is called simplified when it has no “nested” hyperboxes, that is when
there are no two constituent hyperboxes wk,m, wk,n ∈<VU,≤VU> in fk such that wk,m≤VUwk,n.

�
The σ-FLL for learning by clustering is described next.

4.1  The σσ -FLL Scheme for Clustering

0. The first input x0∈<VU,≤VU> is memorized. From then on learning and decision making proceed as
follows (assume that at any instant t there are M(t)<∞ known and learned families - that is M(t)<∞ finite
collections of hyperboxes are kept in the memory).

1. Present an input xc∈<VU,≤VU> to the initially “set” database of families f1,…,fM(t).
2. While there exist families fk, k=1,…,M(t)<∞ that have not been “reset”, calculate the activation aF(xc|fk)

of the “non-reset” fk’s at the presence of xc.
3. Competition among the fk’s : select the fJ which is activated the most at the presence of xc, where J is the

index of the winner family, and let wL denote the hyperbox of fJ={wJ,i}i∈IJ which corresponds to the
maxi∈IJ{σ(xc≤VAwJ,i)}.

4. The Assimilation Condition: Test whether the size Z(xc∨UwL) - with respect to the selected positive
valuation - of xc∨UwL is less than a user defined threshold size Zcrit, where wL was defined in the previous
step.

5. If the assimilation condition is satisfied, then replace wL in fJ by xc∨UwL. In the sequel simplify, if
necessary, families by eliminating “nested” constituent hyperboxes in a family.

6. If the assimilation condition fails then “reset” fJ.
7. If all the families f1,…,fM(t) have been “reset” and no winner has been found then memorize hyperbox xc

provided there is sufficient system memory available. When no memory is available turn down the
accommodation of the input xc.

In order to make this section self-contained and to facilitate an implementation of the σ-FLL scheme
by other researchers we have appended a list of all the needed functions after the “σ-FLL for Testing”
algorithm in the next subsection.

In the previous scheme, learning is continuously “on” for all presented inputs. In particular, a new
input xc∈<VU,≤VU> is assigned to the most activated family provided that the corresponding size Z(xc∨UwL)
(step 4) is under a user defined threshold Zcrit. Otherwise “reset” occurs and the quest for a new winner
resumes. If all the families f1,…,fM(t) have been “reset” and no winner has been found then the input xc is
memorized. ‘Memorization’ means that an input xc is learned as a new cluster. Moreover note that a
simplification is carried out in step 5 in order to remove clusters which are redundant in view of the
consistency property (C3, in definition 2).

A reader familiar with the fuzzy ART [9] might have already noticed the analogies with the σ-FLL
scheme during the learning of hyperboxes. Certain analogies are pointed out explicitly in section 5.
Nevertheless, a fundamental difference with the fuzzy ART is that the σ-FLL is applicable on a lattice
domain (including the unit-hypercube lattice <U,≤U>) due to its lattice applicable inclusion measure σ.

Despite σ-FLL’s capacity to keep learning (by clustering) continuously “on”, there exist practical
cases like these in the examples of section 6, where learning is expected by classification. Then one data set
is given for training and another data set is given for testing. In such a case the aforementioned algorithm is
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used for training in order to effect learning. In the sequel, learning is disengaged and the σ-FLL scheme for
testing is employed as described in the sequel.

4.2  The σσ -FLL Scheme for Testing

1. The next input xc∈<VU,≤VU> shows up.
2. Calculate the activation aF(xc|fk) of each learned family fk, k=1,…,MF<∞ at the presence of xc. That is

calculate the degree of membership of xc∈<VU,≤VU> to all the fuzzy sets (VU, aF(x|fk)), k=1,…,MF<∞.
3. Assign xc to the winner of the competition among all families. That is assign xc to the family fk,

k=1,…,MF<∞ which provides with the largest value (VU, aF(x|fk)) of membership of xc in it.

Note that during testing the total number of families does not change with time but instead it equals a
constant positive integer value MF<∞.

At this point we cite explicitly expressions of the functions needed by the σ-FLL scheme, during both
“learning” and “testing”.

• A hyperbox xc in the N-dimensional unit-hypercube U is denoted by xc=[a,b]=[(a1,…,aN),(b1,…,bN)]=
[a1,b1,…,aN,bN], where ai,bi∈[0,1] and [ai,bi] specifies an interval in the ith dimension for i=1,…,N.

• Let w=[p,q]=[(p1,…,pN),(q1,…,qN)]=[p1,q1,…,pN,qN] denote another hyperbox.
• xc∨Uw is calculated by xc∨Uw= [a1,b1,…,aN,bN]∨U[p1,q1,…,pN,qN]= [min{a1,p1},max{b1,q1},…,

min{aN,pN},max{bN,qN}].
• Z(xc) is calculated by Z(xc)=Z([a1,b1,…,aN,bN])=Σ(bi-ai).
• We have considered the positive valuations vi(x)=x and the isomorphisms θi(x)=1-x, x∈[0,1] along the ith

dimension for i=1,…,N. Hence the number v(θ(p))+v(q) is calculated as
v(θ(p))+v(q)=v(θ(p1,…,pN))+v(q1,…,qN)=v(1-p1,…,1-pN)+ v(q1,…,qN)=Σ(1-pi)+Σqi=N+Σ(qi-pi).

• The degree of inclusion of hyperbox xc in hyperbox w is calculated by σ(xc≤Uw)=
[v(θ(p))+v(q)]/[v(θ(a∧Up))+v(b∨Uq)]= [N+Σ(qi-pi)]/[N+Σ(max{bi,qi}-min{ai,pi})].

• A family fk={wk,i}i∈Ik of hyperboxes comprises “∣Ik∣ many” hyperboxes where ∣Ik∣ denotes the (finite)
cardinal number of the set Ik.

• For a concrete family fk, the number aF(xc|fk) is calculated as aF(xc|fk)=aF(xc|{wk,i}i∈Ik)=
maxi∈Ik{σ(xc≤wk,i)}.

In all, the σ-FLL scheme is a competitive learning scheme for a crisp set identification which employs
a lattice inclusion measure σ in the lattice <VU,≤VU> of hyperboxes. Learning by the σ-FLL scheme occurs
by clustering and a hyperbox defines a cluster. The total number of hyperboxes (clusters) to be learned is not
known a priori by the σ-FLL scheme, but rather this number is specified on-line during learning. Moreover,
the total number of learned hyperboxes may be partitioned into M(t)<∞ families (during learning) or MF<∞
families (during testing) either by an external teacher who labels the learned hyperboxes or automatically.
There are several ways for automatic partitioning. One way is to assume that a family contains only a single
hyperbox; another way is to assume that two overlapping hyperboxes are in the same family; yet another
way is to assume that two hyperboxes are in the same family only when the degree of inclusion of one
hyperbox into the other is over a user defined threshold. Despite the fact that the hyperboxes which specify
each one of the M(t) families (during training) or the MF families (during testing) are crisp, generalization is
still possible by the activation function aF(x|fk) which can specify the degree of membership of a hyperbox
xc∈<VU,≤VU> in a fuzzy set (VU, aF(x|fk)).

An advantage of the σ-FLL scheme compared to the fuzzy ART is that its inputs do not have to be
solely points but they could be hyperboxes as well. Another advantage shared with the fuzzy ART is the
reduced training complexity; specifically a single pass through the data suffices for stable learning, in the
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sense that additional passes through the data will not alter the arrangement of the hyperboxes in the learned
families. Note that learning by “a single pass” through the data is an inherent characteristic of the σ-FLL
scheme. However the price we have to pay for such a rapid learning is that the families of hyperboxes being
formed during learning depend on the presentation order of the training data. Specifically, a different
presentation order of the training data causes, in general, different formations of hyperboxes and
consequently it occasions different families of hyperboxes. In turn different families, say f1 and f2 with f1≠f2,
give rise to different activations functions aF(x∣f1) and aF(x∣f2). Hence, eventually, the “direction” of
learning is altered by selecting a different winner among the competing families of hyperboxes. We haven’t
studied the dependence of classification performance on the order of the training data; such a study for the
σ-FLL is a topic of future research, and a similar study recently published on the fuzzy ART [17] could be
the starting point. Finally note that the pre-eminent advantage of the σ-FLL scheme is its applicability
beyond the Euclidean space as well on products of complete lattices, provided that both a positive valuation
v and an isomorphism θ exist in each constituent lattice. One example demonstrating σ-FLL’s applicability
beyond the Euclidean space is shown in example 6.3 of section 6.

5   RELATED WORK IN PERSPECTIVE

The σ-FLL scheme may be regarded as a fuzzy neural network (FNN). Connections to selected
FNN(s) as well as to other models are drawn in this section aiming at putting the σ-FLL in perspective.
However due to the emphasis of the present paper on the mathematical substantiation of the FL-framework,
a detailed comparison with any specific model is outside the scope of this paper.

Recall that a FNN combines the “bottom-up” neural capacity for parallel learning and generalization,
with fuzzy logic’s “top-down” capacity for human-like reasoning based on uncertain or ill defined data. The
list of FNN(s) cited below was not meant to be comprehensive. Rather, we have picked out only a few
models some aspects of which are so closely related to our work that a comparison would be instructive.

The σ-FLL scheme has stemmed from a study of the adaptive resonance theory (ART) [3], [6], [7],
[9], in particular the fuzzy-ART  [9]. Some common traits are summarized next: (i) Learning by the σ-FLL
scheme corresponds to fuzzy ART’s “fast learning”, (ii) Fuzzy ART's “complement coding” corresponds to
σ-FLL’s isomorphic function θ, (iii) Both the fuzzy ART and the σ-FLL imply a two layer architecture; the
one (input) layer accommodates the inputs, the other (category) layer accommodates the learned
intervals/hyperboxes, (iv) Search for a “winner-take-all” occurs in the category layer. When the winner does
not satisfy σ-FLL’s assimilation condition (or ART's vigilance criterion) then this winner is “reset” and
search keeps on, (v) Fuzzy ART’s vigilance parameter (ρ) corresponds to σ-FLL’s threshold size (Zcrit)
which is used for regulating the formation of hyperboxes/clusters during learning, and (vi) The inclusion
measure (σ) of the σ-FLL corresponds to both of fuzzy ART's “choice function” and “match function” as it
will be detailed in a future publication.

Apart from the fuzzy ART itself there exist other FNN(s) that employ the fuzzy ART as one of their
constituent modules. For instance FALCON [26] employs the fuzzy ART synergistically with the
backpropagation. Note that all FNN(s) which employ the fuzzy ART can potentially enhance their
applicability beyond the Euclidean space to a mathematical lattice domain by considering the σ-FLL
scheme. Examples of lattices wherein the σ-FLL is applicable are cited further below in this section.

Regarding other FNN(s) we note SONFIN [24], that is a neural fuzzy inference network with on-line
capacity for self-construction. The FNN in [34] provides fuzzy interpretations to the multilayer perceptron
(MLP) and it can deal with inputs in numerical, linguistic, and set form by representing N-dimensional
patterns as 3N-dimensional vectors. The FNN in [31] builds on [34] but the emphasis is on an “expert”
connectionist model, and the network generates a measure of certainty expressing confidence in its
decisions. The knowledge-based network in [30] builds on [31], [34] and it improves performance by
encoding initial knowledge in terms of class a priori probabilities; the output to an input interval is
computed by using only the mean of an interval. Intervals of vectors are treated explicitly by either
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supervised of unsupervised Min-Max neural networks [39], [40]. A neural architecture for handling fuzzy
input vectors is proposed in [20] then a learning algorithm is derived for propagating fuzzy numbers through
the neural architecture; such a propagation is effected by the computationally expensive task of dealing with
h-level sets. In [11] six different methods are shown for fuzzy modeling by rapid rule extraction without a
priori information about the data. Inference in the fuzzy logic-based neural network (FLBN) [27] occurs by
neuron-implemented fuzzy AND/OR logic rules, and antecedents are weighted by a possibility measure.

The majority of the FNN(s) employ either explicitly or implicitly the N-dimensional Euclidean space,
that is the product lattice <R,≤>N where R is the set of real numbers. In particular, the majority of the FNN(s)
deal solely with propositions involving values of linguistic variables defined over the line of the real
numbers. Hence only such fuzzy sets are usually dealt with as “small”, “large”, “fast”, “old”, etc. where the
universe of discourse is totally ordered and in particular it is the real line. In other words most FNN(s) do
not deal directly with linguistic variables involving colors such as “blue, red, yellow”, properties such as
“edible, poisonous, dexterous”, gender such as “masculine, feminine”, etc. unless the user maps arbitrarily
the values of the corresponding linguistic variables to the N-dimensional space <R,≤>N for a suitable value
of N. The σ-FLL provides the alternative for dealing with a lattice ordered universe of discourse, for
instance lattice-ordered symbols, as demonstrated in example 6.3 of section 6.

We remark that “mapping the data to a lattice” compared to “mapping the data to the real-line” could
enhance a subsequent learning scheme’s capacity for data discrimination. To be more specific, due to the
partial ordering relation implied by a lattice compared to the total ordering relation of the real-line, the
present authors expect that two or more classes to be potentially easier separable on a lattice than on the real
line. The same remark extends to more lattices/real-lines. Hence the capacity to treat rigorously and jointly
disparate lattice elements by the competitive, self-organizing σ-FLL scheme is expected to be significant in
decision making. Moreover “σ-FLL learning” is characterized by a single pass through the training set, but
the cost for such a rapid learning is “dependence on the order of the training data” as it has been explained at
the end of section 4. Another factor for enhancing potentially σ-FLL’s data processing speed is its treatment
of one lattice interval as a single block in the computations, since the σ-FLL operates on the lattice of
intervals.

There is only one parameter (one number) to tune during learning by the σ-FLL herein, that is number
Zcrit∈[0,1], which specifies the maximum allowable size of the hyperboxes/clusters to be learned. In this
sense we may say that the value of Zcrit regulates “learning by the σ-FLL” the same way as the learning-rate
parameter regulates “learning by the multilayer perceptron (MLP)”; whereas the numbers defining the edges
of a hyperbox in the σ-FLL scheme correspond to the weights of a MLP. Nevertheless unlike the MLP,
learning by the σ-FLL is always stable and only a single pass through the data is enough. Note that larger or
smaller values of Zcrit effect learning reversely. On the one hand, “larger values of Zcrit” result in fewer
hyperboxes/clusters while the capacity for data discrimination is deteriorated, whereas on the other hand
“smaller values of Zcrit” result in more hyperboxes/clusters with an enhanced capacity for data
discrimination.

The σ-FLL can deal with “uncertainty” in the data by treating whole intervals of data values instead of
treating only individual data points. Alternative ways for dealing with uncertainty in the data include
considering the lattice of fuzzy sets on the universe of discourse, or the lattice of events in a probability
space. These issues will be detailed in future publications.

The crisp intervals being identified during learning by the σ-FLL can be thought of as encoding
knowledge regarding the outside world. The way it has been introduced in this work, the σ-FLL scheme sets
out its learning without a priori knowledge. However, initial a priori knowledge can be provided to the σ-
FLL by letting a user specify a number of lattice intervals before “σ-FLL learning” takes place due to the
training data.

The σ-FLL scheme can also be regarded as a single layer fuzzy logic inference system that consists
solely of lattice applicable IF-THEN rules. The presentation of the σ-FLL as a lattice applicable fuzzy
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inference system, including consideration of an additional layer of OR gates, is a topic of future
publications.

Note also that σ-FLL’s inclusion measure σ is an alternative to fuzzy set theory’s “possibility
measure”. Recall that an inclusion measure σ can be calibrated by a positive valuation function v. In turn, σ-
FLL’s positive valuation function v can be regarded as a mathematical sound alternative to either the
probability measure of Bayesian statistics or the belief functions of the Dempster-Schaffer theory. Finally
we underline the potential utility of the inclusion measure σ for system identification in modeling and
control [21]. For instance σ could be employed by a “reasoning scheme” in a diversified environment
involving disparate types of lattice-ordered data aiming at the selection of a suitable system model [42].

6   EXAMPLES

The σ-FLL scheme has been applied for pattern recognition to three data sets, including two
benchmarks. Two of those data sets involved solely real numbers. The third data set, that is a benchmark,
intermingled real numbers and lattice-ordered symbols. In all cases during learning the formed lattice
intervals (clusters) were labeled by an external teacher; then a testing set was employed to evaluate the
capacity of the σ-FLL for generalization. For the two benchmark data sets, where one training set and one
testing set are given explicitly, we report the percentages of correct classification on the testing set by the σ-
FLL scheme comparatively with other learning schemes. We have assumed that the “other” studies whose
results are reported herein have employed the same training and testing data sets. Therefore we conclude
that a comparison of the performance by the various algorithms reported herein is meaningful and fair.

6.1  Raman-Spectroscopy data set

The task is to identify the soft tissues encountered in the epidural surgical procedure [35] using their
Raman spectra profiles [41]. 27 Raman spectra profiles were available that corresponded to four soft tissues
encountered in the epidural surgical procedure. The data profiles were given by an expert separated into four
groups; six data corresponded to connective-tissue, seven data to muscle-tissue, six to skin-tissue, and
another eight data corresponded to fat-tissue. Figure 2 shows the emission intensity signatures of four
Raman spectra profiles, that is one typical representative for each one of the four soft tissues encountered in
the epidural surgical procedure. Some of the data of each group were selected randomly and formed the
training set, and the remaining data of the group were used as testing data.

The discriminatory power of the Fourier Transform’s phase [33] was employed. In the case of Raman
spectra it was found that only the first 22 phase components were significantly greater than zero, therefore
all the rest of the phase components were discarded. Each vector was normalized by a linear transformation
which mapped the minimum value of a vector entry to the number 0.0 and the maximum value of a vector
entry to the number 1.0. The lattice where the σ-FLL scheme applied was <U,≤U> in the 22 dimensions. The
positive valuation function employed was the sum of all the entries of the corresponding normalized vector.

A series of learning experiments for soft tissue recognition was carried out. Various combinations
from 6 to 14 data profiles in the aggregate were selected randomly from each one of the four soft tissue
groups and formed the training data set. The remaining data were employed as the testing set. Every time,
and as a result of training, four distinct clusters were specified corresponding to each one of the
“connective”, “muscle”, “skin”, and “fat” tissues. An external teacher attached labels to the learned clusters,
those clusters were 22-dimensional hyperboxes. In the sequel the testing data were applied. No
misclassifications have been recorded.
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6.2  VOWEL benchmark data set

This data set was taken from the Carnegie Mellon University’s (CMU) collection of neural net
benchmarks [13]. It consists of 10-dimensional vectors of the linear predictive coefficients with regards to
eleven steady state vowels of British English. The training set contains 528 vectors, while the testing set
consists of 462 vectors. The aim is the correct classification of the testing data to their corresponding
classes, these are the eleven steady state vowels. Table 1 shows the classification results by several different
methods. The entries of Table 1 have been inserted in a reduced order of performance; that is a method
achieving a larger “percent correct” on the testing data was put above another one which achieved a smaller
“percent correct”. The authors experimented only with the σ-FLL scheme which has been applied in lattice
<U,≤U> in the 10 dimensions.

The best results shown in Table 1 by the three-dimensional Growing Cell Structures, that is 67%, are
reported in [14] where as many as 80 training epochs had to be carried out in order to achieve the best result.
The best results by the Gaussian ARTMAP and by the Fuzzy ARTMAP, either without voting or with 5
voters, are reported in [47]. A common feature shared by all the three : Gaussian ARTMAP, Fuzzy
ARTMAP, and σ-FLL, is their rapid training. The rest of the entries in Table 1 have been reported by other
researchers and relevant information can be found in the documentation which accompanies this benchmark
[13].

TABLE 1
Performance of various methods in classifying eleven vowels of British English of the VOWEL benchmark.
The methods are arrayed in a decreasing order of success.

Figure   2 Raman spectra profiles showing laser emission intensities versus wavenumber offsets away
from the driving frequency at 633 nm that correspond to four soft tissues encountered in the
epidural surgical procedure.

 Method      No. of
Hidden Units

%
Correct

3-D Growing Cell Structures 154 67
Gaussian ARTMAP (5 voters) 273 63
σ-FLL Scheme 195 60.17
Gaussian ARTMAP (w/o voting) 55 59
Nearest Neighbor - 56.27
Square Node Network 88 54.76
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Details of σ-FLL’s performance for learning the VOWEL benchmark are shown in Table 2. Several
different types of data normalization have been tried. A row in Table 2 corresponds to one normalization
type. For each normalization type eight different ranges for the threshold size Zcrit were tested. These are
Range-1: from 0 to 0.018 (0-0.018) ,…, Range-8: from 0.14 to 0.158 (0.14-0.158) shown in Table 2. A
column in Table 2 corresponds to one range. Within a range, say Range-4 (0.06-0.078), the size Zcrit has
been increased by a step of 0.002. A cell of Table 2 displays the maximum (M) and minimum (m) recorded
“percentage correct” of the testing test for a normalization type and a range.

On the one hand note that normalization of the data has been, in effect, an additional preprocessing of
the data. On the other hand, recall that the size Zcrit is the only parameter of the σ-FLL scheme that needs to
be defined by the user in order to regulate the learning as it has been illustrated in section 5.

The first normalization type ((c1) in Table 2) was achieved by finding the minimum and the maximum
entry values for each one of the 10 entries of the training input vectors, and those values were mapped to the
numbers 0.0 and 1.0 respectively. The best recorded testing performance was 52.81%. For cases (c2)
through (c4) of Table 2 three different normalization types were tried. In particular an input vector’s entry
was normalized respectively over the normalizing intervals [-6,6], [-8,8], and [- 10,10]. In all those cases the
positive valuation function employed was v(x1,…,x10)=x1+…+x10. Finally, cases (c5) through (c7) in Table 2
were treated respectively by the same normalizing intervals as cases (c2) through (c4) above, nevertheless
the positive valuation function was altered by employing the standard deviation of each input vector entry.
In particular instead of using the function v(x1,…,x10)=x1+…+x10, where (x1,…,x10) is a normalized input
vector, we used the function vnew(x1,…,x10)=σ1x1+…+σ10x10, where σi, i=1,…,10 is the standard deviation of
the corresponding vector entry in the training set. Employment of that new positive valuation function was
motivated by the hypothesis that entries which are more closely concentrated around their means could
convey a lesser discriminatory power than other, more dispersed entries. The experimental testing verified
this hypothesis and the performance improved. Specifically in case (c7) and Range-6 the σ-FLL scheme
achieved a maximum of 60.17 %, and as shown in Table 1, 195 cluster/hyperboxes were located in the data.
An important advantage of learning by the σ-FLL has been “a single pass” through the training data set, that
is an inherent property of learning by the σ-FLL.
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Regarding the behavior of σ-FLL’s performance during the experiments, we note that σ-FLL’s
performance was fairly stable for one type of data normalization. More specifically, within one type of data
normalization no drastic variation of performance was noted over the size’s Zcrit “whole range of change” as
shown across a line in Table 2. Finally, it is noted that the total number of clusters/hyperboxes learned in the
experiments was found to be a decreasing function of the size Zcrit. For instance the numbers of
clusters/hyperboxes learned for sizes Zcrit = 0.005, 0.055, 0.105, 0.155 and normalization type (c7) were
respectively 527, 344, 217, 162.

TABLE 2
Details of σ-FLL’s performance for learning the VOWEL benchmark. Seven combinations of data
normalization and positive valuations (c1)…(c7) are shown across the rows of Table 2, for eight different
ranges of the size Zcrit shown along the columns of Table 2. In row (c1) a data entry was normalized over its
minimum-maximum range. In rows (c2) through (c4) a data entry was normalized respectively over the
ranges [-6,6], [-8,8], and [-10,10]. The same normalization intervals were used in rows (c5) through (c7),
where the asterisk (*) is to show that new positive valuation functions vnew(.) have been used as explained in
the text. In a range corresponding to a column, say Range-1 (0-.018), the size Zcrit was increased in steps of
0.002. A cell of Table 2 displays the maximum (M) and the minimum (m) “percentage correct” of the
testing data.

6.3  ABALONE benchmark data set

This data comes from the University of California Irvine (UCI) collection of benchmark data sets [29]
and it includes information which could be readily encoded in a lattice outside the Euclidean space. The data
are gender and physical measurements on abalones, the latter are marine snails. There exist 4177 records of
data, in particular 3133 for training and 1044 for testing. Each data record has 9 entries. The first 8 entries
are one gender plus seven physical measurements data and they are used as inputs. The ninth entry indicates
one of three age groups and it is used as an output. The question is to learn predicting the age of an abalone.

Type of data Maximum (M) and minimum (m) Percentage of Correct Classification in 8 Ranges for the size of Zcrit

Normalization
Range-1 Range-2 Range-3 Range-4 Range-5 Range-6 Range-7 Range-8
0 - .018 .02 - .038 .04 - .058 .06 - .078 .08 - .098 .10 - .118 .12 - .138 .14 - .158

(c1) Full range 50.65 M 50.65 M 50.65 M 50.65 M 50.65 M 50.87 M 51.95 M 52.81M
50.65 m 50.65 m 50.65 m 50.65 m 50.65 m 50.65 m 51.08 m 52.38 m

(c2) [-6,6] 55.84 M 55.84 M 56.28 M 56.28 M 58.87 M 58.44 M 55.84 M 56.28 M
55.84 m 55.63 m 55.63 m 54.55 m 57.58 m 55.63 m 52.81 m 53.03 m

(c3) [-8,8] 55.84 M 56.49 M 56.06 M 58.87 M 56.49 M 56.49 M 56.93 M 57.58 M
55.84 m 55.63 m 54.33 m 56.71 m 54.11 m 52.81 m 54.76 m 55.84 m

(c4) [-10,10] 55.84 M 56.49 M 58.66 M 58.01 M 56.49 M 57.36 M 56.06 M 53.46 M
55.84 m 55.41 m 54.55 m 54.98 m 53.03 m 55.19 m 52.60 m 51.06 m

(c5) [-6,6] * 57.79 M 57.79 M 58.44 M 57.58 M 58.23 M 58.66 M 58.01 M 59.09 M
57.79 m 57.79 m 57.79 m 55.84 m 57.36 m 57.14 m 56.06 m 56.71 m

(c6) [-8,8] * 57.79 M 58.44 M 58.23 M 58.66 M 58.44 M 58.66 M 59.09 M 59.52 M
57.79 m 57.79 m 56.06 m 57.14 m 55.63 m 56.28 m 56.71 m 58.44 m

(c7) [-10,10] * 57.79 M 58.44 M 58.44 M 58.44 M 58.87 M 60.17 M 58.87 M 57.79 M
57.79 m 57.58 m 55.63 m 56.49 m 56.49 m 57.14 m 56.06 m 54.55 m
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Unique to the ABALONE benchmark is the first input entry. It contains information regarding the
gender of an abalone and it receives three values these are ‘I’, ‘M’, ‘F’ that stand for Infant, Male, and
Female. Other researchers have encoded the first input entry as three inputs to a neural network [46]. Hence
to reach the best performance in Table 3 the values ‘I’, ‘M’, ‘F’ were encoded by the vectors (1,0,0), (0,1,0),
and (0,0,1) respectively. Note that such an encoding has been decided arbitrarily by a user and it employs
implicitly a Boolean lattice of features, while on the other hand the said encoding increases the total number
of inputs from 8 to 10. The authors employed the product of two lattices. The first lattice, denoted by
<L,≤L>, encoded the first ABALONE input entry as a single input to the σ-FLL by considering the lattice of
Figure 3, hence L={I,M,F,G} and I≤LF, I≤LM, F≤LG, M≤LG as shown in Fig.3. The second lattice was
<U,≤U> in the 7 dimensions to encode the remaining input entries.

Regarding the first lattice the symbols ‘F’ and ‘M’ were treated as (lattice) incomparable, that is
F∥LM, whereas both of them were treated as “greater”, in a lattice sense, than the symbol ‘I’. The symbol
‘G’ in Fig.3 was introduced by the authors in order to make the lattice in question a complete one so as the
σ-FLL scheme be applicable. Figure 3 shows also the values of the employed positive valuation function.
The isomorphic function θ employed has been θ(I)=G, θ(F)=F, θ(M)=M, and θ(G)=I.

G     v(G)=0.51
o

v(F)=0.50 F o o M     v(M)=0.50

o
I     v(I)=0.49

Figure   3 The three symbols ‘I’, ‘F’, ‘M’ in the first input entry of the ABALONE benchmark were
considered to be lattice ordered. Symbol ‘G’ was introduced by the authors to make the
corresponding lattice <L,≤L> a complete one. The values of the employed positive valuation
are also shown.

Table 3 shows the classification results by different methods. The entries of Table 3 are inserted in a
reduced order of performance. The authors experimented only with the σ-FLL scheme. The remaining
entries in Table 3 are reported with additional information in the documentation which accompanies this
benchmark [29]. The performance of the σ-FLL scheme was marginally the second best but without
introducing the additional overhead of increasing the number of inputs as explained above. Moreover only 1
pass through the training data sufficed for stable learning, as expected from the σ-FLL scheme.

TABLE 3
The σ-FLL scheme achieved marginally the second best performance. Due to its treatment of the
ABALONE data as lattice elements, the σ-FLL scheme reduced the total number of inputs.

Method % Correct
Cascade-Correlation (5 hidden nodes) 65.61
σ-FLL scheme 65.32
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Back-Propagation 64.00
Nearest Neighbour (k=5) 62.46
Cascade-Correlation (no hidden nodes) 61.40
C4.5 59.20
Dystal 55.00
Linear Discriminant Analysis 32.57

During learning a teacher attached labels to the learned intervals which (labels) corresponded to the
majority of the data encoded by a lattice interval. One category consisted of a number of lattice intervals
(clusters). The total number of clusters was a decreasing function of the value of the threshold size Zcrit. We
note that the sizes Zcrit= 0.500, 0.600, and 0.700 yielded respectively 346, 256, and 192 clusters. In our
experiments the size of Zcrit was increased from 0.500 to 1.00 in steps of 0.001. The average classification
correct rate on the testing data was 60.65 % with standard deviation 1.24. The performance peaked to 65.32
% as reported in Table 3 for threshold size Zcrit=0.636 without normalizing the numeric data. Moreover in
the peak of the performance 223 clusters were located in the data.

Additional experiments have been carried out. In some of them we verified that the performance has
been a function of the training data order presentation, as expected from the σ-FLL scheme. The best results
were recorded for the ordering in which the data are given in the UCI collection. Moreover, in other
experiments, the ABALONE data were employed with different lattice orderings and with different positive
valuations of the first input entry. The best results were recorded for the lattice ordering and positive
valuation shown in Fig.3. Note that in all the additional experiments the performance deteriorated by up to 3
percentage points.

In conclusion, this example has shown the efficient applicability of the σ-FLL scheme for learning and
recognition of lattice-ordered symbols in conjunction with real numbers. Specifically, the first input entries
of the ABALONE data set have been treated as lattice-ordered symbols; we did not have to convert those
symbols to real numbers. Moreover, the σ-FLL scheme scored high as shown in Table 3 and its learning had
been rapid. An additional advantage of the σ-FLL scheme is that its encoding, using lattice ordered symbols,
did not increase the total number of inputs.

7   CONCLUSION

The principal contribution of this paper has been the introduction of a novel base for learning, that is
the framework of fuzzy lattices, or FL-framework for short. New notions were introduced in the context of
the FL-framework such as the notion of a fuzzy lattice as well as the notion of an inclusion measure σ. An
inclusion measure σ can fuzzify the crisp binary inclusion relation in a conventional complete lattice. In the
FL-framework, learning can be achieved by handling crisp lattice intervals. Various learning schemes can be
synthesized in the FL-framework. One such a scheme for learning by clustering has been introduced herein,
that is the σ- fuzzy lattice learning (σ-FLL) scheme, inspired from the fuzzy adaptive resonance theory
(ART) [9]. For convenience of comparison with the fuzzy ART the σ-FLL has been introduced in the unit-
hypercube U. The σ-FLL scheme has been also presented in perspective with selected fuzzy/neural/expert
systems from the literature. The capacity of the σ-FLL has been demonstrated on three data sets. Solely real
numbers were treated in a medical data set and the VOWEL benchmark, whereas real numbers mixed with
lattice-ordered symbols were treated in the ABALONE benchmark.

Advantages of both the σ-FLL scheme and the FL-framework include, (i) the capacity to deal with the
uncertainty in the data in several alternative manners including treatment of “lattice intervals” these are
“hyperboxes” in the Euclidean unit-hypercube U, (ii) the ability for sound, hierarchic, and modular decision
making in a diversified (lattice) environment, based (the decision making) on an inclusion measure σ.
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Regarding the σ-FLL scheme in particular, its employment in specific learning experiments has
demonstrated its inherent capacity for rapid learning; in particular only 1 pass through the data suffices for
stable learning. Nevertheless the order of data presentation is significant for reasons exposed herein. Finally
note that the σ-FLL scheme herein requires only one parameter (one number) to be defined by the user in
order to carry out learning, the parameter in question is the size threshold Zcrit.

Future plans include a study and a further development of various theoretical aspects of the FL-
framework, as those plans have been delineated throughout this paper and mainly in section 5. A summary
of the said plans includes a suitable selection of a positive valuation v for a concrete application, an optimum
selection of an isomorphic function θ in a lattice, a procedure that would maximize the degree of inclusion
of a class into another one, etc. Moreover and in addition to learning by clustering, other learning schemes
will be investigated in the FL-framework.
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APPENDIX

Proof of Theorem 5
The proof underneath is valid for any complete lattice <A,≤A> with a positive valuation v and v(OA)=0.

1. k(x,OA)= v(OA)/v(x∨AOA)= v(OA)/v(x)=0, assuming x≠OA.
Note that k(x,OA) is guaranteed to be equal to 0 (for x≠OA) only if v is a positive, and not just a

monotone, valuation.

2. If x=OA then we define k(OA,OA)=1, otherwise it holds k(x,x)= v(x)/v(x∨Ax)= v(x)/v(x)=1.

3. In any lattice <A,≤A> the operation of join (∨A) is monotone [1], that is u≤Aw ⇒ x∨Au≤Ax∨Aw.
Provided a positive, and hence a monotone, valuation v in lattice <A,≤A> a distance function is defined

in <A,≤A> by d(u,w)=v(u∨Aw)-v(u∧Aw) [1], [38]. Which, in conjunction with the above monotone inequality,
implies both d(x∨Au,x∨Aw)=v(x∨Aw)-v(x∨Au) and d(u,w)=v(w)-v(u). In what follows it will be convenient to
remind that we put no subscript to ≤ when it is used with real numbers.

It is further known from [1] that if v is a monotone valuation in <A,≤A> then it holds d(x∨Au,x∨Aw)+
d(x∧Au,x∧Aw)≤. d(u,w). Hence in our case with an initial assumption u≤Aw, it follows
d(x∨Au,x∨Aw) ≤ d(x∨Au,x∨Aw)+d(x∧Au,x∧Aw)≤. d(u,w) ⇒ v(x∨Aw)-v(x∨Au) ≤ v(w)-v(u) ⇒ v(x∨Aw) ≤ v(w)-
v(u)+v(x∨Au).

Assuming w≠OA it follows that
[v(u)/v(w)]v(x∨Aw) ≤ [v(u)/v(w)][v(w)-v(u)+v(x∨Au)] = [(v(w)-v(u))/v(w)]v(u)+[v(u)/v(w)]v(x∨Au) ≤ [(v(w)-
v(u))/v(w)]v(x∨Au)+[v(u)/v(w)]v(x∨Au) = v(x∨Au) ⇒ [v(u)/v(x∨Au)]≤[v(w)/v(x∨Aw)] ⇒ k(x,u) ≤ k(x,w).

�
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Proof of Proposition 7
The truth of this proposition will be shown in four steps.

Step-1: The collection VA of intervals including the empty set is partly ordered. The ordering relation
[a,b]≤VA[c,d] is equivalent to “c≤Aa and b≤Ad”. An eligible interval notation for the empty set OVA is OVA=
[IA,OA].

Step-2: Any two intervals [a,b], [c,d] in VA have a least upper bound, in particular it is [a,b]∨VA[c,d]=
[a∧Ac,b∨Ad].

Step-3: Any two intervals [a,b], [c,d] in VA have a greatest lower bound, in particular it is [a,b]∧VA[c,d]=
[a∨Ac,b∧Ad] if a∨Ac≤Ab∧Ad, otherwise it is [a,b]∧VA[c,d]=OVA.

Step-4: The implied lattice <VA,≤VA> is a complete lattice, that is any subset of VA has both a least upper
bound and a greatest lower bound in <VA,≤VA>.

Note that the lattice monotone properties “x≤Ay ⇒ x∧Az≤Ay∧Az, and x≤Ay ⇒ x∨Az≤Ay∨Az” [1] will be
used extensively in the proofs below.

Proof of Step-1
Recall that a non-empty interval ∆∈VA has been defined as the set [a,b]≜{x∈<A,≤A> : a≤Ax≤Ab}.

Therefore the collection VA of intervals including the empty set OVA is partly ordered under the conventional
set-inclusion relation, the latter relation is denoted herein by ≤VA. Note that a set is called partly ordered
when the reflexive, antisymmetry, and transitive laws hold [1].

For non-empty intervals [a,b], [c,d]∈VA the partial ordering relation [a,b]≤VA[c,d] is equivalent to
c≤Aa≤Ab≤Ad. Aiming at introducing the standard interval notation for the empty set we “relaxed” the
aforementioned equivalence relation in VA and we have replaced it by “[a,b]≤VA[c,d] ⇔ c≤Aa and b≤Ad”. All
the intervals in VA including the empty interval OVA whose interval notation is searched for, say it is OVA=
[e1,e2], are required to satisfy the previous “relaxed” equivalence relation.

On the one hand, the non-empty intervals already satisfy the “relaxed” equivalence relation. On the
other hand for the empty interval, the “relaxed” equivalence relation implies [e1,e2]≤VA[a,b] ⇔ a≤Ae1 and
e2≤Ab, for all [a,b]∈VA. Therefore we propose the following interval notation for the empty interval
OVA=[e1,e2]=[IA,OA].

We show now that denoting the empty interval by OVA=[IA,OA] complies with standard lattice
theoretical considerations. First, we consider a non-empty interval say ∆=[a,b] where a,b∈<A,≤A> and a≤Ab.
Because <A,≤A> is a complete lattice then both the least upper bound of the set ∆, denoted by ∨A∆, and the
greatest lower bound of ∆, denoted by ∧A∆, exist in <A,≤A>. In particular it holds ∧A∆=a and ∨A∆=b. Hence a
non-empty interval can be denoted by ∆=[∧A∆,∨A∆]. Second, we examine whether the equality ∆=[∧A∆,∨A∆]
holds when ∆=OVA. We cite part of the content of Remark 2.2 from [10] : “the greatest lower bound of the
empty set in a complete lattice <A,≤A> is IA, while the least upper bound of the empty set is OA”. Hence in
order to comply with Remark 2.2 in [10] the empty interval OVA has to be denoted by OVA=[∧AOVA,∨AOVA]=
[IA,OA]. That is, we have reconfirmed the validity of our proposed interval notation for the empty set.

Proof of Step-2



24

Consider the interval [a∧Ac,b∨Ad]. It is a∧Ac≤Aa and b≤Ab∨Ad, hence [a,b]≤VA[a∧Ac,b∨Ad]. Likewise
[c,d]≤VA[a∧Ac,b∨Ad]. Therefore [a∧Ac,b∨Ad] is an upper bound of both [a,b] and [c,d]. We show now that
[a∧Ac,b∨Ad] is the least upper bound of [a,b] and [c,d]. Towards this end assume another upper bound
interval of both [a,b] and [c,d], say interval [β,γ]. The latter assumption implies both (i) [a,b]≤VA[β,γ]⇔
β≤Aa, b≤Aγ, and (ii) [c,d]≤VA[β,γ] ⇔ β≤Ac, d≤Aγ. Employing the lattice monotone properties, we can
conclude both β≤Aa∧Ac and b∨Ad≤Aγ, hence [a∧Ac,b∨Ad]≤VA[β,γ]. In conclusion [a,b]∨VA[c,d]= [a∧Ac,b∨Ad].

Proof of Step-3
To calculate the [a,b]∧VA[c,d] we will need to show at first the following equivalence :

[a,b]∩[c,d]≠OVA ⇔ a∨Ac≤Ab∧Ad, where ∩ is the set-intersection operator and OVA denotes the empty set. In
the one direction of the previous equivalence, assume that the sets [a,b] and [c,d] intersect each other. Then
∃γ∈<A,≤A>: a≤Aγ≤Ab and c≤Aγ≤Ad. Employing the lattice monotone properties we conclude both a∨Ac≤Aγ
and γ≤Ab∧Ad. Therefore a∨Ac≤Ab∧Ad. In the other direction of the previous equivalence, assume that
a∨Ac≤Ab∧Ad. Then ∃γ∈<A,≤A>: a≤Aa∨Ac≤Aγ≤Ab∧Ad≤Ab ⇒ γ∈[a,b], and c≤Aa∨Ac≤Aγ≤Ab∧Ad≤Ad. ⇒ γ∈[c,d].
Therefore [a,b]∩[c,d]≠OVA..

We resume now the calculation of [a,b]∧VA[c,d]. On the one hand, if a∨Ac≰Ab∧Ad then by employing
the above equivalence we conclude [a,b]∩[c,d]=OVA., hence we infer [a,b]∧VA[c,d]=OVA. On the other hand,
if a∨Ac≤Ab∧Ad then consider the interval [a∨Ac,b∧Ad]. It is both a≤Aa∨Ac and b∧Ad≤Ab, hence
[a∨Ac,b∧Ad]≤[a,b]. Likewise [a∨Ac,b∧Ad]≤[c,d]. Therefore [a∨Ac,b∧Ad] is a lower bound of both [a,b] and
[c,d]. We show now that [a∨Ac,b∧Ad] is the greatest lower bound of [a,b] and [c,d]. Towards this end assume
another lower bound interval of both [a,b] and [c,d], say interval [β,γ]. The latter assumption implies both (i)
[β,γ]≤[a,b] ⇔ a≤β, γ≤b, and (ii) [β,γ]≤[c,d] ⇔ c≤β, γ≤d. Employing the lattice monotone properties we
conclude both a∨Ac≤Aβ and γ≤Ab∧Ad, therefore we infer [β,γ]≤VA[a∨Ac,b∧Ad]. In conclusion [a,b]∧VA[c,d]=
[a∨Ac,b∧Ad].

Proof of Step-4
Considering jointly the results of Step-1, Step-2, Step-3 and applying the definition of a lattice given

in the beginning of section 2 we conclude that <VA,≤VA> is a lattice.
Let {[ai,bi]}i∈I denote a collection of intervals in <VA,≤VA>, where I is an index set. We show now that

∨VA{[ai,bi]}i∈I exists in <VA,≤VA> in particular it is ∨VA{[ai,bi]}i∈I= [∧A{ai}i∈I, ∨A{bi}i∈I], where both ∧A{ai}i∈I

and ∨A{bi}i∈I exist in the complete lattice <A,≤A>. We show first that [∧A{ai}i∈I, ∨A{bi}i∈I] is an upper bound
of all [ai,bi], i∈I, and then we show that [∧A{ai}i∈I, ∨A{bi}i∈I] is their least upper bound. The details of the
proof the same as in the Proof of Step-2, and they will not be repeated. In conclusion ∨VA{[ai,bi]}i∈I=
[∧A{ai}i∈I, ∨A{bi}i∈I].

Likewise, by following the same line of arguments as in the Proof of Step-3 we can show that
∧VA{[ai,bi]}i∈I exists in <VA,≤VA>. In particular, ∧VA{[ai,bi]}i∈I= [∨A{ai}i∈I, ∧A{bi}i∈I] if ∨A{ai}i∈I≤∧A{bi}i∈I,
otherwise ∧VA{[ai,bi]}i∈I=OVA..

In conclusion we infer that <VA,≤VA> is a complete lattice.

�

Proof of Proposition 12
Let x,y be in <A×A,≤A×A,1> with x=(a,b), and y=(c,d), where a,b,c,d∈<A,≤A>, and let v be a valuation

on <A,≤A>. Then
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V(x)+V(y)=V(a,b)+V(c,d)=[v(a)+v(b)]+[v(c)+v(d)]=[v(a)+v(c)]+[v(b)+v(d)]=[v(a∨Ac)+v(a∧Ac)]+[v(b∨A

d)+v(b∧Ad)]=[v(a∨Ac)+v(b∨Ad)]+[v(a∧Ac)+v(b∧Ad)]=V(a∨Ac,b∨Ad)+V(a∧Ac,b∧Ad)=V((a,b)∨A×A,1(c,d))+
V((a,b)∧A×A,1(c,d))= V(x∨A×A,1y)+V(x∧A×A,1y), that is V is a valuation on the lattice <A×A,≤A×A,1>.

The partial ordering relation in lattice <A×A,≤A×A,1>, that is x≤A×A,1y ⇔ (a,b)≤A×A,1(c,d), implies a≤Ac
and b≤Ad. Therefore if v is, in addition, a monotone valuation in <A,≤A> then x≤A×A,1y ⇒ a≤Ac and b≤Ad ⇒
v(a)≤v(c), v(b)≤v(d), that is v(a)+v(b)≤v(c)+v(d) ⇒ V(x)≤V(y), hence V is a monotone valuation on
<A×A,≤A×A,1>. Moreover and likewise, a positive valuation v on <A,≤A> implies the positive valuation
V(a,b)=v(a)+v(b) on <A×A,≤A×A,1>.

�
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