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Fuzzy Lattice Neural Network (FLNN) : A Hybrid Model for Learning *

Vassilios Petridis and Vassilis G. Kaburlasos 

Abstract

This paper proposes two hierarchical schemes for learning, one for clustering and the other for classification
problems. Both schemes can be implemented on a fuzzy lattice neural network (FLNN) architecture, to be
introduced herein. The corresponding two learning models draw on adaptive resonance theory (ART) and
min-max neurocomputing principles but their application domain is a mathematical lattice. Therefore they
can handle more general types of data in addition to N-dimensional vectors. The FLNN neural model stems
from a cross-fertilization of lattice theory and fuzzy set theory. Hence a novel theoretical foundation is
introduced in this paper, that is the framework of fuzzy lattices or FL-framework, based on the concepts
fuzzy lattice and inclusion measure. Sufficient conditions for the existence of an inclusion measure in a
mathematical lattice are shown. The performance of the two FLNN schemes, that is for clustering and for
classification, compares quite well with other methods and it is demonstrated by examples on various data
sets including several benchmark data sets.

Index Terms - ART neural networks, clustering methods, decision support systems, fuzzy lattice theory,
fuzzy neural networks, learning systems, pattern classification,  pattern recognition.

1   INTRODUCTION

Artificial neural networks are a technology rooted in many disciplines. Numerous popular models have
been proposed to-date inspired from physics, chemistry, geometry, statistics, biology, neurobiology,
psychology [1], [2], [4], [11], [15], [21], [27], [32] to name but a few. The artificial neural networks are
endowed with unique attributes such as universal input-output mapping, the ability to learn from and adapt to
their environment [14]. A most prominent point of vantage is their ability for massive parallel processing.

Connectionist schemes have been proposed to process information using representations other than the
numerical one. For instance there have been proposed neural networks for extracting symbolic knowledge
[28], for utilizing expert knowledge represented by fuzzy if-then rules [16], [33]. Cross-fertilization of
inferencing networks with conventional neural networks such as the Kohonen’s model have been reported
[25], and wavelet networks were also considered [8].

Nevertheless the applicability domain of all previous neural schemes is more or less restricted. More
specifically the data being processed are frequently in the Euclidean space or they are treated as such. For
example the problem of grammatical inference is treated in [28] by processing strings of “0’s” and “1’s” of
positive and negative examples as real numbers. For the binary ART neural network [4] inputs of features
are represented by strings of “0’s” and “1’s” and are treated as real numbers. Moreover even in [16], where
human knowledge and numerical data are integrated by propagating fuzzy numbers through a neural
network, other types of data can not be treated in addition.

In an effort to define connectionist schemes able to cope with a wide gamut of disparate data we came
to grips with mathematical lattices. The work herein reports on both theoretical and practical results in this
direction. Our contribution can be summarized as follows. We propose a sound mathematical ground, that is
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the fuzzy lattice framework or FL-framework. Based on the FL-framework we show a connectionist
architecture, namely fuzzy lattice neural network (FLNN) [20], [29], which can treat with mathematical
consistency and jointly such disparate data as conventional RN vectors, fuzzy sets, symbols, propositions, etc.
Next, two learning schemes implementable by the FLNN are shown, one scheme for clustering and the other
scheme for classification. These two FLNN schemes are applied quite successfully on several benchmark
data sets for learning and recognition.

Employment of mathematical lattices is not new in engineering. They appear either explicitly or
implicitly in many instances. For example lattices are employed explicitly in [6] for controlling discrete event
systems. Complete lattices are employed in [23] in deductive databases. In [35] and [12] it is explained how a
lattice may generalize the notion of a fuzzy set while in [35], in particular, it is noted that “fuzzy sets (over a
universe of discourse) constitute a distributive lattice with 0 and 1”. In neurocomputing, lattices appear
implicitly in the fuzzy ART [5] and in the min-max neural nets [30], [31] since both types of neural networks
deal with hyperboxes in the conventional set RN; note that the set of hyperboxes is a lattice. Regarding
neurocomputing in lattices the oldest attempt known to the authors is noted in [19], where the work is
oriented more toward medical applications than toward theoretical substantiation.

According to the neurocomputing approach to learning we have taken, sets of lattice elements are
specified by sets of finitely many overlapping and/or non-overlapping lattice intervals. In this sense the
FLNN approach to learning is similar to the one taken by the biologically motivated adaptive resonance
theory (ART) [5] and the min-max neural networks [30], [31]. Nevertheless, even though it is originated in
the adaptive resonance as well as the min-max neural networks the FLNN proceeds far beyond. It generalizes
both of them by employing the theory of lattices [3] which is cross-fertilized with the theory of fuzzy sets
[35] as explained throughout this paper. Note that the work herein is not merely a combination of lattice
theory and fuzzy set theory but instead it is a fruitful cross-fertilization of the two theories.

The layout of this paper is as follows. Section 2 outlines a novel theoretical foundation for learning
which employs mathematical lattices. Section 3 introduces the FLNN architecture as well as two learning
schemes, one for clustering and the other for classification. Section 4 shows sufficient conditions for applying
an FLNN scheme on lattices of intervals. Section 5 reports on the capacity of the FLNN for pattern
recognition of various data sets, including five benchmark data sets. Finally section 6 summarizes the
principal achievements.

2   A NEW THEORETICAL FOUNDATION FOR LEARNING

The goal of this section is to introduce a new a viable theoretical framework for hybrid learning with a
wide application domain.

2.1  Fuzzy lattices
Recall that a lattice is a partly ordered set any two of whose elements have a greatest lower bound or

meet denoted by x∧y and a least upper bound or join denoted by x∨y. A lattice  is complete when each of
its subsets has a least upper bound and a greatest lower bound in . A non-void complete lattice contains a
least and a greatest element denoted respectively by O and I [3].

Let  be a lattice, either complete or not. Consider the relation R of the induced partial ordering in ,
and let x,y∈ . Then either x and y are comparable, that is (x,y)∈R or (y,x)∈R, or x and y are incomparable,
that is none of the previous ordered pairs belongs to R. The novel notion fuzzy lattice is introduced in order to
extend the crisp, if existent, lattice relation of partial ordering to any pair (x,y) of the set S={(x,y): x,y∈ }.
The practical significance for such an extension is that it may associate any two lattice elements. Hence to
every (x,y)∈S a real number µP(x,y)∈[0,1] is attached to indicate the degree of inclusion of x in y. Formally
an extension (relation) P can be defined [36] by
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P = {((x,y),µP(x,y)) : x,y∈ , µP(x,y)∈[0,1]}, where
the real function µP(x,y) is a fuzzy membership function on the universe of discourse S={(x,y): x,y∈ }.

To keep the extension P compatible with the original lattice’s  partial ordering relation R, P is defined
under the constraint that µP(x,y)=1 if and only if x≤y in . The definition of a fuzzy lattice ensues.

Definition 1

A fuzzy lattice is a pair ( , µP(x,y)), where  is a conventional lattice and µP: S→[0,1] is a fuzzy
membership function on the universe of discourse S={(x,y): x,y∈ }. It is µP(x,y)=1 if and only if x≤y in .

We remark that real function µP(x,y) can be interpreted as specifying the degree of inclusion of x in y.
We will refer to the collection of all fuzzy lattices by the term FL-framework. Learning in the FL-framework
is achieved by specifying sets of lattice elements by intervals. To this end rendering “fuzzy” a conventional
lattice is convenient as the latter enables association of lattice elements to one another, even when those
lattice elements are incomparable. Note that in this work we deal solely with complete lattices.

2.2  Inclusion measure
A fuzzy lattice can ensue from a conventional one by an inclusion measure defined next.

Definition 2

Let  be a complete lattice with least and greatest elements O and I respectively. An inclusion measure is a
mapping σ: S={(x,y): x,y∈ }→[0,1] such that σ((x,u))≡σ(x≤u) satisfies the following three conditions

(C1) σ(u≤O) = 0, u≠O. (C2) σ(u≤u) = 1, ∀u∈ .
(C3) u≤w ⇒ σ(x≤u) ≤ σ(x≤w), x,u,w∈ - Consistency Property

Conditions (C2) and (C3) jointly imply u≤w ⇒ σ(u≤u) ≤ σ(u≤w) ⇒ σ(u≤w)=1,  u,w∈ . The latter
furthermore implies σ(u≤I)=1, where I is the greatest element in . It can be argued that σ(x≤u) shows the
degree of truth of the lattice inclusion relation x≤u, that is the degree of inclusion of x in u.

In order an inclusion measure to define of a fuzzy lattice out of a conventional one it suffices to be
σ(u≤w)=1 ⇒ u≤w, according to Definition 1. To this end we considered a real-valued function-h defined
below.

Definition 3

A function-h, h: →R on a complete lattice  satisfies the following three properties:
(P1) h(O)= 0, where O is the least element in , (P2) u<w ⇒ h(u)<h(w), u,w∈ , and
(P3) u≤w ⇒ h(x∨w)-h(x∨u)≤h(w)-h(u), x,u,w∈ .

We remark that if h(O)≠0, then a function h0(.) with h0(O)=0 can be defined out of h(.) by subtracting
h(O) from all h(x), x∈ . A function-h does not exist necessarily in a lattice. Nevertheless when it exists it can

be shown that k(x,y) =
h(y)

h(x y)∨
, x,y∈  where h(.) is a function-h, defines an inclusion measure in .
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Theorem 1
Let  be a complete lattice. Then the existence of a function-h on  is sufficient for the function k(x≤u) =

h u
h x u

( )
( )∨

 to be an inclusion measure in , that is k(x≤u) = σ(x≤u) = 
h u

h x u
( )

( )∨
.

The proof of theorem 1 is given in the Appendix.

Note that k(x≤u)=
h(u)

h(x u)∨
= 1 ⇔ h(u)=h(x∨u) ⇔ u=x∨u ⇔ x≤u. Hence ( ,k(x≤u)) is a fuzzy lattice.

Function k(x≤y) will be employed as an activation function by the neurons of an FLNN neural model.

Example-2.1
Consider the lattice =[0,1], that is the closed interval of real numbers between 0.0 and 1.0. This lattice

is called chain [3] because it is characterized by a total instead of a partial ordering. It is clear that =[0,1] is
a complete lattice with least and greatest elements 0.0 and 1.0 respectively. The corresponding lattice meet
(∧) and join (∨) operations are given respectively by x∧y=min{x,y} and x∨y=max{x,y}, x,y∈ =[0,1].

Any monotone increasing real function h(.) with h(0.0)=0 is a function-h because properties (P1) and
(P2) of Definition 3 are obviously true. Property (P3) can be shown by considering the three cases: 1)
x≤u≤w, 2) u≤x≤w, and 3) u≤w≤x. Case 1) implies x≤u≤w ⇒ h(x∨w)-h(x∨u) = h(w)-h(u), case 2) implies
u≤x≤w ⇒ h(x∨w)-h(x∨u)=h(w)-h(x) ≤ h(w)-h(u), and case 3) implies u≤w≤x⇒ h(x∨w)-h(x∨u)=0 ≤ h(w)-
h(u). Hence (P3) holds.

For all examples herein drawn from the Euclidean space the function-h: h(x)=x was employed.

2.3  A hierarchy of fuzzy lattices
It holds that the product of N lattices 1,…, N, that is = 1×…× N, is lattice with an induced partial

ordering relation defined by (x1,…,xN) ≤ (y1,…,yN) ⇔ x1≤y1,…, xN≤yN [3]. This partial ordering relation is
called herein relation r1. Lattice = 1×…× N is called product lattice, and each one of the i, i∈{1,…,N} is
called constituent lattice. The product lattice meet (∧) and join (∨) are defined respectively by
x∧y=(x1,…,xN)∧(y1,…,yN)=(x1∧y1,…,xN∧yN) and x∨y=(x1,…,xN)∨(y1,…,yN)=(x1∨y1,…, xN∨yN) [3]. Note
that if the constituent lattices i, i∈{1,…,N} are all complete with least and greatest elements O1,…,ON and
I1,…,IN respectively, then the product lattice = 1×…× N will be a complete lattice with least element
O=(O1,…,ON) and greatest element I=(I1,…,IN). Regarding functions-h the following statement holds.

Lemma 1
Let = 1×…× N be the product of N complete constituent lattices with function(s)-h : h1(.),…,hN(.)
respectively. Then h(x1,…,xN)=h1(x1)+…+hN(xN) defines a function-h on the product lattice = 1×…× N.

The proof of Lemma 1 is given in the Appendix.
Remark that Lemma 1 substantiates FL-framework’s claim for a “disparate data fusion capacity”,

suffices the data be elements of complete constituent lattices where a function-h is available on each
constituent lattice. Lemma 1 also partly substantiates the claim for “an hierarchical nature” of the FLNN. An
additional conceptual level in the hierarchy of lattices is incurred by considering the set of intervals of lattice
elements as shown in the sequel. The set in question augmented by a least element is a complete lattice,
denoted herein by L. The following definition suggests a “measure of the magnitude” of an interval in L

with respect to a function-h defined on .
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Definition 4

Let  be a complete lattice with O and I its least and greatest elements, respectively, and let h(.) be a
function-h on . Then the size of [a,b]∈ L with respect to h(.) is defined by Z([a,b])=h(b)-h(a).

At this point it is necessary to cite a convention regarding the notation employed. Specifically let 
denote a product lattice, and let 1,…, N, denote its constituent lattices. We agree to denote an element of the
product lattice  by a letter without any subscript, for instance x∈ . On the other hand, an element of a
constituent lattice i is denoted by a letter with a subscript, for instance xi∈ i. Same subscripts imply
elements of the same constituent lattice and vice-versa.

Example-2.2
Consider the product lattice =[0,1]×[0,1], that is the unit-square. In this case there exist two identical

constituent lattice-chains =[0,1]. By Lemma 1 we infer that function h(x)=x on lattice-chain =[0,1] implies
function-h: h(x1,x2)= h(x1)+h(x2)=x1+x2 in the product lattice =[0,1]×[0,1].

In lattice-chain =[0,1] the size of an interval [x1,y1],x1,y1∈[0,1] with x1≤y1 is defined by
Z([x1,y1])=h(y1)-h(x1)= y1-x1. On the other hand an interval in the product lattice =[0,1]×[0,1] corresponds
to a rectangle in the unit-square and its size equals half the circumference of the corresponding rectangle.

2.4  Lattices 1 and 2

Let  be a complete product lattice and let O and I denote, respectively, the least and greatest element
of . In line with last section’s analysis it can be inferred that ×  implies a complete lattice, which will be
denoted by 1. Lattice 1 is defined on the set S={(a,b): a,b∈ } and the relation of its partial ordering is
the same relation r1, as before, implied by product lattice = 1×…× N. That is (a,b)≤(c,d) if and only if a≤c
and b≤d. The join and the meet in 1 are defined by

(a,b)∨(c,d) = (a∨c,b∨d),  and   (a,b)∧(c,d) = (a∧c,b∧d), where a,b,c,d∈
The least element of the complete lattice 1 is (O,O) whereas its greatest element is (I,I).

By virtue of Lemma 1 it can be shown that if h(.) is a function-h on a lattice , then H((a,b))=
h(a)+h(b) defines a function-h on 1.

In the sequel another lattice is defined on the set S={(a,b): a,b∈ }, that is lattice 2 of generalized
intervals in . But lattice 2 is defined with a different partial ordering. Note that the set S={(a,b): a,b∈ }
will also be denoted by S={[a,b]: a,b∈ }.

Theorem 2
A complete lattice 2 can be defined on the set S={[a,b]: a,b∈ } where  is a complete lattice, with two
binary operations between elements of 2 defined as follows :

[a,b]∧[c,d]= [a∨c,b∧d],  and   [a,b]∨[c,d]= [a∧c,b∨d], where a,b,c,d∈
because the following laws L1-L4 are satisfied, for a,b,c,d,e,f∈   [3].
L1. [a,b]∧[a,b] = [a,b],  and   [a,b]∨[a,b] = [a,b] (Idempotent)
L2. [a,b]∧[c,d] = [c,d]∧[a,b], and [a,b]∨[c,d] = [c,d]∨[a,b] (Commutative)
L3. [a,b]∧([c,d]∧[e,f])=([a,b]∧[c,d])∧[e,f], and [a,b]∨([c,d]∨[e,f])=([a,b]∨[c,d])∨[e,f] (Associative)
L4. [a,b]∧([a,b]∨[c,d]) = [a,b]∨([a,b]∧[c,d]) = [a,b] (Absorption)

The proof of theorem 2 is given in the Appendix.
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The implied relation [a,b] ≤ [c,d] of partial ordering in 2 is equivalent to [a,b]∧[c,d] = [a,b] ⇔
a∨c=a, b∧d=b ⇔ c≤a, b≤d, and it will be called (partial ordering) relation r2. Note that [I,O] is the least
element and [O,I] is the greatest element in the complete lattice 2.

An element of 2 is called generalized interval because of the way lattice 2 was defined. Note that
lattice L of intervals is a sublattice of 2. Recall that “a sublattice of a lattice  is a subset  of  such that
a,b∈  imply a∧b∈  and a∨b∈ ” [3]. As the least element in L we may take the least element of 2, that
is the generalized interval [I,O]. Furthermore note that parentheses () are used to embrace an element of 1,
for instance (a,b)∈ 1, whereas brackets [] are embracing elements of 2, for instance [c,d]∈ 2,
intentionally, to underscore the two different lattice orderings on the same set S.
Example-2.3

Regarding the unit-square product lattice =[0,1]×[0,1] an element of 1 or 2 is given by a vector
of 4 numbers. These vectors, as elements of the two distinct lattices 1 and 2, differ as to the manner in
which their meet (∧) and the join (∨) are calculated. For instance consider the elements (0.1,0.7,0.3,0.4) and
(0.5,0.8,0.5,0.2) of 1. Their meet and join are, respectively

(0.1,0.7,0.3,0.4)∧(0.5,0.8,0.5,0.2)=(0.1∧0.5,0.7∧0.8,0.3∧0.5,0.4∧0.2)=(0.1,0.7,0.3,0.2), and
(0.1,0.7,0.3,0.4)∨(0.5,0.8,0.5,0.2)=(0.1∨0.5,0.7∨0.8,0.3∨0.5,0.4∨0.2)=(0.5,0.8,0.5,0.4).

The same vectors of numbers considered as elements of 2, are combined as follows:
[0.1,0.7,0.3,0.4]∧[0.5,0.8,0.5,0.2]=[0.1∨0.5,0.7∧0.8,0.3∨0.5,0.4∧0.2]=[0.5,0.7,0.5,0.2], and
[0.1,0.7,0.3,0.4]∨[0.5,0.8,0.5,0.2]=[0.1∧0.5,0.7∨0.8,0.3∧0.5,0.4∨0.2]=[0.1,0.8,0.3,0.4] where it was

assumed that [0.1,0.7], [0.3,0.4], [0.5,0.8], and [0.5,0.2] specify generalized intervals in the constituent
lattices. Note that a single point (x1,y1)∈  can be represented in 2 by the trivial interval [x1,x1,y1,y1].

3   FUZZY LATTICE NEURAL NETWORK (FLNN)

The goal in this section is to employ the FL-framework presented in the previous section in order to
introduce 1) a neural architecture, that is the fuzzy lattice neural network (FLNN), and 2) two learning
schemes, one for clustering and the other for classification problems which (schemes) can be applied by the
FLNN. Some more notions need to be introduced in the following subsection.

3.1  Families of lattice intervals
The elements of the set L, by being intervals of lattice elements, define sets of “adjacent” lattice 

elements. The FLNN deals with certain families of lattice intervals denoted by {wi}, where wi∈ L and i is in
a finite index set. The FLNN aims at identifying sets ck of lattice elements, namely classes, which can be
represented by the set-union of a finite number of L intervals, that is ck= wk,i

i

. Note that more than one

families of intervals may specify the same class ck.
Instrumental to the applicability of the FLNN in lattice L is the existence of an inclusion measure in

L. Throughout this section we assume the existence of an inclusion measure in L. In the next section we
show sufficient conditions for its existence. The degree of inclusion of an interval x∈ L in a class ck is
defined as follows.

Definition 5

If x∈ L and ck= wk,i
i

 then the degree of inclusion of x in class ck is defined as σ(x≤ck):= max
i

σ(x≤wk,i).
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Remark that sometimes σ(x≤ck) := σ(x≤ wk,i
i

) will be denoted instead by σ(x≤{wk,i}). Moreover,

when it happens to be σ(x≤ck)=1 we will write x≤ck and say : “x is in(side) class ck”. The definition of
connected classes will be useful.

Definition 6

A class c= wi
i

 is called connected if and only if for any two intervals p,q inside c there exists a sequence

of intervals t0,…,tN-1 inside class c, from p to q. That is t0∧p=p, tN-1∧q=q, and ti∧ti+1≠O, i=0,…,N-2.

Note that a family is called connected if and only if it defines a connected class.
Decision making in the fuzzy lattice neural network (FLNN) is driven by the degree of true of

proposition “ x≤ck” as expressed by σ(x≤ck), where x is an input lattice interval that excites the system and
the ck’s are learned classes kept in the system’s memory.

Let F be the collection of all families that can represent a concrete class c in lattice . Note that the
cardinality of a family {wi} of intervals used to represent class c need not be constant. We say that a family
{pm} in F is “smaller than or equal to” another family {qn} in F symbolically {pm}≤{qn}, if and only if ∀p in
{pm} there exists a q in {qn} such that p≤q. Moreover, a family {pm} is “strictly smaller” than another family
{qn} and we write {pm}<{qn} if and only if it is {pm}≤{qn} and either there is a p in {pm} and a q in {qn}
such that p<q or the cardinality of family {pm} is strictly smaller than the cardinality of family {qn}. In
conclusion F is a partially ordered set. Consider the following lemma.

Lemma 2
The collection F of families representing a concrete class c= wi

i

 has a maximum element, namely quotient

of class c, and denoted by Q(F) = Q({wi}).

The proof of Lemma 2 is given in the Appendix.
A quotient Q(F) is the maximum element in the set F. In fact, it is easy to show that the set F is a

lattice, and it constitutes another conceptual “pinnacle” in the hierarchy of lattices implied by the FL-
framework. There is a concrete benefit in replacing a family {wi} which represents a class by the quotient
Q({wi})=Q(F). That is for any input interval x it holds  σ(x≤Q(F)) = max σ(x≤{wj}), where {wj}∈F. In
other words the quotient Q(F) maximizes the degree σ(x≤c) of inclusion of x in the class c= wi

i

.

Example-3.1
The utility of the technique of maximal expansions is illustrated in Fig. 1. Note that the complete

lattice in this case is the unit-square defined as the product =[0,1]×[0,1] of the two lattices-chains =[0,1].
Recall that an interval in lattice unit-square  is a rectangle. Consider the class c={w1,w2} and let the
rectangle x consist solely of points of w1 and w2 (Fig.1(a)).  Then it is reasonable to expect σ(x≤c)=1. But
this is not the case in Fig. 1(a) because both w1<x∨w1 and w2<x∨w2 hold, therefore it is σ(x≤c) = k(x≤c) < 1,
according to Theorem 1.  The technique of maximal expansions comes to restore the expected equality
relation by replacing class c={w1,w2} by its quotient, that is the family {w1,w′2} of the maximal rectangles of
c (Fig.1(b)).  Hence any rectangle containing solely points of the class c is contained in at least one of the
quotient members w1, w′2, and equality σ(x≤c)=1 is guaranteed.



8

  

(a) (b)

Figure 1 (a) Despite the fact that rectangle x is inside class c=w 1∪w2 it is neither x≤w1 nor x≤w2, therefore it
follows σ(x≤c)<1.

(b) The technique of maximal expansions finds the quotient {w 1,w′2} of class c and it guarantees
σ(x≤c)=1 when x is inside class c=w 1∪w2=w1∪w′2.

3.2  The FLNN architecture
Fig. 2 shows the basic FLNN architecture which can be employed for learning and decision making in

the FL-framework including the conventional set RN. Notice the resemblance to the two layer ART neural
network [4] which was introduced in the mid-1970s to solve some problems in sensory coding. The many
variations of the ART have modeled a variety of neurobiological and behavioral data and they were also
applied in a range of engineering applications [7], [13]. Nevertheless ART is limited to the set RN.

Like ART, the FLNN proposes a modifiable recurrent architecture for clustering in two layers. One
layer, called category layer, is cognitively “higher” than the other called the input layer. Single nodes at the
category layer encode patterns of node activities from the input layer. On the one hand the category layer
consists of L artificial neurons specifying L intervals that define M classes (Fig.2); it is L≥M. On the other
hand the input layer consists of N artificial neurons used for buffering and matching. The two layers are fully
interconnected by lattice-weighted bidirectional links which may filter -up or -down the activities of the
corresponding layer. A “reset” node (Fig.2) operates much the same way as the orienting subsystem of the
ART does [4].

A key difference between FLNN and ART, besides FLNN’s own activation function σ(x≤w), is the
applicability of FLNN on fuzzy lattices which could imply significant technological benefits stemming from
a much wider application domain than the conventional Euclidean space. Another vantage point of the FLNN
compared to the ART is that the inputs I1,I2,…,IN to the FLNN (Fig.2) are intervals, that is hyperboxes in the
set RN in particular. Hence we may compensate for the uncertainty of the measurements by feeding to the
FLNN a neighborhood of values as defined by an interval rather than feeding a single point. A final
advantage of the FLNN is the technique of maximal expansions which enhances overlapping of two intervals
by enlarging their lattice meet to the maximum and in all possible ways. The basic FLNN architecture of
Fig.2 can be employed for learning by either clustering or classification.

class c

x

w1

w2

1

0 1

class c

x

w1

w′2

1

0 1
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Category Layer
Competition : winner takes all. 

Input Layer
Buffering & Matching.

Figure 2 The basic two layer FLNN architecture for learning in the lattice L of intervals. L is the number of
category layer neurons which equals the total number of intervals used to define M classes. The
category layer neurons employ the lattice inclusion measure σ(.) as their activation functions. N is
the number of input layer neurons. The two layers are fully interconnected by lattice L weighted
links that filter -up or -down activity of a layer. A “reset” node is used for resetting nodes in the
category layer.

3.3  FLNN for learning - Clustering
The FLNN scheme for unsupervised learning is described below next.

0. The first input is stored in the memory, that is FLNN’s category layer. From then on learning proceeds as
follows (at an instant t there are M=M(t) known classes ck, k=1,…,M stored in the memory).

1. Present an input interval x to the initially “set” classes c1,…,cM.
2. Calculate σ(x≤ck) for all ck, k=1,…M that have not yet been “reset”, where ck= w k,i

i

 and σ(x≤ck) =

σ(x≤ w k,i
i

) := max
i

σ(x≤wk,i).

3. Competition among the classes ck : select cJ such that σ(x≤cJ) = max
k

 σ(x≤ck), where J is the index of

corresponding winner and cJ= wJ,i
i

.

σ(x≤w1) σ(x≤w2) σ(x≤w3) σ(x≤wL)

w11

w12

w1N

wL1

wL2

wLN

1 2 N

reset

1 2 3 L≥M

I1 I2 IN
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4. The maximum-size-test (assimilation condition or matching test) :  Is the size of x∨w less than a user
defined threshold Z ?  ( where w corresponds to the max

i
σ(x≤wJ,i) ).

5. If the maximum-size-test is successful, then incorporate x into cJ by replacing w by x∨w and then by
calculating the new quotient Q({wJ,i}).

6. If the maximum-size-test fails then “reset” cJ. That is, while the current input x is present make cJ

inaccessible during subsequent quests for a winner.
7. Completion-test :  Are all the classes c1,…,cM “reset” ? If the completion-test fails go to step 2 to look for

another winner.
8. If the completion-test is successful then memorize x : cM+1=x.

The previous algorithm corresponds to the learning phase of the FLNN scheme for clustering where
learning is “on” and the classes are updated continually. As soon as learning is over the testing data are
applied, and then only the degrees of inclusion σ(x≤ck) are calculated of an input datum x to all classes ck,
k=1,…,M stored in FLNN’s category layer (Fig.2) and x is assigned to the winner class. During the testing
phase no class is updated whatsoever.

Example-3.2
This example illustrates graphically the mechanics of the FLNN for clustering on the plane and it also

demonstrates the technique of maximal expansions. Assume that the FLNN has already stored two distinct
classes c1={w1} and c2={w2} in its category layer and let a new input x, that is a rectangle in the general
case, be presented to the system as in Fig. 3(a).  The two classes c1 and c2 compete with one another by
comparing the inclusion measures σ(x≤c1) and σ(x≤c2), and let c1 be the winner class.  Assume that the
maximum-size-test is not met then class c1 is reset.  Searching for a winner class continues, c2 is tested next
(Fig.3(b)), and let c2 satisfy the maximum-size-test.  Then w2 is replaced by w′2=x∨w2. Note that rectangles
w1 and w′2 overlap.  The FLNN for clustering assumes that now w1 and w′2 are in the same family of lattice
intervals that defines a single class, say c1,  and it triggers the technique of maximal expansions.  This
technique considers intersection w1∧w′2 and it expands it maximally in both dimensions (Fig.3(c)). Finally,
one class c1 is specified consisting of four rectangles c1={w1,w′2,w3,w4}.  Rectangle w1 is specified by its four
corners 1-2-3-4, rectangle w′2 is specified by its corners 5-6-7-8, rectangle w3 is specified by 9-2-10-8, and
rectangle w4 by 11-6-12-4.  The collection of the maximal rectangles for a given family of overlapping
intervals, as in Fig. 3(c),  is the quotient of the corresponding class.  The degree of inclusion of a new input y
in class c1 as shown in Figure 3(d), is given by max{σ(y≤w1), σ(y≤w′2), σ(y≤w3), σ(y≤w4)}. Note that input
y could be a trivial interval, that is a point in the unit-square [0,1]×[0,1].
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(a)     (b)

(c)     (d)

Figure 3 Learning by fuzzy lattice neural network (FLNN) for clustering. The two classes c 1={w1} and c 2={w2}
compete over input x.

(a)  Class c 1 is the winner because σ(x≤c1) is larger that σ(x≤c2), but it is reset because it does not
satisfy the maximum-size-test.

(b)  class c 2 is selected as the new winner that satisfies the maximum-size-test.
(c)  rectangle w 2 is replaced by w ′2=x∨w2. The overlapping rectangles w 1 and w ′2 define now one

class enhanced by rectangles w 3 and w 4 produced by the technique of maximal expansions, and
(d)  a new input rectangle y appears and the learning cycle repeats.

3.4  FLNN for learning - Classification
In this case a different learning algorithm is implemented on the FLNN architecture. In particular a

training set is employed explicitly consisting of N pairs (xi,gi), i∈{1,…,N} of data, where xi∈  is an input
pattern and element of a lattice , and gi is an index for the category of xi. That is the range of gi is the set
{1,…,K} where K is the number of categories. Note that the basic FLNN architecture of Fig. 2 has to be
enhanced so as to accommodate information regarding the index gi of a category. Such an accommodation
can be achieved 1) by allowing for storage of an index gi in the category layer, 2) by augmenting the input
layer by one node so as to be able to store the index gi of a category, and 3) by fully interconnecting the two
layers. The FLNN scheme for supervised learning follows.
1.  For i=1 to N consider training pair (xi,gi).
2.  Set x=xi.
3.  For j-1 to N consider the next training pair (xj,gj) such that gj=gi.
4.  Set x′=x∨xj.
5.  For all (xk,gk), k∈{1,…,N} with gk≠gi, test whether σ(xk≤x′)<1.
6.  If the test in Step 5) succeeds then replace x by x′.
7.  If j<N go to Step 3).
8.  Store x in the category layer of the FLNN together with gi indicating x’s category.

w2

class c 1

class c 2x

w1

1

0 1

w2

1

class c 1

class c 2x
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The above algorithm for training the FLNN terminates. In particular there exist three processing loops
at Steps 1), 3), and 5) implying that the complexity is O(N3), where N is the number of training data. Note
that the technique of maximal expansions was not employed for training.

Regarding the testing phase, the testing set is applied and the degrees of inclusion σ(x≤ck) are
calculated for each datum x to all classes ck, k=1,…,M in FLNN’s category layer (Fig.2). Finally x is
assigned to the winner class, that is the class which provides with the largest degree of inclusion.

For both the clustering and the classification schemes, FLNN allows overlapping of intervals. The idea
for interval overlapping was borrowed from [18] where mutually nonexclusive classes are treated and the
mechanics of human pattern recognition are modeled with good learning results in benchmark data sets.

At this point it is worth referring to the neural architecture in [16] which maps fuzzy input vectors to
fuzzy outputs. The architecture in question is able to integrate knowledge, presented by fuzzy if-then rules,
and numerical data into a single information processing system. This is effected by employing an extension of
the conventional backpropagation algorithm which (extended algorithm) can handle h-level sets of fuzzy
numbers. Despite its enhanced scope of applicability the architecture in [16] can not accommodate additional
types of data, for instance symbols and/or propositions. On the other hand the FLNN is universal in scope
and it can handle in principle any type of data suffices the data in question be lattice-ordered and both a dual-
automorphism (to be discussed in the sequel) and a function-h be available.

4  DEFINITION OF AN INCLUSION MEASURE IN THE LATTICE L OF INTERVALS

In the previous section we assumed existence of an inclusion measure in the lattice L of intervals.
Herein we show sufficient conditions for this existence. The only way known to the authors for constructing
an inclusion measure is via a function-h. Nevertheless we could not find such a function in the lattice L of
intervals. Therefore we decided to search for an inclusion measure σ(.) in lattice 2. Note that such a σ(.)
would be a valid inclusion measure in lattice L as well, because L is a sublattice of 2. Unfortunately we
could not define an inclusion measure in 2 because we could not find a function-h in 2. Nevertheless we
already know that a function-h in lattice  would imply a function-h in lattice 1 by virtue of Lemma 1.
Therefore we directed our efforts to finding an isomorphism between lattices 2 and 1. Recall that an
isomorphism between two lattices is a bijection (one-one correspondence) between them such that the image
of the meet equals the meet of the images and likewise for the join [3]. A sufficient condition was found for
the existence of an isomorphism between lattices 1 and 2.

We have found that the existence of a dual-automorphism in  is sufficient for establishing an
isomorphism between lattices 1 and 2. Recall that a dual-automorphism in a lattice  is a bijection (one-
one correspondence) θ: →  such that x≤y ⇔ θ(x)≥θ(y), [3]. To show that a dual-automorphism in  is
sufficient for an isomorphism between 1 and 2 assume that there exists a dual-automorphism in the
complete lattice . Then [a,b]≤[c,d] in 2

 implies c≤a and b≤d ⇒ θ(c)≥θ(a) and b≤d ⇒ (θ(a),b)≤(θ(c),d) in
1, and vice-versa. Therefore an isomorphism is implied between lattices 1 and 2, and elements

(a,b)∈ 1 and [θ(a),b]∈ 2 are isomorphic. A dual-automorphism θ(.) in  implies θ(O)=I and θ(I)=O,
hence the least element (O,O) of 1 maps to the least element [θ(O),O]=[I,O] of 2. Likewise, the greatest
element (I,I) of 1 maps to the greatest element [θ(I),I]=[O,I] of 2.

To recapitulate, an inclusion measure can be defined in the lattice L of intervals as follows.
1.  A function-h in lattice  can define a function-h in lattice 1 by virtue of Lemma 1.
2.  Function-h in lattice 1 implies an inclusion measure σ(.) in 1 by virtue of Theorem 1.
3.  A dual-automorphism θ(.) in  can define an isomorphism between 1 and 2, as it was shown above.
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4.  In conclusion, an inclusion measure between two intervals [a,b],[c,d]∈ L is given by σ([a,b]≤[c,d])=
σ((θ(a),b)≤(θ(c),d)), where (θ(a),b) and (θ(c),d) are in 1 and σ(.) is the inclusion measure in 1.

Regarding computation of the meet (∧) and join (∨) in lattice L note that the join [a,b]∨[c,d]=
[a∧c,b∨d] is straightforward because it is always a∧c≤b∨d. However, computation of the meet [a,b]∧[c,d] is
attained only after the following inclusion test in L :

a∨c≤b∧d (true) ⇒ [a,b]∧[c,d] = [a∨c,b∧d], and
a∨c≤b∧d (false) ⇒ [a,b]∧[c,d] := [I,O]
That is any generalized interval [x,y], for which it is not x≤y, is mapped to the least element in the

lattice L of intervals. Since all versions of the FLNN presented in this paper use solely the lattice join (∨)
operator to update intervals during learning, we did not employ the aforementioned inclusion test herein.

Example-4.1
Let’s consider our familiar lattice-chain =[0,1]. Then function θ(x)=1-x defines a dual-automorphism

in lattice =[0,1]. The isomorphic of an interval, say [0.1,0.3]∈ I⊂ 2 is (θ(0.1),0.3)=(1-0.1,0.3)=(0.9,0.3)
in lattice 1. Therefore the degree of inclusion of an interval, say [0.1,0.3], to another one, say [0.2,0.5], is
calculated as follows:

σ([0.1,0.3]≤[0.2,0.5])=σ((θ(0.1),0.3)≤(θ(0.2),0.5)=σ((0.9,0.3)≤(0.8,0.5))= h(0.8,0.5)
h((0.9,0.3) (0.8,0.5))∨

≅0.928,

where h(x)=x. Conversely the degree of inclusion of [0.2,0.5] in [0.1,0.3] is σ([0.2,0.5]≤[0.1,0.3]) ≅0.857.
To keep building on the plane consider the unit-square lattice =[0,1]×[0,1], where an interval in the

unit-square is a rectangle. Consider two rectangles in the unit-square, say [0.1,0.5]×[0.2,0.3] and
[0.3,0.6]×[0.1,0.6] as shown in Fig. 4. Rectangle u: [0.1,0.5]×[0.2,0.3] corresponds to element
[0.1,0.5,0.2,0.3] of 2 whose isomorphic is (θ(0.1),0.5,θ(0.2),0.3)= (0.9,0.5,0.8,0.3) in 1, whereas the
isomorphic of rectangle  w: [0.3,0.6]×[0.1,0.6] is (θ(0.3),0.6,θ(0.1),0.6)= (0.7,0.6,0.9,0.6) in 1. The
degree of inclusion of rectangle [0.1,0.5]×[0.2,0.3] in rectangle [0.3,0.6]×[0.1,0.6] is computed to be
σ([0.1,0.5,0.2,0.3] ≤ [0.3,0.6,0.1,0.6]) ≅ 0.933, whereas the degree of inclusion of rectangle
[0.3,0.6]×[0.1,0.6] in rectangle [0.1,0.5]×[0.2,0.3] is σ([0.3,0.6,0.1,0.6] ≤ [0.1,0.5,0.2,0.3]) ≅ 0.833.

For the N-dimensional space an interval is an N-dimensional hyperbox, or hyperbox for short.

Figure 4 In the unit-square it can be calculated that rectangle u in included in rectangle w more than the
other way around when functions h(x)=x and θ(x)=1-x are selected, respectively, as function-h and
dual-automorphism in the constituent lattices =[0,1].

0.1 0.3 0.5 0.6

0.1
0.2
0.3

0.6

u

w

0 1

1
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5   EXPERIMENTS

Our goal is to demonstrate the viability of the FLNN as an effective tool for clustering and
classification. Moreover, results of other methods are cited from the relevant references in order to compare
performance on the same data sets. Since the bulk of the benchmark data are drawn from the conventional
Euclidean space we dealt with the Euclidean space in most of the examples in the sequel.

Five benchmark and one synthetic data set were processed by the FLNN. The benchmark data sets can
be obtained either from the Carnegie Mellon University’s neural net benchmark collection [9], or from the
University of California Irvine repository of machine learning databases [24]. For some of the benchmarks a
training set and a testing set are given explicitly. In this case only the training set is employed for learning by
either clustering or classification. On the other hand when the data are not given separated into a training set
and a testing set, a training set was formed either by leaving 1 datum out or by leaving randomly 25% of the
data out. For leave-1-out, the experiment was repeated so as to leave, in turn, most data out. For leave-25%-
out ten trials were carried out and the average performance is reported. The success of an experiment is
expressed by the percentage of correctly recognized testing data.

We introduce two complete lattices, namely the unit hypercube and the convex fuzzy sets.

5.1   The Unit Hypercube
We summarize in this subsection our discussions regarding lattice-chain =[0,1]. The lattice-chain =

[0,1] is complete where 0.0 and 1.0 are respectively its least and greatest elements. A function-h and a dual-
automorphism are given by h(x)=x and θ(x)=1-x, respectively. Hence the corresponding lattices 1 and 2

are isomorphic to each other. By employing Lemma 1 one can go to more dimensions and hence consider
hyperboxes in the unit  hypercube. Note that employment of the unit hypercube instead of the whole
Euclidean space is acceptable in engineering practice [22]. Finally note that the dual-automorphism θ(.) is a
set theoretic interpretation in the context of the FL-framework of the so called “complement coding”
technique employed by the fuzzy adaptive resonance theory (fuzzy ART) [5].

5.2 Fuzzy Numbers
Let  be the collection of convex fuzzy sets defined over a subset of a linear space; the latter space is

typically a subspace of RN. It can be shown that  is a lattice under the regular containment A⊂B ⇔ fA≤fB,
where fA and fB are, respectively, membership (characteristic) functions for fuzzy sets A and B [35]. To this
end we will show that if A,B∈  then both A∧B and A∨B exist in . It is known from [35] that A∩B is the
largest set contained in both A and B, and moreover A∩B is convex; hence we define A∧B:= A∩B. On the
other hand let AB be the collection of convex fuzzy sets that include both A and B. Consider the fuzzy set
M=

X CAB

X
∈

. By employing the “completeness axiom” from real analysis it can be shown that 
X CAB

X
∈

 is the

minimum fuzzy set in AB. Hence we define A∨B=
X CAB

X
∈

. Following the terminology in [35] the smallest

convex fuzzy set containing A∪B is called the convex hull of A∪B and it is denoted by conv(A∪B), that is
A∨B:= conv(A∪B). In conclusion, the set  constitutes a lattice.

Remark that the collection of all fuzzy sets (including convex fuzzy sets) is a lattice under the ∩ and ∪
operations [35]. Nevertheless we opted for the lattice  of convex fuzzy sets in particular because of an
important potential advantage :  that is the generalization implied by replacing A and B by conv(A∪B)
instead of replacing them by A∪B.
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In all  the learning experiments in the sequel both a training set and a testing set are employed.
Learning is effected on the training set in either supervised or unsupervised fashion, and then learning is rated
by applying the testing set. Due to the aforementioned similarities between supervised and unsupervised
learning experiments we decided to put results of both types of experiments in the same table for one
benchmark data set.

5.3   Experiment-5.1
The Fisher IRIS benchmark [10], [24] was processed because its familiarity to the scientific research

community may allow an assessment of the relative performance. This data set comprises 4 attributes for
three classes of iris flowers. Fifty iris flowers per class result in a total of 150 data. The aim was the correct
classification to one of the three iris types. A training set is not given explicitly.

Table 1 cites the percentage of correct classifications of the testing set by different methods.
Backpropagation and structural learning with forgetting (SLF) were employed in [17] with a randomly
selected training set and averages over five trials. For SLF a statistical overall optimum of 5.0 errors is
reported when the training set contained 30 data. For backpropagation the optimal performance was an
average of 4.8 errors when the training set contained 60 data. A constrained multiple objective criterion
(CMOC) neural network [26] misclassified 6 of the testing data when the first half instances in each IRIS
class were employed for training. The min-max neural network for clustering [31] reports an optimum 10%
plus 12% misclassification rate for two IRIS classes that corresponds to 11 misclassifications, for a
hyperbox size equal to 0.10. The success percentage rates for the FLNN are shown in Table 1.

In addition, for this benchmark data set, a 2-level FLNN for clustering was employed as follows. The
data were presented to the FLNN for clustering with a size Z of 1.71 resulting in fifteen (15) 4-D
hyperboxes. Then a second level clustering was effected by determining the degree of inclusion of each
hyperbox in turn in all other, in order to associate a hyperbox with another one which corresponded to the
largest inclusion measure. Thus the 15 hyperboxes were partitioned to three groups. In conclusion the
Fisher’s IRIS data were clustered in three classes with only three (3) data misclassifications (Table 1).

Table 2 compares the performances of the min-max neural network [31] with the 2-level FLNN for
clustering. Besides FLNN’s smaller misclassification percentage, it is also important to note that the FLNN
tracks down 3 classes after two consecutive levels of clustering without a teacher, whereas the min-max
neural network identifies a total of 14 clusters in one level of clustering which are then assigned to the 3 IRIS
classes by an external teacher.

TABLE 1 Recognition results for the IRIS benchmark by various neural networks.

Neural Network % Right on Testing
FLNN for classification, leave-1-out           99.34
FLNN for classification, leave-25%-out           99.12 (*)
2-level FLNN for clustering           98.00
SLF           95.84
FLNN for clustering, leave-25%-out           95.04 (*)
Back Propagation           94.67
FLNN for clustering, leave-1-out           94.00
Min-max neural net for clustering           92.67
CMOC            92.00

(*)  Average in 10 random trials
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TABLE 2 Comparing performances of the min-max neural net versus the 2-level FLNN for clustering for the
IRIS benchmark.

Misclassifications for Number of Number of classes
Class-1 Class-2 Class-3 clustering levels identified

Min-max neural
net for clustering

- 12 % 10% 1 14

2-level FLNN
for clustering

- 6 % - 2 3

5.4 Experiment-5.2
The SONAR benchmark was employed from the Carnegie Mellon University collection of neural net

benchmarks [9]. The data are 60-dimensional vectors that correspond to sonar signals bounced off either a
metal cylinder or a cylindrical rock.  104 vectors are provided for training and another 104 for testing. The
aim was the correct classification of sonar testing signals to one of the two classes: “Mine” or “Rock”.

Table 3 summarize results by various methods. Back propagation and nearest neighbor results are
reported in the documentation that accompanies the SONAR data. Results by K-nearest neighbor and the
fuzzy adaptive resonance associative map (ARAM) with voting across five simulations are from [34].

Regarding FLNN for clustering the SONAR training data were fed in for various values of the size Z.
Table 4 details the results of learning with different sizes of Z, and the additional column “Right on Training
Set” is listed to facilitate the comparison with the results cited in Table 3. In particular, 5999 processing
cycles were effected for size Z values from 0 to 5.998 in steps of 0.001. In every processing cycle the
training data were fed only once and a number of clusters was identified. Each cluster was labeled either
“Rock” or “Mine” according to the majority of the data it encoded. Then the SONAR testing data were fed in
and the results in Table 4 came out. Note that selection of a good value for Z can be regarded as a
“parameter tuning problem” and it depends on the specific problem at hand.

TABLE 3 Recognition results for the SONAR benchmark by various methods.

Method % Right on
Training Set

% Right on
Testing Set

FLNN for classification 100.0 100.00
FLNN for clustering 100.0 94.23
Fuzzy ARAM 100.0 94.20
K-Nearest Neighbor 100.0 91.60
BackProp: Angle-Dep. (1)  99.8 90.40
BackProp: Angle-Dep.  99.4 89.30
BackProp: Angle-Dep. 100.0 89.20
BackProp: Angle-Dep.  98.1 87.60
BackProp: Angle-Dep.  96.2 85.70
Nearest Neighbor 100.0 82.70
BackProp: Angle-Ind. (2)  89.4 77.10

 (1) Angle Dependent data ordering.
(2) Angle Independent data ordering.
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TABLE 4 Performance of the FLNN-for-clustering in classifying SONAR returns for various values of the size
Z. The selection of a “good ” value for Z depends on the specific recognition problem.

size Z range % Right on
Training Set

% Right on
Testing Set

0-3.077 100.00 93.27
3.078-3.329 100.00 94.23
3.33-3.763 100.00 90.38

3.764-4.333 100.00 91.35
4.334-4.751 100.00 90.38
4.752-4.802 100.00 89.42
4.803-4.804 100.00 85.58
4.805-5.243 100.00 84.62
5.244-5.363 99.03 87.50
5.364-5.379  99.03 90.38
5.38-5.434 99.03 87.50

5.435-5.636 98.07 85.58
5.637-5.892 98.07 88.46
5.893-5.998 98.07 90.38

5.5  Experiment-5.3
The WINE benchmark was employed from the UCI repository of machine learning databases [24].

The data are 13-dimensional vectors that correspond to various wine constituents determined by chemical
analysis. 178 data vectors are given distributed by 59, 71, and 48 in three wine types. The aim was the
correct classification to one of the three wine types. A training set is not given explicitly.

Table 5 summarizes the classification results by different methods. Results by Regularized
Discriminant Analysis (RDA), Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis
(LDA), and 1-Nearest-Neighbor (1NN) are reported in the documentation that accompanies the WINE
benchmark, however no details on the training and testing sets are given in there. Procedure CLUSTER from
the SAS/STAT package, and Rprop (Resilient Backpropagation) in Table 5 are the “best” among clustering
and classification methods respectively reported in [18] for the WINE data set, where two-thirds of the data
were used for learning.

TABLE 5 Recognition results for the WINE benchmark by various methods including  Rprop (Resilient
Backpropagation), RDA (Regularized Discriminant Analysis), QDA (Quadratic Discriminant
Analysis), LDA (Linear Discriminant Analysis), and 1NN (1-Nearest-Neighbor).

Method % Right on Testing
FLNN for classification, leave-1-out          100.00
Rprop          100.00
RDA          100.00
FLNN for classification, leave-25%-out            99.75 (*)
QDA            99.40
LDA            98.90
FLNN for clustering, leave-25%-out            96.55 (*)
1NN            96.10
FLNN for clustering, leave-1-out            96.10
CLUSTER            84.09

 (*)  Average in 10 random trials
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5.6  Experiment-5.4
The GLASS benchmark was employed from the UCI repository of machine learning databases [24].

The data are 9-dimensional vectors that specify various chemical elements in two types of glass, these are
float processed and non-float processed window glasses. 87 vectors are given for float processed and 76
vectors are given for non-float processed window glasses. The aim was the correct identification of a glass in
one of the two classes. No training set is given explicitly.

Table 6 summarizes the classification results by different methods. Results by Beagle (that is a rule-
based system), Nearest Neighbor, and Discriminant Analysis are reported in the documentation that
accompanies the GLASS data, nevertheless no details are provided regarding the training and testing sets.
Procedure FASTCLUS from the SAS/STAT package, and Rprop (Resilient Backpropagation) are
respectively the “best” among clustering and classification methods reported in [18] for the GLASS
benchmark, where two-thirds of the data were used for learning.

TABLE 6 Recognition results for the GLASS benchmark by various methods including  Rprop (Resilient
Backpropagation), FASTCLUS (a procedure from the SAS/STAT software package), and Beagle (a
rule-based system).

Method % Right on Testing
FLNN for classification, leave-1-out         99.38
FLNN for classification, leave-25%-out         98.88 (*)
Rprop         95.23
FASTCLUS         89.25
Nearest Neighbor         82.82
Beagle         82.20
FLNN for clustering, leave-25%-out        81.84 (*)
FLNN for clustering, leave-1-out        80.98
Discriminant Analysis        73.62

(*)  Average in 10 random trials

5.7  Experiment-5.5
The IONOSPHERE benchmark was employed from the UCI repository of machine learning databases

[24]. The aim was the correct identification of the type of radar returns in one of two classes from a vector of
34 attributes. The classes are “good” radar returns which show evidence of some type of structure in the
ionosphere, and “bad” radar returns which do not. 200 instances are given for training and 151 instances are
given for testing.

Table 7 summarizes the classification results by various methods. Results by linear perceptron, non-
linear perceptron, back-propagation, nearest neighbor, Quinlan’s C4 algorithm, and Aha’s IB3 (an instance
based algorithm) are reported in the documentation that accompanies the IONOSPHERE data set. The
multiresolution algorithm (a variant of the min-max neural net), and Rprop are, respectively, the “best”
among clustering and classification methods reported in [18] for the IONOSPHERE data set, where
approximately two-thirds of the data were employed for learning.
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TABLE 7 Recognition results for the IONOSPHERE benchmark by various methods including  IB3 (a an
instance-based algorithm), Rprop (Resilient Backpropagation), and Quinlan’s C4 algorithm.

Method % Right on Testing
FLNN for classification 100.00
IB3 96.70
Rprop 96.23
FLNN for clustering 96.02
Backpropagation 96.00
C4  94.00
Multiresolution Algorithm 92.87
Nearest Neighbor  92.10
Non-linear Perceptron  92.00
Linear Perceptron 90.70

Here concludes our FLNN processing of benchmark data sets. For all benchmarks it was noted a good
performance of an FLNN scheme which (performance) is attributed, first, to the specific decision function
employed by an FLNN scheme, that is the inclusion measure k(x≤u) of Theorem 1, and second, to the
specific FLNN schemes for clustering and classification presented in section 3.

In general, the FLNN for classification performed better that the FLNN for clustering because of the
presence of a teacher. Regarding the FLNN for classification a leave-1-out experiment performed better than
a leave-25%-out experiment because for a leave-1-out experiment there existed more data in the training set.
Nevertheless with regards to clustering, a leave-25%-out experiment provided consistently with a better
result than a leave-1-out experiment. This led us to the conclusion that the FLNN for clustering generalizes
better when more outliers are removed from the data. Finally note that an FLNN scheme for clustering may
perform better than other classification methods, for instance with the Fisher IRIS benchmark (Table 1).

5.8 Experiment-5.6
We considered the collection  of fuzzy numbers over the domain [0,20]. In line with the analysis in

subsection 5.2  is a lattice. In particular lattice  is complete; its least element O equals 0 on [0,20],
whereas its greatest element I equals 1 on [0,20]. On [0,20] a function-h was defined by the integral of a
membership function over [0,20]. A dual-automorphism θ(.) was not identified; therefore we worked with
intervals [O,FS], where O is the least element in  and FS∈ . Recall that for any dual-automorphism θ(.) it is
θ(O)=I; hence it follows h(I)=20. To calculate the degree of inclusion of an interval [O,FS] to another interval
we need to compute the number h(θ(O),FS)= h(I)+h(FS)= 20+h(FS).

We will illustrate only the FLNN scheme for clustering on synthetic data. Let two fuzzy numbers
u1,u2∈  enter the FLNN ( Fig.5(a) ), where a size threshold Z=3 has been defined. Because Z=3 <
size(u1∨u2)= 4.75, u1 and u2 were not replaced by u1∨u2. The technique of maximal expansions was applied.
Each one of the u1 and u2 was expanded maximally to define fuzzy numbers u*

1 and u*
2, respectively, and the

non-convex fuzzy set shown in Fig.5(b) was formed. Fuzzy numbers u*
1 and u*

2 can be discerned more
clearly in Fig.5(c) and (d), respectively. A new “input” fuzzy number x enters the FLNN. Fig. 5 (c) and (d)
show how the degrees of inclusion σ(x≤u*

1) and σ(x≤u*
2) can be calculated via x∨u*

1 and x∨u*
2, respectively.

Because size(x∨u*
1)>3 and size(x∨u*

2)>3, the fuzzy number x is not incorporated into neither u*
1 nor u*

2 but
it defines a new class of its own. Finally note that more lattices of fuzzy numbers can be considered jointly
along additional dimensions.

On the other hand regarding the FLNN for classification note that it can be applied in principle,
likewise.
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(a) (b)

(c) (d)

Figure 5 (a) Three fuzzy numbers enter the FLNN for clustering in the order u 1, u 2, and x.
(b) Because Z=3<size(u1∨u2)=4.75, u1 and u2 were not replaced by u1∨u2.  Instead, u1 and u2 were

expanded maximally to u *1 and u *2, and
(c) The inclusion measure σ(x≤u*1) is calculated by considering the x ∨u*1.
(d) The inclusion measure σ(x≤u*2) is calculated by considering the x ∨u*2.

6   DISCUSSION & CONCLUSION

The novel fuzzy lattice neural network (FLNN) for clustering and for classification was introduced
with a wide domain due to its applicability on mathematical lattices. The FLNN emerges as a promising
neural architecture for hybrid learning on disparate lattice data. The efficiency of FLNN for pattern
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recognition was demonstrated on five benchmark data sets. In all cases it compared well with other
recognition methods. One additional example demonstrated the applicability of the FLNN beyond the
conventional set RN in one lattice of fuzzy numbers.

The FLNN draws on adaptive resonance theory (ART) [4], [5] and min-max neural network principles
[30], [31]. Nevertheless the FLNN improves on both of these neurocomputing paradigms in a number of
ways such as its applicability on mathematical lattices, the novel technique of maximal-expansions, and its
capacity for treating intervals, which could compensate for the uncertainty of measurements.

We went one step further from demonstrating an efficient connectionist scheme for hybrid learning.
Hence a new perspective to machine learning and decision making, namely the FL-framework, was delineated
and novel formalism was introduced. Sound theoretical results were demonstrated such as the fuzzy degree of
inclusion of a lattice interval into another one which can be calculated by a novel tool-concept, namely
“inclusion measure”.

Finally note that an efficient hardware implementation of the FLNN as shown in Fig.2 should address
accordingly the “representation problem”. That is the question of how a lattice element is stored and
processed by the FLNN. Hence if one lattice element, like for example a fuzzy number, could be represented
as a whole object in an analog form and if the lattice join (∨) and meet (∧) operations could be performed in
one step, then quite an efficient hardware implementation of the FLNN would result in.
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Appendix

Proof of Theorem 1

1. k(u≤O) = 
h(O)

h(u O)∨
 = 

h(O)
h(u)

 = 0, assuming u≠O.

2. k(u≤u) = 
h(u)

h(u u)∨
 = 

h(u)
h(u)

 = 1, ∀u∈ .

3. u ≤ w ⇒ h(x∨w)-h(x∨u) ≤ h(w)-h(u) ⇒ h(x∨w) ≤ h(w) - h(u) + h(x∨u). For w ≠ O it holds
h(u)
h(w)

h(x∨w) ≤ 
h(u)
h(w)

[h(w) - h(u) + h(x∨u)] =  
h(w) h(u)

h(w)
−

h(u) + 
h(u)
h(w)

h(x∨u) ≤

h(w) h(u)
h(w)

−
h(x∨u) + 

h(u)
h(w)

h(x∨u) = h(x∨u) ⇒ 
h(u)

h(x u)∨
 ≤ 

h(w)
h(x w)∨

 ⇒  k(x≤u) ≤ k(x≤w).

Proof of Theorem 2
L1. [a,b]∧[a,b] = [a ∨a,b∧b] = [a,b].
L2. [a,b]∧[c,d] = [a ∨c,b∧d] = [c∨a,d∧b] = [ c,d]∧[a,b].
L3. [a,b]∧([c,d]∧[e,f]) = [ a,b]∧[c∨e,d∧f]  = [a ∨(c∨e),b∧(d∧f)] =
       = [(a ∨c)∨e,(b∧d)∧f]  = [a ∨c,b∧d]∧[e,f] = ([ a,b]∧[c,d])∧[e,f].
       In cases L1-L3 the truth for the joint operation ∨ may be shown dually.
L4. [a,b]∧([a,b]∨[c,d]) = [ a,b]∧[a∧c,b∨d] = [a ∨(a∧c),b∧(b∨d)] = [a,b], and

[a,b]∨([a,b]∧[c,d]) = [ a,b]∨[a∨c,b∧d] = [a ∧(a∨c),b∨(b∧d)] = [a,b].

Proof of Lemma 1
Suffices to show that function h(x1,…,xN)=h1(x1)+…+hN(xN) satisfies (P1) - (P3) of Definition 3.
(P1) Let hi(Oi)=0, for i∈{1,…,N}, where Oi is the least element of lattice i. Then h(O)=h(O1,…,ON)=

h1(O1)+…+hN(ON)=0, where O=(O1,…,ON) is the least element of lattice = 1×…× N.
(P2) Since hi(.),i∈{1,…,N} is a function-h it holds ui<wi ⇒ hi(ui)<hi(wi), where ui,wi∈ i. On the other

hand, condition u=(u1,…,uN)<(w1,…,wN)=w is equivalent to : ui≤wi for all i∈{1,…,N} and ui<wi for at
least one i∈{1,…,N}, hence h(ui)<h(wi) for at least one i∈{1,…,N}. Therefore (u1,…,uN)<(w1,…,wN)
⇒ h1(u1)+…+hN(uN)<h1(w1)+…+hN(wN), that is u<w ⇒ h(u)<h(w), u,w∈ = 1×…× N.

(P3) Let ui≤wi ⇒ h(xi∨wi)-h(xi∨ui)≤h(wi)-h(ui), xi,ui,wi∈ .i, for i∈{1,…,N}, and
let x=(x1,…,xN), u=(u1,…,uN), w=(w1,…,wN), and u=(u1,…,uN)<(w1,…,wN)=w. Then
h(x∨w)-h(x∨u) = h(x1∨w1,…,xN∨wN)-h(x1∨u1,…,xN∨uN) = [h1(x1∨w1)+…+hN(xN∨wN)]-[h1(x1∨u1)+
…+hN(xN∨uN)] = [h1(x1∨w1)-h1(x1∨u1)]+…+[ hN(xN∨wN)-hN(xN∨uN)] ≤ [h(w1)-h(u1)]+…+ [h(wN)-
h(uN)] = [h1(w1)+…+hN(wN)]-[h1(u1)+ …+hN(uN)] = h(w)-h(u).

Proof of Lemma 2
Let {wi} be a connected family of lattice intervals. A maximal expansion of {wi} is defined to be

another family {qi} in the collection F of families that represent class c such that {wi}<{qi}. The intervals in
{qi} are called maximal intervals. We will delineate a method for constructing an ever (strictly) larger
maximal expansion of a family. This construction process will be shown to terminate and a global maximum
will be reached, that is the quotient Q(F) = Q({wi}).

The truth of Lemma 2 will be shown by induction. Let family {wi} contain exactly two connected
intervals, say w1 and w2. In order to progressively construct maximal expansions of family {w1,w2}, assume
it is w1=[w11,…,w1L] and w2=[w21,…,w2L], where w1i and w2i, i=1,…,L are intervals “along” each constituent
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lattice and L is the total number of constituent lattices. The maximal expansion “along” the first constituent
lattice is determined by inserting to the family {w1,w2} the interval [max(w11∧w21),w12∧w22, …,w1L∧w2L],
where max(w11∧w21) is the largest interval in the first constituent lattice which contains w11∧w21 and consists
of elements of w11 or w21. The latter is a trivial problem framed within the first constituent lattice. In the
sequel consider the maximal expansions “along” the rest of the constituent lattices, these are at the most
another L-1 maximal expansions. The set-union me(w1,w2) of the intervals in all maximal expansions “along”
all the constituent lattices has to be the maximum element in F that is the quotient Q(F).

To prove the latter statement consider any interval u which contains only elements of w1∪w2. If u
contains exclusively elements of w1 OR exclusively elements of w2 then it will be u≤w1 or u≤w2 respectively,
hence u≤me(w1,w2). On the other hand, suppose that u=[u1,…,uL] contains exclusive elements of
w1=[w11,…,w1L] AND exclusive elements of w2=[w21,…,w2L], where “exclusive element” means that it
belongs only to one interval and not to the other. This implies that for at least one constituent lattice interval
ui, i=1,…,L it will be w1i∧w2i<ui. But such a strict inequality can be true for at most one constituent lattice
interval; otherwise u would contain elements that do not belong to neither w1 nor w2. Because of the way the
set me(w1,w2) was constructed it follows that u≤me(w1,w2). In conclusion, me(w1,w2) is the maximum family
in {wi}, i∈{1,2}, that is the quotient Q({w1,w2})=me(w1,w2)=Q(F).

Consider now a third interval w3 such that {w3}∪Q({w1,w2}) is connected. Assume the maximal
expansions me(w3,w1) and me(w3,w2). Then any interval u containing only elements of one of w1, w2, w3, w1

and w2, w2 and w3, w3 and w1 will be included in me(w1,w2)∪me(w2,w3)∪me(w3, w1). In addition to that and
in order to consider intervals containing exclusive elements of w1 AND w2 AND w3, if any, the following
maximal expansions will have to be considered : me(w1, me(w2,w3)), me(w2, me(w3,w1)), and me(w3,
me(w1,w2)). Note that one of the latter maximal expansions, say, me(w3, me(w1,w2)) between an interval w3

and the family of intervals me(w1,w2) is calculated by finding the maximal expansions between w3 and all the
intervals in me(w1,w2). Finally the set-union of the intervals in all the resulting maximal expansions is the
quotient Q({w1,w2,w3}). Apparently the problem becomes a combinatorial one and the truth of Lemma 2
follows, in general, by mathematical induction.

The aforementioned algorithm which calculates the quotient Q({wi}) of a connected family {wi} of
intervals, where i belongs to a finite index set, is called algorithm-Q. Note that the order in which the
intervals of {wi} are selected to calculate the maximal expansions is not important. Remark that algorithm-Q
is not computationally efficient due to the exponential explosion of the required operations as a family’s
cardinality increases. Nevertheless, it does find the quotient Q({wi}) and it was proven handy in the
classification examples presented in this paper where families of relatively small cardinality (a few tens of
intervals, at the most) were identified.

Finally note that any interval not connected to the rest intervals in a family does not have to be
considered in any maximal expansion because such an interval is by itself a maximal interval. Likewise any
connected group of intervals, but detached from the rest intervals in a class, is treated by itself when
calculating the maximal expansion of the class the group in question belongs to.
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