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Abstract

This paper describes the recognition of image patterns based on novel representation learning techniques by

considering higher-level (meta-)representations of numerical data in a mathematical lattice. In particular, the interest

here focuses on lattices of (Type-1) Intervals’ Numbers (INs), where an IN represents a distribution of image features

including orthogonal moments. A neural classifier, namely fuzzy lattice reasoning (flr) fuzzy-ARTMAP (FAM), or

flrFAM for short, is described for learning distributions of INs; hence, Type-2 INs emerge. Four benchmark image

pattern recognition applications are demonstrated. The results obtained by the proposed techniques compare well

with the results obtained by alternative methods from the literature. Furthermore, due to the isomorphism between

the lattice of INs and the lattice of fuzzy numbers, the proposed techniques are straightforward applicable to Type-1

and/or Type-2 fuzzy systems. The far-reaching potential for deep learning in big data applications is also discussed.

Index Terms– Computer vision, fuzzy lattice reasoning, intervals’ number, Jaccard similarity measure, type-2

fuzzy set

I. I NTRODUCTION1

Over the past decades, traditional computational intelligence has faced bottlenecks regarding algorithmic2

learning. In particular, one bottleneck has been the (slow) learning speed mainly due to gradient-based3

algorithms employed in theN -dimensional Euclidean spaceRN . Note that due to the conventional4
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measurement procedure [12], traditional computational intelligence techniques are intimately linked to5

the notion of “feature space” such that an object is represented by a point (i.e., a vector of numbers)6

in RN . A vector data representation is popular mainly due to the abundance of analytical/computational7

tools available inRN . Nevertheless, a vector data representation itself is another bottleneck since it cannot8

represent sophisticated (data) semantics.9

In response, on the one hand, novel techniques emerged to meet the (slow) learning speed including10

the extreme learning machines (ELMs) [2], [10]; the latter have reported good generalization performance11

even thousands of times faster than conventional feedforward neural networks. On the other hand, there12

is a sustained interest in learning in non-(geo)metric spaces involving data other than vectorial ones [9].13

Non-vectorial data such as text, images, graphs, ontologies, hierarchies, schemata, etc, have proliferated14

with the proliferation of computers. Therefore, there is a need to deal with non-vectorial (or, equivalently,15

nonnumerical) data representations as well. We remark that in the context of “machine learning” it is16

accepted that the success of machine learning algorithms depends on the data representation [1]; moreover,17

representation learning might be the crux of the matter regardingdeep learning, i.e., induction of more18

abstract – and ultimately more useful – data representations.19

By departing from a vector space, one is confronted with the challenging task of defining (dis)similarity20

between non-vector data [9]. A popular approach for dealing with nonnumerical data is by “ad-hoc”21

transforming them to numerical ones. However, a problem with the aforementioned approach is that it22

introduces data distortions that might result in irreversible performance deterioration. Another approach23

for dealing with nonnumerical data is by developing domain-specific (mathematical) tools. Drawbacks of24

the latter approach include: first, different mathematical tools need to be “ad-hoc” devised in different25

(nonnumerical) data domains and, second, performance cannot, often, be tuned [3], [4]. Yet another26

approach has been proposed lately based on mathematical lattice theory as explained next.27

The premise has been that popular types of data of interest in practical applications are lattice-ordered28

[12]. In conclusion, lattice computing, or LC for short, has been proposed as “an evolving collection of29

tools and mathematical modeling methodologies with the capacity to process lattice-ordered dataper se30

including logic values, numbers, sets, symbols, graphs, etc” [6], [16], [29]. The existence of suitable real31

functions on lattice-ordered data allows for “fine-tuning” as demonstrated in this work. An advantage of32

LC is its capacity to rigorously compute with semantics represented by the lattice order relation. Specific33

examples of the LC approach are described in [13]. Recent trends in LC appear in [5], [14], [16], [27].34
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In the context of LC, of special interest here are Intervals’ Numbers (INs) [13], [16], [21], [22],35

[26]. Recall that an IN is a mathematical object which can be interpreted either probabilistically or36

possibilistically [21]. Similarities as well as differences between Type-1 (respectively, Type-2) INs and37

Type-1 (respectively, Type-2) fuzzy sets have been reported [15]. In the remaining of this work “Type-1”38

will be denoted by “T1”, for short; likewise, “Type-2” will be denoted by “T2”. Our interest here is in39

digital image pattern recognition applications based on INs. We also discuss a potential enhancement of40

ELMs.41

This paper builds on recently published work [16], [22], [24], [26] regarding human face recognition42

based on INs induced from orthogonal moments features. Differences with this work are summarized43

next. First, this work uses a (different) flrFAM classifier based on inclusion measure functions. Second,44

this work also employs 3-D T2 INs such that one 3-D T2 IN is represented by a32×32×4 matrix of real45

numbers. Third, this work employs comparatively additional features as well as additional classifiers in46

additional benchmark image pattern recognition problems. Furthermore, this work presents an improved47

mathematical notation as well as extensions of inclusion measure functions to the space of T2 INs. In48

addition, this work introduces an axiomatically extended Jaccard similarity measure.49

The paper is organized as follows. Section II summarizes a hierarchy of mathematical lattices. Section50

III defines a similarity measure in a general lattice; moreover, it introduces Jaccard similarity measure51

extensions. Section IV outlines an flrFAM classifier. Section V describes the image pattern recognition52

problem as well as a technique for computing 3-D T2 INs. Section VI demonstrates, comparatively, com-53

putational experiments; it also includes a discussion of the results. Section VII concludes by summarizing54

our contribution as well as by describing potential future work.55

II. A H IERARCHY OF COMPLETE LATTICES56

This section introduces useful mathematical tools regarding INs [12], [13], [16], based on lattice theory.57

Definition 2.1: Let (P,v) be a mathematical lattice. A functionσ : P× P→[0, 1] is called inclusion58

measureiff the following two properties hold.59

C1 u v w ⇔ σ(u,w) = 1.60

C2 u v w ⇒ σ(x, u) ≤ σ(x,w).61

We remark that an inclusion measure functionσ : P× P→[0, 1] can be interpreted as a fuzzy order62

relation on lattice(P,v). Hence, the notationsσ(u,w) andσ(u v w) will be used interchangeably.63
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In the following we summarize a hierarchy of complete lattices in seven steps and define certain64

inclusion measure functions.65

Step-1. We assume a totally-ordered, complete lattice(L,≤) of real numbers, whereL ⊆ R = R ∪66

{−∞, +∞} with least and greatest elements denoted byo and i, respectively. The corresponding inf (∧)67

and sup (∨) operators are the min and the max operators, respectively. In lattice(L,≤) we consider both68

a strictly increasing functionv : L → [0,∞), such thatv(o) = 0 as well asv(i) < +∞, and a strictly69

decreasing functionθ : L→ L, such thatθ(o) = i as well asθ(i) = o.70

Step-2. We assume the partially-ordered, complete lattice(I1,⊆) of (T1) intervals in lattice(L,≤). The71

corresponding inf (∩) and sup (
.∪) operations are given by[a, b]∩ [c, d] = [a∨ c, b∧ d] and [a, b]

.∪ [c, d] =72

[a ∧ c, b ∨ d], respectively. We remark that ifa ∨ c 6≤ b ∧ d then, by definition,[a, b] ∩ [c, d] equals the73

empty set (∅). Two inclusion measure functionsσ∩ : I1 × I1 → [0, 1] andσ .∪ : I1 × I1 → [0, 1] are given74

in lattice (I1,⊆) based on a length functionV : I1 → [0,∞) as follows.75

σ∩(x, y) =





1, for x = ∅.
V (x∩y)
V (x)

, for x ⊃ ∅.
(1)

σ .∪(x, y) =





1, for x
.∪ y = ∅.

V (y)

V (x
.∪y)

, for x
.∪ y ⊃ ∅.

(2)

Recall that a length functionV : I1 → [0,∞) is defined as76

V (x = [a1, a2]) =





0, x = ∅
v (θ (a1)) + v (a2) , x ⊃ ∅

,

where functionsv(.) andθ(.) are as in Step-1.77

Step-3. We assume the partially-ordered, complete lattice(I2,⊆) of T2 intervals in lattice(I1,⊆) –78

Recall that a T2 interval is defined as an interval of T1 intervals. The corresponding inf (∩) and sup79

(
.∪) operations are given by[[a1, a2], [b1, b2]] ∩ [[c1, c2], [d1, d2]] = [[a1 ∧ c1, a2 ∨ c2], [b1 ∨ d1, b2 ∧ d2]], and80

[[a1, a2], [b1, b2]]
.∪ [[c1, c2], [d1, d2]] = [[a1 ∨ c1, a2 ∧ c2], [b1 ∧ d1, b2 ∨ d2]], respectively. We remark that if81

[a1∧ c1, a2∨ c2] 6⊆ [b1∨d1, b2∧d2] then, by definition,[[a1, a2], [b1, b2]]∩ [[c1, c2], [d1, d2]] equals the empty82

set (∅). Two inclusion measure functionsσ∩ : I2× I2 → [0, 1] andσ .∪ : I2× I2 → [0, 1] are given in lattice83

(I2,⊆) based on a length functionV : I2 → [0,∞) as follows.84
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σ∩ ([[a1, a2], [b1, b2]] ⊆ [[c1, c2], [d1, d2]]) =





1, b1 > b2.

0, b1 ≤ b2, b1 ∨ d1 > b2 ∧ d2.

0, b1 ≤ b2, b1 ∨ d1 ≤ b2 ∧ d2,

[a1 ∧ c1, a2 ∨ c2] 6⊆ [b1 ∨ d1, b2 ∧ d2].

V ([[a1,a2],[b1,b2]]∩[[c1,c2],[d1,d2]])
V ([[a1,a2],[b1,b2]])

, otherwise.

(3)

σ .∪ ([[a1, a2], [b1, b2]] ⊆ [[c1, c2], [d1, d2]]) =





1, b1 > b2.

0, b1 ≤ b2, d1 > d2.

V ([[c1,c2],[d1,d2]])

V ([[a1,a2],[b1,b2]]
.∪[[c1,c2],[d1,d2]])

, otherwise.

(4)

Recall that a length functionV : I2 → [0,∞) is defined as85

V (x = [[a1, a2], [b1, b2]]) =





0, x = ∅.
v (a1) + v (θ (a2)) + v (θ (b1)) + v (b2) , x ⊃ ∅.

where functionsv(.) andθ(.) are as in Step-1.86

Step-4. We assume the partially-ordered lattice(F1,¹) of (T1) Intervals’ Numbers, or (T1) INs for short.87

Recall that an IN is defined as a functionF : [0, 1] → I1 that satisfies bothh1 ≤ h2 ⇒ Fh1 ⊇ Fh2 and88

∀X ⊆ [0, 1] : ∩h∈XFh = F∨
X . In particular, an “interval (T1) INF ” is defined such thatFh = [a, b],∀h ∈89

[0, 1]; in other words, the aforementioned interval (T1) INF ∈ F1 represents the interval[a, b] ∈ I1. An90

IN is interpreted as an information granule [12]. An INF can equivalently be represented either by a set91

of intervalsFh, h ∈ [0, 1] (an IN’s interval-representation), or by a functionF (x) =
∨

h∈[0,1]

{h : x ∈ Fh}92

(an IN’s membership-function-representation). For F,G ∈ F1 we have93

F ¹ G ⇔ (∀h ∈ [0, 1] : Fh ⊆ Gh) ⇔ (∀x ∈ L : F (x) ≤ G(x)) . (5)

The heighthgt(F ) of an IN F is defined as the supremum of its membership function values, i.e.,94

hgt(F ) =
∨

x∈L
F (x). The corresponding inf (f) and sup (g) operations in lattice(F1,¹) are given by95

(F f G)h = Fh ∩Gh and (FgG)h = Fh

.∪Gh, respectively, forh ∈ [0, 1]. Next, we define two inclusion96

measure functionsσf : F1 × F1 → [0, 1] and σg : F1 × F1 → [0, 1] based on the inclusion measure97

functionsσ∩ : I1 × I1 → [0, 1] andσ .∪ : I1 × I1 → [0, 1], respectively.98
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σf(E,F ) =

1∫

0

σ∩(Eh, Fh)dh. (6)

σg(E,F ) =

1∫

0

σ .∪(Eh, Fh)dh. (7)

Specific advantages of an inclusion measure function in a Fuzzy Inference System (FIS) context have99

been reported [13].100

Step-5. We assume the partially-ordered, complete lattice(F2,¹) of T2 INs – Recall that a T2 IN is101

defined as an interval of T1 INs; that is, a T2 IN by definition equals[U,W ]
.
= {X ∈ F1: U ¹ X ¹ W},102

whereU is called lower IN, andW is called upper IN (of the T2 IN[U,W ]). In the latter sense we say103

that X is encoded in[U,W ]. The corresponding inf (f) and sup (g) operations in lattice(F2,¹) are104

given by(F fG)h = Fh∩Gh and(FgG)h = Fh

.∪Gh, respectively. We can define two inclusion measure105

functionsσf : F2 × F2 → [0, 1] and σg : F2 × F2 → [0, 1], based on the inclusion measure functions106

σ∩ : I2 × I2 → [0, 1] andσ .∪ : I2 × I2 → [0, 1], using equations (6) and (7), respectively. The computation107

of the join and meet operations in the lattice(F2,¹) is demonstrated next.108

Consider the two T2 INs[f, F ] and[g, G] shown in Fig.1(a), wheref, F, g, G ∈ F1 such thatf ¹ F and109

g ¹ G. The (join) T2 IN [f, F ]g[g, G] = [f f g, FgG] is shown in Fig.1(b), where(f f g)h = ∅, ∀h ∈110

(h1, 1]. Fig.1(c) shows the (meet) T2 IN[f, F ] f [g,G] = [fgg, F f G], where(fgg)h = ∅,∀h ∈ (h3, 1],111

moreover(F f G)h = ∅,∀h ∈ (h4, 1].112

Step-6. The T1/T2 INs above have 2-dimensional (2-D) function representations, which can be extended113

to 3-dimensional (3-D) as follows. A 3-D T1 (respectively, T2) IN is defined as a functionF : [0, 1] → F,114

whereF = F1 (respectively,F = F2), which satisfiesz1 ≤ z2 ⇒ Fz1 º Fz2. In other words, a 3-D T1115

(respectively, T2) INF has 3-dimensional function representationFz such that for constantz = z0 the116

Fz0, namely zSlice, is a 2-D T1 (respectively, T2) IN. A 3-D T2 IN example is plotted below. The symbol117

Fg denotes either the set of 3-D T1 INs or the set of 3-D T2 INs. It turns out that(Fg,¹) is a lattice118

whose order isE ¹ F ⇔ Ez ¹ Fz, ∀z ∈ [0, 1]. An inclusion measure functionσFg : Fg × Fg → [0, 1] is119

defined as120

σFg(E, F ) =

1∫

0

1∫

0

σI((Ez)h, (Fz)h)dhdz, (8)
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Fig. 1. (a) T2 INs[f, F ] and[g, G], wheref, F, g, G ∈ F1 such thatf ¹ F andg ¹ G. (b) The (join) T2 IN[f, F ]g[g, G] = [f fg, FgG].
(c) The (meet) T2 IN[f, F ] f [g, G] = [fgg, F f G].

whereσI(., .) may be given by any one of the equations (1), (2), (3) and (4).121

Step-7. We assumeN -tuples of T1/T2 INs, where oneN -tuple T1/T2 IN will be indicated by a boldface122

symbol, e.g.X = (X1, . . . , XN). Given non-negative numbersλ1, . . . , λN such thatλ1 + · · ·+λN = 1, an123

inclusion measure is defined in the complete lattice ofN -tuple INs by the following convex combination124

σc((X1, . . . , XN), (Y1, . . . , YN)) =
N∑

i=1

λiσi(Xi, Yi). (9)

III. S IMILARITY MEASURES ONLATTICES125

Various definitions for (dis)similarity have been proposed in the literature in various data domains [3],126

[4], [25] without consensus. Motivated by a popular definition of similarity between fuzzy sets [25], we127

propose the following definition in a mathematical lattice.128

Definition 3.1: Let (P,v) be a mathematical lattice. A functions : P× P→[0, 1] is calledsimilarity129

measureiff the following three properties hold.130
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S1 u = w ⇔ s(u,w) = 1.131

S2 s(u,w) = s(w, u).132

S3 u v v v w ⇒ s(u, v) ≥ s(u,w) ≤ s(v, w).133

Let (P,v) = (P1,v1) × · · · × (PN ,vN) = (P1 × · · · × PN ,v1 × · · ·× vN) be the Cartesian134

product of N lattices; let functionsi : Pi × Pi → [0, 1] be a similarity measure on lattice(Pi,v),135

i ∈ {1, . . . , N}; let λ1, . . . , λN be non-negative numbers such thatλ1 + · · · + λN = 1. Then, as it136

will formally be proven elsewhere, the functions : P × P → [0, 1] given by the convex combination137

s((U1, . . . , UN), (W1, . . . , WN)) = λ1s1(U1,W1) + · · ·+ λNsN(UN ,WN) is a similarity measure.138

A. Jaccard Similarity Measure Extensions139

Even though a number of similarity measures from the literature do not satisfy all the properties of140

Definition 3.1, the popularJaccard similarity measure(or, equivalently, Jaccard coefficient) given by|A∩B|
|A∪B|141

does satisfy them all. Next, we propose a parametric extension of the Jaccard similarity measure.142

Let (I,⊆) be the complete lattice of either T1 intervals (i.e.,I = I1) or T2 intervals (i.e.,I = I2), and143

let V : I→ [0,∞) be a length function onI. Then, as it will formally be proven elsewhere, the function144

JI : I× I→[0, 1] given by JI(A,B) = V (A∩B)

V (A
.∪B)

, whereA 6= ∅, is a similarity measure, namely extended145

Jaccard similarity measure. For non-overlapping intervalsA andB, JI(A,B) equals zero and vice versa.146

We extendJI(., .) to the complete lattice(F,¹) of T1/T2 INs.147

Let (F,¹) be the complete lattice of either T1 INs (i.e.,F = F1) or T2 INs (i.e.,F = F2), and let148

V : I→ [0,∞) be a length function on the corresponding lattice(I,⊆) of intervals. Then, as it will formally149

be proven elsewhere for INs with continuous membership functions, the functionJF : F× F→[0, 1] given150

by JF(A,B) =
1∫
0

JI(Ah, Bh)dh is a similarity measure.151

Similarity measures can further be extended to 3-D T2 INs:152

JFg(E, F ) =

1∫

0

1∫

0

JI((Ez)h, (Fz)h)dhdz. (10)

We remark thatJI((Ez)h, (Fz)h) = V ((Ez)h∩(Fz)h)
V ((Ez)h)

V ((Ez)h)

V ((Ez)h
.∪(Fz)h)

= σ∩((Ez)h, (Fz)h)σ .∪((Fz)h, (Ez)h).153

IV. A N INTERACTIVE FUZZY LATTICE REASONING (FLR) NEURAL CLASSIFIER154

The flrFAM classifier is a single hidden layer neural architecture, inspired from the biologically mo-155

tivated adaptive resonance theory [16] based on reasoning techniques [13]. This section proposes an156
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enhancement of the flrFAM classifier in [16]. The latter was described by four algorithms: for clustering,157

for training (Structure Identification subphase), for training (Parameter Optimization subphase) and for158

testing. The difference between the algorithms employed here and the algorithms in [16] is that a neuron159

activation functionα : FN
g ×FN

g → [0, 1] here may be either a similarity measure or an inclusion measure160

function rather than the inclusion measure functionσ : IN1 × IN1 → [0, 1] in [16]. Hence, here we compute161

with distributions defined on a neighborhood rather than with the neighborhood alone.162

Given X = (X1, . . . , XN),W = (W1, . . . , WN) ∈ FN
g , an activation functionα : FN

g × FN
g → [0, 1]163

is computed by the convex combinationα(X,W) = λ1α1(X1,W1) + · · · + λNαN(XN ,WN), where164

αi : Fg × Fg → [0, 1], i ∈ {1, . . . , N}, is an activation function in the lattice(Fg,¹). In particular, first,165

the activation functionαi can be an inclusion measure given by equation (8); therefore, in this case,166

the activation functionσFg(X,W) filters h-level-wise an input datumX ∈ FN
g “bottom-up”. Second,167

the activation functionαi can be the extended Jaccard similarity measure given by equation (10); hence,168

in this case, the activation functionJFg(X,W) simultaneously filtersh-level-wise both an input datum169

X ∈ FN
g “bottom-up” and it filters a class codeW ∈ FN

g “top-down” as indicated in the remark following170

equation (10).171

The flrFAM algorithm here was inspired from Active Learning [19]. Nevertheless, active learning172

requires human intervention. We improved on active learning by assuming a “bottom-up”-“top-down”173

interplay between the training data and the class (learned) codes as it was explained above. In particular,174

a functionσFg(WJ,Xi) always filtersh-level-wiseWJ ∈ FN
g “top-down”. In conclusion,WJgXi may175

conditionally replaceWJ depending on the (diagonal) size ofWJgXi [12]. The capacity of the flrFAM176

classifier for generalization is demonstrated by the success rateStst on the testing dataset. AnN -tuple of177

INs (granule) induced by the flrFAM classifier is interpreted as decision-making knowledge (i.e., a rule)178

induced from the data [15], [16], [21], [22].179

V. THE IMAGE PATTERN RECOGNITION PROBLEM AND ITS DATA REPRESENTATION180

This section demonstrates the capacity of our proposed techniques in image pattern recognition applica-181

tions. The latter were selected due to the vast number of images generated globally, especially from mobile182

devices; hence, automated image learning as well as image pattern recognition is motivated, interesting183

as well as timely.184
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A. Data Preprocessing185

We carried out the following three information processing tasks: #1. Image Acquisition, #2. Pattern186

Localization, and #3. Feature Extraction. Note that, typically, an image is represented in the literature as187

anN -dimensional point in the Euclidean spaceRN by extracting features such as wavelet features, facial188

attributes, Gabor features, Zernike moments, etc [1], [16].189

This paper retains a basic Feature Extraction employed elsewhere [16], [22], [24], [26]; that is, a190

population of numerical features is induced from an image to be learned/recognized. In particular, we191

induced orthogonal moments as well as other features due to their practical effectiveness [16], [22],192

[26]. Then, a distribution of features is “meta-represented” by an IN [24] induced by algorithm CALCIN193

[13]. A recent work [27] has demonstrated specific advantages for an IN meta-representation including a194

significant dimensionality reduction as well as a superior pattern recognition performance.195

B. Image Pattern Representation196

Recall that a population of features, which are induced from an image pattern, can be represented by a197

(T1) IN. This section investigates the representation of a class by a 3-D T1 IN (or a 3-D T2 IN) toward198

representing the distribution of T1 INs used for inducing it.199

For example, consider the seventeen trivial T2 INs[Ci, Ci], i ∈ {1, . . . , 17} in Fig.2(a). Fig.2(b) displays200

the corresponding lattice join
∨
i∈I

[Ci, Ci] = [f
i∈I

Ci, g
i∈I

Ci], I = {1, . . . , 17}. Note that any inclusion measure201

function σ : F2 × F2 → [0, 1] results inσ([Ci, Ci], [ f
j∈I

Cj, g
j∈I

Cj]) = 1, i ∈ I = {1, . . . , 17} according202

to Definition 2.1. The lattice join
∨
i∈I

[Ci, Ci] = [ f
j∈I

Cj, g
j∈I

Cj] is a (2-D) T2 IN whose lower membership203

function f
j∈I

Cj has heighthgt( f
j∈I

Cj) = 0.6471 and whose upper membership functiong
j∈I

Cj has height204

hgt( g
j∈I

Cj) = 1, as shown in Fig.2(b).205

A disadvantage of a 2-D T2 IN is that it does not retain any information regarding the distribution of206

INs used to induce it. We will try to turn the aforementioned disadvantage into an advantage by inducing207

an “h-secondary membership functions” as explained in Fig.3(a), where such functions will be induced208

at h = 0.135 and h = 1, respectively. Fig.3(b) displays twoh-secondary membership functions along209

the line throughh = 0.135, with supports[2.65, 3.86] and [6.3, 7.3], respectively; furthermore, Fig.3(c)210

displays oneh-secondary membership function along the line throughh = 1, with support[4.6, 5.9].211

Fig.4(a) displays the 3-D surface, which is induced from all theh-secondary membership functions,212

truncated by a plane throughz = 0.3 parallel to thex−h plane. By definition, a zSlice is the intersection213
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Fig. 2. (a) Seventeen trivial T2 INs[Ci, Ci], i ∈ {1, . . . , 17} are displayed in their membership-function-representation. (b) The lattice join∨
i∈I

[Ci, Ci] = [ f
i∈I

Ci, g
i∈I

Ci], whereI = {1, . . . , 17}.

of the latter surface with a plane throughz ∈ [0, 1] parallel to thex− h plane. By construction, a zSlice214

includes two functions, namelyprimary membership functions, defined by the ends of the supports of215

all the h-secondary membership functions on a zSlice. For example, the zSlice forz = 0 of the surface216

calculated from the INs in Fig.2(a) is the (2-D) T2 IN shown in Fig.2(b). Fig.4(b) displays the two217

primary membership functions on the zSlice shown in Fig.4(a) forz = 0.3. The (truncated) surface218

shown in Fig.4(a) is a 3-D T2 IN; whereas, the “T2 INs” shown in Fig.1 are 2-D T2 INs. Recall that219

the previously defined “(T1) INs” are alternatively called 2-D (T1) INs. Likewise, 3-D (T1) INs can be220

induced by computingh-secondary membership functions as detailed above.221
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Fig. 3. (a)h-secondary membership functions will be induced ath = 0.135 and h = 1, respectively. (b) Twoh-secondary membership
functions ath = 0.135 with supports[2.65, 3.86] and [6.3, 7.3], respectively. (c) Oneh-secondary membership function ath = 1 with
support[4.6, 5.9].

VI. EXPERIMENTS AND RESULTS222

In this section we provide experimental evidence regarding the capacity of our proposed techniques in223

image pattern recognition applications. More specifically, we have dealt with image pattern recognition224

as a classification problem as explained below.225
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Fig. 4. (a) A 3-dimensional surface computed from theh-secondary membership functions of the INs in Fig.2(a), truncated (the surface)
by a plane throughz = 0.3 parallel to thex− h plane. (b) The two primary membership functions on the zSlice of Fig.4(a) (forz = 0.3).

A. Benchmark Datasets and Feature Extraction226

We have employed the following four benchmark datasets.227

1) YALE dataset [30]: It regards face recognition. It contains165 (8-bit) images (320×243 pixels each)228

of 15 individuals (i.e., classes). More specifically, there are11 images per subject, one per different facial229

expression or configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-light, sad,230

sleepy, surprised, and wink. In order to remove irrelevant image content, the images were preprocessed231

by the Viola-Jones face detector followed by ellipse masking as described in [16]. The resulting localized232

faces were cropped to a fixed size of32× 32 pixels each.233

2) TERRAVIC dataset [11]: It regards infrared face recognition. It contains24, 508 images of20 persons234

under different conditions such as front, left and right poses, indoor/outdoor environments with glasses235

and/or hat accessories; each image has an8-bit, 320× 240 pixels size. We used70 images per person for236

the first10 persons (i.e., classes) as described in [26].237

3) JAFFE dataset [18]: It regards facial expression recognition. It contains213 frontal images (256×256238

pixels each) of10 different persons corresponding to7 common human facial expressions (i.e., classes),239

namely neutral (30), angry (30), disgusted (29), fear (32), happy (31), sad (31), and surprise (30) regarding240

Japanese female subjects, where a number within parentheses indicates the number of images available241

per facial expression. In order to remove irrelevant image content, the images were preprocessed as in242

the YALE dataset above. In conclusion, face images of160× 160 pixels each were produced.243

4) TRIESCH I dataset [28]: It regards hand posture recognition. It contains8-bit images (128 × 128244
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TABLE 1

CHARACTERISTICS OF THE IMAGE DATASETS USED IN10-FOLD CROSS-VALIDATION EXPERIMENTS.

FEATURE TYPE #INSTANCES #TRAINING DATA #TESTING DATA #CLASSES
DATASET NAME (#FEATURES) PER FOLD PER FOLD
YALE LBP (59) 165 149 16 15
TERRAVIC ZMs (16) 700 630 70 10
JAFFE dHMs (16) 213 192 21 7
TRIESCH I HOG ( 9) 240 216 24 10

pixels each) of10 hand postures (i.e., classes) regarding24 persons in dark background.245

It is understood that none of the above mentioned datasets is “big (data)”; nevertheless, any of the246

above datasets is big enough for the objectives here, where a large number of experiments were carried247

out toward comparing various classifiers.248

We extracted six types of features per image. More specifically, we computed four different families249

of orthogonal moments including Zernike (ZMs), Gaussian-Hermite (GHMs), Tchebichef (TMs) and dual250

Hahn (dHMs) moments [23]; the order of each moment family was selected such that a16-dimensional251

vector was produced. Another two types of features, popular in face recognition applications, were252

extracted, namely the Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) [24].253

Regarding LBP, uniform patterns of(R, N) = (1, 8) regions were computed. The vector length for LBP254

and HOG was59 and9, respectively.255

Table 1 summarizes the characteristics of the image datasets used in our 10-fold cross-validation256

experiments. More specifically, the first column in Table 1 indicates the type of (image) feature that257

produced the best classification results for a dataset as well as the corresponding number of input features.258

For instance, for the YALE dataset, the best classification results were obtained for the 59 LBP input259

features, etc. The remaining columns in Table 1 display the number of instances (i.e., the total number260

of images used), the number of training data (per fold), the number of testing data (per fold), and the261

number of classes.262

B. Experimental Setup263

We employed ten traditional classifiers including three versions of the Minimum Distance Classifier264

(MDC) corresponding to the Chi Square (χ2), Euclidean and Manhattan distances, respectively [26] –265

An MDC classifier here engaged “mean feature vectors” [24]. In addition, we employed a kNN (k=1), a266

Näıve-Bayes, an RBF ELM, a three-layer feedforward backpropagation Neural Network, and three types267

of Support Vector Machines (SVMs) including linear, polynomial (2nd order) and RBF, respectively – The268
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Neural Network dimensions were(no.features) × (no.features) × (no.classes). Both RBF SVM and269

RBF ELM [7] used a pair(C, γ) of tunable parameters computed optimally by the grid search method [8].270

In conclusion, the pairs(C, γ) = (25, 2−10) and(C, γ) = (212, 24) were calculated and used for RBF SVM271

and RBF ELM, respectively, for all datasets. We also employed flrFAM classifiers as explained below.272

An flrFAM classifier processed INs induced from vectors of features, whereas an alternative classifier273

processed the corresponding vectors of features instead.274

An flrFAM classifier represented a class by oneN -tuple IN. In particular, we used two different class275

representations, namely per Feature (pF) and per Feature Vector (pFV), respectively [24] as follows. First,276

regarding pF, a T1 IN was induced from all values of a feature (i.e., dimension) in a class; second,277

regarding pFV, a T2 IN was induced from all T1 INs in a class, where one T1 IN was representing278

an image. Hence, the pF represented a class by one(no.features)-tuple of T1 INs, whereas the pFV279

represented a class by one T2 IN. Note that a T1 IN was either an interval in 2-D (thus resulting in a280

class representation by a hyperbox) of it could be a 3-D T1 IN; the former (hyperbox) IN representation281

was pursued by a “2-D T1 (interval) flrFAM” architecture, whereas the latter was pursued by a “3-D T1282

flrFAM” architecture. Likewise, a T2 IN could be either a “2-D T2 (interval) IN” representation, pursued283

by a “2-D T2 (interval) flrFAM” architecture, or a “3-D T2 IN” one pursued by a “3-D T2 flrFAM”284

architecture. In all cases, we employed the IN interval-representation withL = 32 [13]. The activation285

function employed by an flrFAM classifier was based on eitherσ .∪(., .) or JI(., .).286

For every classifier, on every dataset, we carried out a “10-fold cross-validation” computational exper-287

iment. More specifically, a dataset was partitioned in ten parts; nine-tenths of the dataset were used for288

training, whereas the remaining one-tenth was used for testing a classifier. In turn, all tenths of the dataset289

were used for testing. Care was taken so that all classes were represented fairly in both the training data290

and the testing data. The same training/testing data were used by all classifiers. As generalization rate291

we define the percentage (%) of the testing dataset classified correctly. For a “10-fold cross-validation”292

computational experiment we recorded both the minimum and the maximum generalization rates in10293

computational experiments as well as the corresponding average (ave) and standard deviation (std).294

Regarding an flrFAM classifier we employed 10% of the training data for validation toward optimal295

parameter estimation [16]. More specifically, parameter optimization was pursued by a Genetic Algorithm296

(GA) such that the phenotype of an individual (flrFAM classifier) consisted of specific values for the297

two parametersλ ∈ R+
0 and µ ∈ R of two functions, i.e. the (strictly increasing) sigmoid function298
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TABLE 2

YALE DATASET: PERCENTAGE(%) GENERALIZATION RATE STATISTICS IN10 COMPUTATIONAL EXPERIMENTS BY SEVERAL

CLASSIFIERS(LBP FEATURE)

CLASSIFIER NAME [ MIN, MAX] AVE (STD)
01. MDC (Chisquare) [ 40.00, 80.00] 56.67 (11.44)
02. MDC (Euclidean) [ 26.67, 73.33] 42.67 (12.65)
03. MDC (Manhattan) [ 33.33, 80.00] 53.33 (12.57)
04. kNN (k=1) [ 20.00, 53.33] 38.67 (10.80)
05. Näıve-Bayes [ 33.33, 60.00] 46.00 ( 7.98)
06. RBF ELM [ 40.00, 73.33] 60.67 ( 9.66)
07. Neural Network (backprop) [ 6.67, 20.00] 12.00 ( 4.22)
08. Linear SVM [ 20.00, 53.33] 36.67 (10.06)
09. Polynomial SVM [ 20.00, 33.33] 25.33 ( 5.26)
10. RBF SVM [ 33.33, 66.67] 48.00 (10.80)
11. 2-D T1 flrFAM (σ .∪) [ 20.00, 46.67] 35.33 ( 9.45)
12. 2-D T1 flrFAM (JI) [ 6.67, 33.33] 22.00 ( 7.73)
13. 3-D T1 flrFAM (σ .∪) [ 40.00, 73.33] 58.00 (11.78)
14. 3-D T1 flrFAM (JI) [ 40.00, 73.33] 53.33 (12.96)

vs(x; λ, µ) = 1/
(
1 + e−λ(x−µ)

)
and the (strictly decreasing) functionθ(x; µ) = 2µ − x as described in299

Step-1 of section II; an additional parameter was the baseline vigilanceρa [16]. Hence, a total number300

of three parameters per feature were binary-encoded in the chromosome of an individual. For both an301

inclusion measure and a Jaccard coefficient we used a convex combination withλ1 = · · · = λN = 1
N

.302

To avoid a combinatorial explosion of the number of Tables with results presented in this paper, we303

selected the “best” feature type per benchmark dataset as follows. For each benchmark dataset, for each304

of the aforementioned ten traditional classifiers, we carried out a “10-fold cross-validation” computational305

experiment per feature type. Hence, for each benchmark dataset we recorded six Tables (i.e., one Table per306

feature type) including the generalization rate statistics of the ten traditional classifiers. Then, we selected307

the “best” feature type per benchmark dataset, that is the one that produced the highest overall classification308

results on the testing data. The “best” statistics of the aforementioned ten traditional classifiers, for the309

YALE dataset, are displayed in Table 2.310

C. Computational Experiments and Results311

We normalized the data by transforming them linearly to the unit interval[0, 1]. In the following, for312

lack of space, we display detailed generalization rate statistics regarding solely the YALE dataset.313

1) Experiments with the YALE dataset:The LBP was the best feature selected as explained above. Table314

2 displays the generalization rate statistics of the classifiers employed in this rather difficult classification315

problem. The 3-D T1 flrFAM classifiers on the average performed as good as or better than most classifiers,316

whereas the 2-D T1 (interval) flrFAM classifiers on the average performed around medium. Typically, an317

inclusion measureσ .∪ produced better results than a Jaccard similarity measureJI.318
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TABLE 3

AREA UNDER THE CURVE (AUC) STATISTICS “( AVERAGE, STANDARD DEVIATION)” IN 10 COMPUTATIONAL EXPERIMENTS BY

SEVERAL CLASSIFIERS ON ALL DATASETS

DATASET NAME
CLASSIFER NAME YALE TERRAVIC JAFFE TRIESCH I
01. MDC (Chisquare) 0.73 (0.11) 0.99 (0.02) 0.68 (0.13) 0.95 (0.03)
02. MDC (Euclidean) 0.72 (0.11) 1.00 (0.01) 0.64 (0.12) 0.95 (0.03)
03. MDC (Manhattan) 0.73 (0.11) 1.00 (0.01) 0.65 (0.10) 0.94 (0.03)
04. kNN (k=1) 0.72 (0.10) 1.00 (0.00) 0.87 (0.07) 0.94 (0.03)
05. Näıve-Bayes 0.78 (0.12) 1.00 (0.00) 0.81 (0.10) 0.97 (0.03)
06. RBF ELM 0.90 (0.08) 0.83 (0.24) 0.80 (0.18) 0.92 (0.11)
07. Neural Network (backprop) 0.54 (0.09) 0.93 (0.05) 0.67 (0.09) 0.70 (0.09)
08. Linear SVM 0.86 (0.13) 1.00 (0.00) 0.84 (0.07) 0.88 (0.06)
09. Polynomial SVM 0.76 (0.16) 1.00 (0.00) 0.86 (0.04) 0.88 (0.07)
10. RBF SVM 0.87 (0.10) 0.95 (0.08) 0.76 (0.17) 0.92 (0.09)
11. 2-D T1 flrFAM (σ .∪) 0.72 (0.16) 1.00 (0.01) 0.71 (0.10) 0.95 (0.03)
12. 2-D T1 flrFAM (JI) 0.72 (0.17) 1.00 (0.01) 0.73 (0.13) 0.95 (0.03)
13. 3-D T1 flrFAM (σ .∪) 0.75 (0.15) 0.99 (0.04) 0.67 (0.12) 0.96 (0.03)
14. 3-D T1 flrFAM (JI) 0.75 (0.15) 0.99 (0.03) 0.65 (0.12) 0.96 (0.02)

2) Experiments with the TERRAVIC dataset:The ZMs was the best feature selected as explained above.319

Any T1 flrFAM (with σ .∪) classifier always gave the maximum generalization rate of100%. Moreover,320

a 3-D T1 flrFAM classifier (withJI) performed clearly better than the corresponding 2-D T1 (interval)321

flrFAM classifier (withJI).322

3) Experiments with the JAFFE dataset:The dHMs was the best feature selected as explained above.323

All flrFAM classifiers performed rather poorly. An inclusion measureσ .∪ typically produced better results324

than a Jaccard similarity measureJI.325

4) Experiments with the TRIESCH I dataset:The HOG was the best feature selected as explained326

above. An flrFAM classifier on the average performed as good as or better than most classifiers. For327

the 2-D T1 (interval) flrFAM classifier, an inclusion measureσ .∪ on the average produced clearly larger328

generalization rates than a Jaccard similarity measureJI; it was vice versa for the 3-D T1 flrFAM classifier.329

All computational experiments, for all benchmark datasets, with a T2 flrFAM classifier produced a330

generalization rate around5% − 15% less than the generalization rate of its corresponding T1 flrFAM331

classifier. On the average, a 3-D T2 flrFAM classifier clearly outperformed its 2-D T2 (interval) counterpart.332

In order to show the significance of the results for each classifier we carried out Receiver Operating333

Characteristics (ROC) curve analysis [16]. For lack of space, we only display the corresponding Area334

Under Curve (AUC) statistics (i.e., average and standard deviation) in Table 3 for all classifiers and335

all datasets in “10-fold cross-validation” computational experiments – Recall that the closer a classifier’s336

AUC is to number1 the better the classifier performs. Table 3 confirms comparatively the high confidence337

regarding the good performance of a 3-D T1 flrFAM classifier for all datasets but the JAFFE dataset.338
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D. Discussion of the Results339

In this section we studied experimentally the performance of two different image representations,340

namely pF and pFV, in image pattern classification applications using a number of flrFAM classifiers341

applicable on INs induced from vectors of (image) features; alternatively, traditional classifiers were342

applied comparatively on the aforementioned vectors of features. In the context of this work, we did343

implement all the classifiers in order to compare them fairly on the same data for training/testing.344

The pF image representation engaged one(no.features)-tuple of T1 INs per class, whereas the345

pFV image representation engaged one T2 IN per class. A pF (respectively, pFV) image representation346

was processed by a T1 (respectively, T2) flrFAM classifier. For any flrFAM classifier we tested all347

combinations of (2-D interval)/3-D INs withσ .∪/JI functions. On the one hand, T1 flrFAM classifiers348

typically demonstrated a competitive image pattern recognition capacity compared to traditional classifiers.349

On the other hand, the T2 flrFAM classifiers on the average performed clearly (5%− 15%) less than their350

corresponding T1 counterparts thus confirming previous work [24]; that is, this work confirmed that the pF351

is a better image representation than the pFV representation. Our explanation is that the pFV representation352

mingles features from different data dimensions thus deteriorating their discriminative power.353

Based on recorded experimental evidence, we confirmed that a 3-D T1 flrFAM classifier clearly354

outperformed its 2-D T1 (interval) counterpart. Our explanation is that a 3-D T1 IN represents more355

data statistics. More specifically, given that an IN represents a distribution, a 3-D T1 IN represents a356

distribution of (image features) distributions. Likewise, for the same reason, the (recorded) generalization357

rates for a 3-D T2 flrFAM classifier were clearly better than for its 2-D T2 (interval) counterpart.358

An inclusion measureσ .∪(., .), in general, produced better generalization rates than a Jaccard similarity359

measureJI(., .). The latter was attributed to the fact thatJI(A,B) equals zero for nonoverlapping intervals360

A and B. In additional experiments we confirmed that the inclusion measureσ∩(A,B) produced very361

similar results to the ones reported above for theJI(A,B), for the same reason.362

The average generalization rate of a 3-D T1 flrFAM classifier was not (statistically) significantly different363

from the corresponding average of the best of ten traditional classifiers in three benchmark image pattern364

recognition problems, namely YALE, TERRAVIC and TRIESCH I. Only for the JAFFE benchmark, the365

performance of any 3-D T1 flrFAM classifier clearly lagged behind the performance of three traditional366

classifiers, namely kNN (k=1), RBF ELM and (polynomial) SVM. We point out that our work in [16]367

has reported a competitive performance of an flrFAM classifier with the performance of a kNN (k=1)368
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classifier due to two reasons: first, a flrFAM classifier in [16] employed6-tuple INs induced from six369

different types of features (moments), concatenated and, second, a different FLR classifier in [16] induced370

more than one (N -tuple of INs) granule per class; whereas, here we used only one type of features as371

well as only one (N -tuple of INs) granule per class.372

There is one more reason for characterizing “remarkable” the capacity of a 3-D T1 flrFAM classifier373

here for generalization. More specifically, recall that no flrFAM classifier was used for selecting the374

“best” feature type per benchmark dataset. Hence, the generalization rate of an flrFAM classifier here375

truly demonstrates its capacity for generalization.376

Regarding the learning (time) complexity note that an flrFAM scheme involves both IN induction and377

parameter optimization. More specifically, first, IN induction typically requires negligible time. Second,378

parameter optimization typically requires substantial time due to the application of stochastic optimization379

techniques including a GA. However, note that previous work has demonstrated that GA application can380

be substantially accelerated by a parallel GA implementation [22].381

Compared to the aforementioned traditional classifiers, an flrFAM scheme here was only faster than the382

(backprop) neural network. Nevertheless, recall that the performance of some traditional classifiers such383

as the RBF ELM/SVM depends critically on certain parameters (e.g., polynomial order,C, γ, etc) that384

can be tuned by grid search techniques [8]. We experimentally confirmed that a grid search applied to an385

flrFAM scheme here, results in a learning (time) complexity comparable to the learning (time) complexity386

of a traditional classifier. We also remark that an flrFAM testing (time) complexity is comparable to the387

testing (time) complexity of a traditional classifier.388

VII. C ONCLUSION389

This work has introduced a mathematically sound extension of the flrFAM neural classifier to the390

(non-Euclidean) space of T1/T2 INs based on novel similarity/inclusion measure functions. A new type391

of learning was pursued, that is learning distributions of (image features) distributions. Comparative392

computational experiments regarding image pattern recognition have demonstrated the viability of the393

proposed techniques. The good generalizability of the proposed classification schemes was attributed to394

the synergy of INs, which can represent all order data statistics [14], with image feature descriptors.395

The T1/T2N -tuple of INs (granules) induced by an flrFAM classifier were interpreted as rules that396

may represent large numbers of data. In this sense, an flrFAM classifier could be valuable for data397

mining abstract representations in big data and deep learning applications [1]. Apart from interpreted398
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probabilistically, an IN can also be interpreted possibilistically [21]. Hence, based on the isomorphism399

between T1/T2 INs and T1/T2 fuzzy sets, the mathematical tools proposed here are straightforward400

applicable to T2 fuzzy sets. The latter is significant due to the fact that within the fuzzy sets and systems401

community its “(linguistic) T2 component” currently clearly leads the way [20].402

An advantageous ELM extension from space(RN ,≤) to a cone(FN ,¹) of INs is feasible based on403

the fact that the algebraic operations of ELMs [2], [10] can be carried out in cones of T1/T2 INs [17].404

Therefore, potential future work includes an extension of ELMs to a cone of INs with substantial expected405

benefits regarding the data processing speed. More specifically, even though an IN-based scheme (such406

as an flrFAM) processes its data (INs) slower than an ELM processes its own data (vectors), an IN-based407

scheme can improve the overall data processing speed by representing thousands/millions (or more) data408

by a single IN. In the aforementioned manner, an ELM extension to a cone of INs is promising toward409

further improving the data processing speed in certain big data applications.410

Future work extensions of the flrFAM classifier will seek to optimize the number of (N -tuple of INs)411

granules induced per class as well as the induction of INs.412
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