Learning Distributions of Image Features

by Interactive Fuzzy Lattice Reasoning in Pattern Recognition Applications

Vassilis G. Kaburlasos, Member, IEEE, and George A. Papakostas
Human-Machines Interaction (HMI) Lab, Department of Computer and Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, 65404 Agios
Loukas, Kavala, Greece

Abstract

This paper describes the recognition of image patterns based on novel representation learning techniques by considering higher-level (meta-)representations of numerical data in a mathematical lattice. In particular, the interest here focuses on lattices of (Type-1) Intervals' Numbers (INs), where an IN represents a distribution of image features including orthogonal moments. A neural classifier, namely fuzzy lattice reasoning (flr) fuzzy-ARTMAP (FAM), or flrFAM for short, is described for learning distributions of INs; hence, Type-2 INs emerge. Four benchmark image pattern recognition applications are demonstrated. The results obtained by the proposed techniques compare well with the results obtained by alternative methods from the literature. Furthermore, due to the isomorphism between the lattice of INs and the lattice of fuzzy numbers, the proposed techniques are straightforward applicable to Type-1 and/or Type-2 fuzzy systems. The far-reaching potential for deep learning in big data applications is also discussed.

Index Terms - Computer vision, fuzzy lattice reasoning, intervals' number, Jaccard similarity measure, type-2 fuzzy set

I. Introduction

2 Over the past decades, traditional computational intelligence has faced bottlenecks regarding algorithmic ${ }_{3}$ learning. In particular, one bottleneck has been the (slow) learning speed mainly due to gradient-based ${ }_{4}$ algorithms employed in the N-dimensional Euclidean space \mathbb{R}^{N}. Note that due to the conventional
${ }_{5}$ measurement procedure [12], traditional computational intelligence techniques are intimately linked to 6 the notion of "feature space" such that an object is represented by a point (i.e., a vector of numbers) 7 in \mathbb{R}^{N}. A vector data representation is popular mainly due to the abundance of analytical/computational 8 tools available in \mathbb{R}^{N}. Nevertheless, a vector data representation itself is another bottleneck since it cannot 9 represent sophisticated (data) semantics.

10 In response, on the one hand, novel techniques emerged to meet the (slow) learning speed including ${ }_{11}$ the extreme learning machines (ELMs) [2], [10]; the latter have reported good generalization performance 12 even thousands of times faster than conventional feedforward neural networks. On the other hand, there ${ }_{13}$ is a sustained interest in learning in non-(geo)metric spaces involving data other than vectorial ones [9]. 14 Non-vectorial data such as text, images, graphs, ontologies, hierarchies, schemata, etc, have proliferated 15 with the proliferation of computers. Therefore, there is a need to deal with non-vectorial (or, equivalently, ${ }_{16}$ nonnumerical) data representations as well. We remark that in the context of "machine learning" it is 17 accepted that the success of machine learning algorithms depends on the data representation [1]; moreover, 18 representation learning might be the crux of the matter regarding deep learning, i.e., induction of more 19 abstract - and ultimately more useful - data representations.

20 By departing from a vector space, one is confronted with the challenging task of defining (dis)similarity ${ }_{21}$ between non-vector data [9]. A popular approach for dealing with nonnumerical data is by "ad-hoc" ${ }_{22}$ transforming them to numerical ones. However, a problem with the aforementioned approach is that it ${ }_{23}$ introduces data distortions that might result in irreversible performance deterioration. Another approach ${ }_{24}$ for dealing with nonnumerical data is by developing domain-specific (mathematical) tools. Drawbacks of ${ }_{25}$ the latter approach include: first, different mathematical tools need to be "ad-hoc" devised in different 26 (nonnumerical) data domains and, second, performance cannot, often, be tuned [3], [4]. Yet another ${ }_{27}$ approach has been proposed lately based on mathematical lattice theory as explained next.

The premise has been that popular types of data of interest in practical applications are lattice-ordered [12]. In conclusion, lattice computing, or LC for short, has been proposed as "an evolving collection of tools and mathematical modeling methodologies with the capacity to process lattice-ordered data per se ${ }_{31}$ including logic values, numbers, sets, symbols, graphs, etc" [6], [16], [29]. The existence of suitable real ${ }_{32}$ functions on lattice-ordered data allows for "fine-tuning" as demonstrated in this work. An advantage of ${ }_{33} \mathrm{LC}$ is its capacity to rigorously compute with semantics represented by the lattice order relation. Specific ${ }_{34}$ examples of the LC approach are described in [13]. Recent trends in LC appear in [5], [14], [16], [27]. ${ }_{37}$ possibilistically [21]. Similarities as well as differences between Type-1 (respectively, Type-2) INs and ${ }_{38}$ Type-1 (respectively, Type-2) fuzzy sets have been reported [15]. In the remaining of this work "Type-1" ${ }_{39}$ will be denoted by "T1", for short; likewise, "Type-2" will be denoted by "T2". Our interest here is in ${ }_{40}$ digital image pattern recognition applications based on INs. We also discuss a potential enhancement of ${ }_{41}$ ELMs. ${ }_{43}$ based on INs induced from orthogonal moments features. Differences with this work are summarized 4 next. First, this work uses a (different) flrFAM classifier based on inclusion measure functions. Second, 45 this work also employs 3-D T2 INs such that one 3-D T2 IN is represented by a $32 \times 32 \times 4$ matrix of real ${ }_{46}$ numbers. Third, this work employs comparatively additional features as well as additional classifiers in ${ }_{47}$ additional benchmark image pattern recognition problems. Furthermore, this work presents an improved 48 mathematical notation as well as extensions of inclusion measure functions to the space of T2 INs. In ${ }_{49}$ addition, this work introduces an axiomatically extended Jaccard similarity measure.

The paper is organized as follows. Section II summarizes a hierarchy of mathematical lattices. Section ${ }_{51}$ III defines a similarity measure in a general lattice; moreover, it introduces Jaccard similarity measure 52 extensions. Section IV outlines an flrFAM classifier. Section V describes the image pattern recognition ${ }_{3}$ problem as well as a technique for computing 3-D T2 INs. Section VI demonstrates, comparatively, com${ }_{54}$ putational experiments; it also includes a discussion of the results. Section VII concludes by summarizing ${ }_{55}$ our contribution as well as by describing potential future work.

II. A Hierarchy of Complete Lattices

This section introduces useful mathematical tools regarding INs [12], [13], [16], based on lattice theory. Definition 2.1: Let $(\mathbb{P}, \sqsubseteq)$ be a mathematical lattice. A function $\sigma: \mathbb{P} \times \mathbb{P} \rightarrow[0,1]$ is called inclusion measure iff the following two properties hold.

C1 $u \sqsubseteq w \Leftrightarrow \sigma(u, w)=1$.
C2 $u \sqsubseteq w \Rightarrow \sigma(x, u) \leq \sigma(x, w)$.
${ }_{62}$ We remark that an inclusion measure function $\sigma: \mathbb{P} \times \mathbb{P} \rightarrow[0,1]$ can be interpreted as a fuzzy order ${ }_{63}$ relation on lattice $(\mathbb{P}, \sqsubseteq)$. Hence, the notations $\sigma(u, w)$ and $\sigma(u \sqsubseteq w)$ will be used interchangeably.

In the following we summarize a hierarchy of complete lattices in seven steps and define certain ${ }_{65}$ inclusion measure functions.
${ }_{66}$ Step-1. We assume a totally-ordered, complete lattice (\mathbb{L}, \leq) of real numbers, where $\mathbb{L} \subseteq \overline{\mathbb{R}}=\mathbb{R} \cup$ ${ }_{67}\{-\infty,+\infty\}$ with least and greatest elements denoted by o and i, respectively. The corresponding inf (\wedge) ${ }_{68}$ and $\sup (\vee)$ operators are the min and the max operators, respectively. In lattice (\mathbb{L}, \leq) we consider both ${ }_{69}$ a strictly increasing function $v: \mathbb{L} \rightarrow[0, \infty)$, such that $v(o)=0$ as well as $v(i)<+\infty$, and a strictly ${ }_{70}$ decreasing function $\theta: \mathbb{L} \rightarrow \mathbb{L}$, such that $\theta(o)=i$ as well as $\theta(i)=o$.
${ }_{71}$ Step-2. We assume the partially-ordered, complete lattice $\left(\mathbb{I}_{1}, \subseteq\right)$ of (T1) intervals in lattice (\mathbb{L}, \leq). The 72 corresponding inf (\cap) and sup $(\dot{\cup})$ operations are given by $[a, b] \cap[c, d]=[a \vee c, b \wedge d]$ and $[a, b] \dot{\cup}[c, d]=$ ${ }_{73}[a \wedge c, b \vee d]$, respectively. We remark that if $a \vee c \not \leq b \wedge d$ then, by definition, $[a, b] \cap[c, d]$ equals the ${ }_{74}$ empty set (\emptyset). Two inclusion measure functions $\sigma_{\cap}: \mathbb{I}_{1} \times \mathbb{I}_{1} \rightarrow[0,1]$ and $\sigma_{\dot{u}}: \mathbb{I}_{1} \times \mathbb{I}_{1} \rightarrow[0,1]$ are given ${ }_{75}$ in lattice $\left(\mathbb{I}_{1}, \subseteq\right)$ based on a length function $V: \mathbb{I}_{1} \rightarrow[0, \infty)$ as follows.

$$
\begin{gather*}
\sigma_{\cap}(x, y)= \begin{cases}1, & \text { for } x=\emptyset . \\
\frac{V(x \cap y)}{V(x)}, & \text { for } x \supset \emptyset .\end{cases} \tag{1}\\
\sigma_{\dot{\cup}}(x, y)= \begin{cases}1, & \text { for } x \dot{\cup} y=\emptyset . \\
\frac{V(y)}{V(x \dot{\cup} y)}, & \text { for } x \dot{\cup} y \supset \emptyset .\end{cases} \tag{2}
\end{gather*}
$$

Recall that a length function $V: \mathbb{I}_{1} \rightarrow[0, \infty)$ is defined as

$$
V\left(x=\left[a_{1}, a_{2}\right]\right)= \begin{cases}0, & x=\emptyset \\ v\left(\theta\left(a_{1}\right)\right)+v\left(a_{2}\right), & x \supset \emptyset\end{cases}
$$

77 where functions $v($.$) and \theta($.$) are as in Step-1.$
 ${ }_{79}$ Recall that a T2 interval is defined as an interval of T1 intervals. The corresponding inf (\cap) and sup ${ }_{80}(\dot{\cup})$ operations are given by $\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right] \cap\left[\left[c_{1}, c_{2}\right],\left[d_{1}, d_{2}\right]\right]=\left[\left[a_{1} \wedge c_{1}, a_{2} \vee c_{2}\right],\left[b_{1} \vee d_{1}, b_{2} \wedge d_{2}\right]\right]$, and ${ }_{81}\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right] \dot{\cup}\left[\left[c_{1}, c_{2}\right],\left[d_{1}, d_{2}\right]\right]=\left[\left[a_{1} \vee c_{1}, a_{2} \wedge c_{2}\right],\left[b_{1} \wedge d_{1}, b_{2} \vee d_{2}\right]\right]$, respectively. We remark that if ${ }_{82}\left[a_{1} \wedge c_{1}, a_{2} \vee c_{2}\right] \nsubseteq\left[b_{1} \vee d_{1}, b_{2} \wedge d_{2}\right]$ then, by definition, $\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right] \cap\left[\left[c_{1}, c_{2}\right],\left[d_{1}, d_{2}\right]\right]$ equals the empty ${ }_{83}$ set (\emptyset). Two inclusion measure functions $\sigma_{\cap}: \mathbb{I}_{2} \times \mathbb{I}_{2} \rightarrow[0,1]$ and $\sigma_{\dot{\cup}}: \mathbb{I}_{2} \times \mathbb{I}_{2} \rightarrow[0,1]$ are given in lattice ${ }_{84}\left(\mathbb{I}_{2}, \subseteq\right)$ based on a length function $V: \mathbb{I}_{2} \rightarrow[0, \infty)$ as follows.

$$
\begin{gather*}
\sigma_{\cap}\left(\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right] \subseteq\left[\left[c_{1}, c_{2}\right],\left[d_{1}, d_{2}\right]\right]\right)= \begin{cases}1, & b_{1}>b_{2} . \\
0, & b_{1} \leq b_{2}, b_{1} \vee d_{1}>b_{2} \wedge d_{2} . \\
0, & b_{1} \leq b_{2}, b_{1} \vee d_{1} \leq b_{2} \wedge d_{2}, \\
& {\left[a_{1} \wedge c_{1}, a_{2} \vee c_{2}\right] \nsubseteq\left[b_{1} \vee d_{1}, b_{2} \wedge d_{2}\right] .} \\
\frac{V\left(\left[\left[a_{1}, a_{2}\right],,\left[b_{1}, b_{2}\right]\right] \cap\left[\left[c_{1}, c_{2}\right],\left[d_{1}, d_{2}\right]\right]\right)}{V\left(\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right]\right)}, \text { otherwise. } .\end{cases} \tag{3}\\
\left.\sigma_{\dot{\cup}}\left(\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right] \subseteq\left[\left[c_{1}, c_{2}\right],\left[d_{1}, d_{2}\right]\right]\right]\right)=\left\{\begin{array}{ll}
1, & b_{1}>b_{2} . \\
0, & b_{1} \leq b_{2}, d_{1}>d_{2} . \\
\frac{V\left(\left[\left[c_{1}, c_{2}\right],\left[d_{1}, d_{2}\right]\right]\right)}{V\left(\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right] \cup\left[\left[c_{1}, c_{2}\right],,\left[d_{1}, d_{2}\right]\right]\right)},
\end{array}, \text { otherwise. } .\right. \tag{4}
\end{gather*}
$$

Recall that a length function $V: \mathbb{I}_{2} \rightarrow[0, \infty)$ is defined as

$$
V\left(x=\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right]\right)= \begin{cases}0, & x=\emptyset \\ v\left(a_{1}\right)+v\left(\theta\left(a_{2}\right)\right)+v\left(\theta\left(b_{1}\right)\right)+v\left(b_{2}\right), & x \supset \emptyset\end{cases}
$$

${ }_{86}$ where functions $v($.$) and \theta($.$) are as in Step-1.$
Step-4. We assume the partially-ordered lattice (\mathbb{F}_{1}, \preceq) of (T1) Intervals' Numbers, or (T1) INs for short. ${ }_{88}$ Recall that an IN is defined as a function $F:[0,1] \rightarrow \mathbb{I}_{1}$ that satisfies both $h_{1} \leq h_{2} \Rightarrow F_{h_{1}} \supseteq F_{h_{2}}$ and ${ }_{89} \forall X \subseteq[0,1]: \cap_{h \in X} F_{h}=F_{\bigvee X}$. In particular, an "interval (T1) IN F " is defined such that $F_{h}=[a, b], \forall h \in$ ${ }_{90}[0,1]$; in other words, the aforementioned interval (T1) IN $F \in \mathbb{F}_{1}$ represents the interval $[a, b] \in \mathbb{I}_{1}$. An ${ }_{91}$ IN is interpreted as an information granule [12]. An IN F can equivalently be represented either by a set 92 of intervals $F_{h}, h \in[0,1]$ (an IN's interval-representation), or by a function $F(x)=\bigvee_{h \in[0,1]}\left\{h: x \in F_{h}\right\}$ ${ }_{93}$ (an IN's membership-function-representation). For $F, G \in \mathbb{F}_{1}$ we have

$$
\begin{equation*}
F \preceq G \Leftrightarrow\left(\forall h \in[0,1]: F_{h} \subseteq G_{h}\right) \Leftrightarrow(\forall x \in \mathbb{L}: F(x) \leq G(x)) . \tag{5}
\end{equation*}
$$

94 The height $h g t(F)$ of an IN F is defined as the supremum of its membership function values, i.e., ${ }_{95} h g t(F)=\bigvee_{x \in \mathbb{L}} F(x)$. The corresponding $\inf (\curlywedge)$ and $\sup (\curlyvee)$ operations in lattice $\left(\mathbb{F}_{1}, \preceq\right)$ are given by ${ }_{96}(F \curlywedge G)_{h}=F_{h} \cap G_{h}$ and $(F \curlyvee G)_{h}=F_{h} \dot{\cup} G_{h}$, respectively, for $h \in[0,1]$. Next, we define two inclusion ${ }_{97}$ measure functions $\sigma_{\curlywedge}: \mathbb{F}_{1} \times \mathbb{F}_{1} \rightarrow[0,1]$ and $\sigma_{\curlyvee}: \mathbb{F}_{1} \times \mathbb{F}_{1} \rightarrow[0,1]$ based on the inclusion measure ${ }_{98}$ functions $\sigma_{\cap}: \mathbb{I}_{1} \times \mathbb{I}_{1} \rightarrow[0,1]$ and $\sigma_{\dot{ن}}: \mathbb{I}_{1} \times \mathbb{I}_{1} \rightarrow[0,1]$, respectively.

$$
\begin{align*}
& \sigma_{\curlywedge}(E, F)=\int_{0}^{1} \sigma_{\cap}\left(E_{h}, F_{h}\right) d h \tag{6}\\
& \sigma_{\curlyvee}(E, F)=\int_{0}^{1} \sigma_{\dot{\cup}}\left(E_{h}, F_{h}\right) d h . \tag{7}
\end{align*}
$$

Specific advantages of an inclusion measure function in a Fuzzy Inference System (FIS) context have 100 been reported [13].

101 Step-5. We assume the partially-ordered, complete lattice $\left(\mathbb{F}_{2}, \preceq\right)$ of T2 INs - Recall that a T2 IN is 102 defined as an interval of T1 INs; that is, a T2 IN by definition equals $[U, W] \doteq\left\{X \in \mathbb{F}_{1}: U \preceq X \preceq W\right\}$, ${ }_{103}$ where U is called lower IN , and W is called upper IN (of the $\mathrm{T} 2 \mathrm{IN}[U, W]$). In the latter sense we say 104 that X is encoded in $[U, W]$. The corresponding $\inf (\curlywedge)$ and sup (\curlyvee) operations in lattice $\left(\mathbb{F}_{2}, \preceq\right)$ are 105 given by $(F \curlywedge G)_{h}=F_{h} \cap G_{h}$ and $(F \curlyvee G)_{h}=F_{h} \dot{\cup} G_{h}$, respectively. We can define two inclusion measure 106 functions $\sigma_{\curlywedge}: \mathbb{F}_{2} \times \mathbb{F}_{2} \rightarrow[0,1]$ and $\sigma_{\curlyvee}: \mathbb{F}_{2} \times \mathbb{F}_{2} \rightarrow[0,1]$, based on the inclusion measure functions ${ }_{107} \sigma_{\cap}: \mathbb{I}_{2} \times \mathbb{I}_{2} \rightarrow[0,1]$ and $\sigma_{\dot{\cup}}: \mathbb{I}_{2} \times \mathbb{I}_{2} \rightarrow[0,1]$, using equations (6) and (7), respectively. The computation 108 of the join and meet operations in the lattice $\left(\mathbb{F}_{2}, \preceq\right)$ is demonstrated next.

109 Consider the two T2 INs $[f, F]$ and $[g, G]$ shown in Fig.1(a), where $f, F, g, G \in \mathbb{F}_{1}$ such that $f \preceq F$ and ${ }_{110} g \preceq G$. The (join) T2 IN $[f, F] \curlyvee[g, G]=[f \curlywedge g, F \curlyvee G]$ is shown in Fig.1(b), where $(f \curlywedge g)_{h}=\emptyset, \forall h \in$ ${ }_{111}\left(h_{1}, 1\right]$. Fig.1(c) shows the (meet) T2 IN $[f, F] \curlywedge[g, G]=[f \curlyvee g, F \curlywedge G]$, where $(f \curlyvee g)_{h}=\emptyset, \forall h \in\left(h_{3}, 1\right]$, 112 moreover $(F \curlywedge G)_{h}=\emptyset, \forall h \in\left(h_{4}, 1\right]$.
${ }_{113} \underline{\text { Step-6. The T1/T2 INs above have 2-dimensional (2-D) function representations, which can be extended }}$ 114 to 3-dimensional (3-D) as follows. A 3-D T1 (respectively, T2) IN is defined as a function $F:[0,1] \rightarrow \mathbb{F}$, ${ }_{115}$ where $\mathbb{F}=\mathbb{F}_{1}$ (respectively, $\mathbb{F}=\mathbb{F}_{2}$), which satisfies $z_{1} \leq z_{2} \Rightarrow F_{z_{1}} \succeq F_{z_{2}}$. In other words, a 3-D T1 ${ }_{116}$ (respectively, T2) IN F has 3-dimensional function representation F_{z} such that for constant $z=z_{0}$ the ${ }_{117} F_{z_{0}}$, namely zSlice, is a 2-D T1 (respectively, T2) IN. A 3-D T2 IN example is plotted below. The symbol ${ }_{118} \mathbb{F}_{g}$ denotes either the set of 3-D T1 INs or the set of 3-D T2 INs. It turns out that $\left(\mathbb{F}_{g}, \preceq\right)$ is a lattice 119 whose order is $E \preceq F \Leftrightarrow E_{z} \preceq F_{z}, \forall z \in[0,1]$. An inclusion measure function $\sigma_{\mathbb{F}_{g}}: \mathbb{F}_{g} \times \mathbb{F}_{g} \rightarrow[0,1]$ is ${ }_{120}$ defined as

$$
\begin{equation*}
\sigma_{\mathbb{F}_{g}}(E, F)=\int_{0}^{1} \int_{0}^{1} \sigma_{\mathbb{I}}\left(\left(E_{z}\right)_{h},\left(F_{z}\right)_{h}\right) d h d z \tag{8}
\end{equation*}
$$

Fig. 1. (a) T2 INs $[f, F]$ and $[g, G]$, where $f, F, g, G \in \mathbb{F}_{1}$ such that $f \preceq F$ and $g \preceq G$. (b) The (join) T2 IN $[f, F] \curlyvee[g, G]=[f \curlywedge g, F \curlyvee G]$. (c) The (meet) T2 IN $[f, F] \curlywedge[g, G]=[f \curlyvee g, F \curlywedge G]$.

121 where $\sigma_{\mathbb{I}}(.,$.$) may be given by any one of the equations (1), (2), (3) and (4).$
$122 \quad$ Step-7. We assume N-tuples of T1/T2 INs, where one N-tuple T1/T2 IN will be indicated by a boldface ${ }_{123}$ symbol, e.g. $\mathbf{X}=\left(X_{1}, \ldots, X_{N}\right)$. Given non-negative numbers $\lambda_{1}, \ldots, \lambda_{N}$ such that $\lambda_{1}+\cdots+\lambda_{N}=1$, an 124 inclusion measure is defined in the complete lattice of N-tuple INs by the following convex combination

$$
\begin{equation*}
\sigma_{c}\left(\left(X_{1}, \ldots, X_{N}\right),\left(Y_{1}, \ldots, Y_{N}\right)\right)=\sum_{i=1}^{N} \lambda_{i} \sigma_{i}\left(X_{i}, Y_{i}\right) \tag{9}
\end{equation*}
$$

III. Similarity Measures on Lattices

Various definitions for (dis)similarity have been proposed in the literature in various data domains [3], ${ }_{127}$ [4], [25] without consensus. Motivated by a popular definition of similarity between fuzzy sets [25], we ${ }_{128}$ propose the following definition in a mathematical lattice.
${ }_{129}$ Definition 3.1: Let $(\mathbb{P}, \sqsubseteq)$ be a mathematical lattice. A function $s: \mathbb{P} \times \mathbb{P} \rightarrow[0,1]$ is called similarity ${ }_{130}$ measure iff the following three properties hold.

131

132
${ }_{135}$ product of N lattices; let function $s_{i}: \mathbb{P}_{i} \times \mathbb{P}_{i} \rightarrow[0,1]$ be a similarity measure on lattice $\left(\mathbb{P}_{i}, \sqsubseteq\right)$, ${ }_{136} i \in\{1, \ldots, N\}$; let $\lambda_{1}, \ldots, \lambda_{N}$ be non-negative numbers such that $\lambda_{1}+\cdots+\lambda_{N}=1$. Then, as it ${ }_{137}$ will formally be proven elsewhere, the function $s: \mathbb{P} \times \mathbb{P} \rightarrow[0,1]$ given by the convex combination ${ }_{138} s\left(\left(U_{1}, \ldots, U_{N}\right),\left(W_{1}, \ldots, W_{N}\right)\right)=\lambda_{1} s_{1}\left(U_{1}, W_{1}\right)+\cdots+\lambda_{N} s_{N}\left(U_{N}, W_{N}\right)$ is a similarity measure.

${ }_{39}$ A. Jaccard Similarity Measure Extensions

Even though a number of similarity measures from the literature do not satisfy all the properties of ${ }_{141}$ Definition 3.1, the popular Jaccard similarity measure (or, equivalently, Jaccard coefficient) given by $\frac{|A \cap B|}{|A \cup B|}$ ${ }_{142}$ does satisfy them all. Next, we propose a parametric extension of the Jaccard similarity measure.
${ }_{143}$ Let (\mathbb{I}, \subseteq) be the complete lattice of either $T 1$ intervals (i.e., $\mathbb{I}=\mathbb{I}_{1}$) or $T 2$ intervals (i.e., $\mathbb{I}=\mathbb{I}_{2}$), and ${ }_{144}$ let $V: \mathbb{I} \rightarrow[0, \infty)$ be a length function on \mathbb{I}. Then, as it will formally be proven elsewhere, the function ${ }_{145} J_{\mathbb{I}}: \mathbb{I} \times \mathbb{I} \rightarrow[0,1]$ given by $J_{\mathbb{I}}(A, B)=\frac{V(A \cap B)}{V(A \dot{\cup} B)}$, where $A \neq \emptyset$, is a similarity measure, namely extended ${ }_{146}$ Jaccard similarity measure. For non-overlapping intervals A and $B, J_{\mathbb{I}}(A, B)$ equals zero and vice versa. ${ }_{147}$ We extend $J_{\mathbb{I}}(.,$.$) to the complete lattice (\mathbb{F}, \preceq)$ of T1/T2 INs.

Let (\mathbb{F}, \preceq) be the complete lattice of either T 1 INs (i.e., $\mathbb{F}=\mathbb{F}_{1}$) or T2 INs (i.e., $\mathbb{F}=\mathbb{F}_{2}$), and let ${ }_{149} V: \mathbb{I} \rightarrow[0, \infty)$ be a length function on the corresponding lattice (\mathbb{I}, \subseteq) of intervals. Then, as it will formally ${ }_{150}$ be proven elsewhere for INs with continuous membership functions, the function $J_{\mathbb{F}}: \mathbb{F} \times \mathbb{F} \rightarrow[0,1]$ given ${ }^{151}$ by $J_{\mathbb{F}}(A, B)=\int_{0}^{1} J_{\mathbb{I}}\left(A_{h}, B_{h}\right) d h$ is a similarity measure.

Similarity measures can further be extended to 3-D T2 INs:

$$
\begin{equation*}
J_{\mathbb{F}_{g}}(E, F)=\int_{0}^{1} \int_{0}^{1} J_{\mathbb{I}}\left(\left(E_{z}\right)_{h},\left(F_{z}\right)_{h}\right) d h d z \tag{10}
\end{equation*}
$$

IV. An Interactive Fuzzy Lattice Reasoning (FLR) Neural Classifier

The flrFAM classifier is a single hidden layer neural architecture, inspired from the biologically mo${ }_{156}$ tivated adaptive resonance theory [16] based on reasoning techniques [13]. This section proposes an
${ }_{157}$ enhancement of the flrFAM classifier in [16]. The latter was described by four algorithms: for clustering, ${ }_{158}$ for training (Structure Identification subphase), for training (Parameter Optimization subphase) and for 159 testing. The difference between the algorithms employed here and the algorithms in [16] is that a neuron ${ }_{160}$ activation function $\alpha: \mathbb{F}_{g}^{N} \times \mathbb{F}_{g}^{N} \rightarrow[0,1]$ here may be either a similarity measure or an inclusion measure ${ }_{161}$ function rather than the inclusion measure function $\sigma: \mathbb{I}_{1}^{N} \times \mathbb{I}_{1}^{N} \rightarrow[0,1]$ in [16]. Hence, here we compute 162 with distributions defined on a neighborhood rather than with the neighborhood alone.

Given $\mathbf{X}=\left(X_{1}, \ldots, X_{N}\right), \mathbf{W}=\left(W_{1}, \ldots, W_{N}\right) \in \mathbb{F}_{g}^{N}$, an activation function $\alpha: \mathbb{F}_{g}^{N} \times \mathbb{F}_{g}^{N} \rightarrow[0,1]$ 164 is computed by the convex combination $\alpha(\mathbf{X}, \mathbf{W})=\lambda_{1} \alpha_{1}\left(X_{1}, W_{1}\right)+\cdots+\lambda_{N} \alpha_{N}\left(X_{N}, W_{N}\right)$, where ${ }_{165} \alpha_{i}: \mathbb{F}_{g} \times \mathbb{F}_{g} \rightarrow[0,1], i \in\{1, \ldots, N\}$, is an activation function in the lattice $\left(\mathbb{F}_{g}, \preceq\right)$. In particular, first, 166 the activation function α_{i} can be an inclusion measure given by equation (8); therefore, in this case, 167 the activation function $\sigma_{\mathbb{F}_{g}}(\mathbf{X}, \mathbf{W})$ filters h-level-wise an input datum $\mathbf{X} \in \mathbb{F}_{g}^{N}$ "bottom-up". Second, 168 the activation function α_{i} can be the extended Jaccard similarity measure given by equation (10); hence, 169 in this case, the activation function $J_{\mathbb{F}_{g}}(\mathbf{X}, \mathbf{W})$ simultaneously filters h-level-wise both an input datum ${ }_{170} \mathbf{X} \in \mathbb{F}_{g}^{N}$ "bottom-up" and it filters a class code $\mathbf{W} \in \mathbb{F}_{g}^{N}$ "top-down" as indicated in the remark following 171 equation (10).

172 The flrFAM algorithm here was inspired from Active Learning [19]. Nevertheless, active learning ${ }_{173}$ requires human intervention. We improved on active learning by assuming a "bottom-up"-"top-down" 174 interplay between the training data and the class (learned) codes as it was explained above. In particular, 175 a function $\sigma_{\mathbb{F}_{g}}\left(\mathbf{W}_{\mathbf{J}}, \mathbf{X}_{\mathbf{i}}\right)$ always filters h-level-wise $\mathbf{W}_{J} \in \mathbb{F}_{g}^{N}$ "top-down". In conclusion, $\mathbf{W}_{J} \curlyvee \mathbf{X}_{i}$ may 176 conditionally replace \mathbf{W}_{J} depending on the (diagonal) size of $\mathbf{W}_{J} \curlyvee \mathbf{X}_{i}$ [12]. The capacity of the flrFAM 177 classifier for generalization is demonstrated by the success rate $S_{t s t}$ on the testing dataset. An N-tuple of 178 INs (granule) induced by the flrFAM classifier is interpreted as decision-making knowledge (i.e., a rule) 179 induced from the data [15], [16], [21], [22].

V. The Image Pattern Recognition Problem and its Data Representation

This section demonstrates the capacity of our proposed techniques in image pattern recognition applica182 tions. The latter were selected due to the vast number of images generated globally, especially from mobile ${ }_{183}$ devices; hence, automated image learning as well as image pattern recognition is motivated, interesting 184 as well as timely.

185 A. Data Preprocessing

186 We carried out the following three information processing tasks: \#1. Image Acquisition, \#2. Pattern ${ }_{187}$ Localization, and \#3. Feature Extraction. Note that, typically, an image is represented in the literature as 188 an N-dimensional point in the Euclidean space \mathbb{R}^{N} by extracting features such as wavelet features, facial 189 attributes, Gabor features, Zernike moments, etc [1], [16].

190 This paper retains a basic Feature Extraction employed elsewhere [16], [22], [24], [26]; that is, a ${ }_{191}$ population of numerical features is induced from an image to be learned/recognized. In particular, we 192 induced orthogonal moments as well as other features due to their practical effectiveness [16], [22], ${ }_{193}$ [26]. Then, a distribution of features is "meta-represented" by an IN [24] induced by algorithm CALCIN 194 [13]. A recent work [27] has demonstrated specific advantages for an IN meta-representation including a ${ }_{195}$ significant dimensionality reduction as well as a superior pattern recognition performance.

196 B. Image Pattern Representation

197 Recall that a population of features, which are induced from an image pattern, can be represented by a 198 (T1) IN. This section investigates the representation of a class by a 3-D T1 IN (or a 3-D T2 IN) toward 199 representing the distribution of T1 INs used for inducing it.

200 For example, consider the seventeen trivial T2 INs $\left[C_{i}, C_{i}\right], i \in\{1, \ldots, 17\}$ in Fig.2(a). Fig.2(b) displays 201 the corresponding lattice join $\bigvee_{i \in I}\left[C_{i}, C_{i}\right]=\left[\lambda_{i \in I} C_{i}, \gamma_{i \in I} C_{i}\right], I=\{1, \ldots, 17\}$. Note that any inclusion measure 202 function $\sigma: \mathbb{F}_{2} \times \mathbb{F}_{2} \rightarrow[0,1]$ results in $\sigma\left(\left[C_{i}, C_{i}\right],\left[\widehat{j}_{j \in I} C_{j},{\underset{j}{ } \in I} C_{j}\right]\right)=1, i \in I=\{1, \ldots, 17\}$ according 203 to Definition 2.1. The lattice join $\bigvee_{i \in I}\left[C_{i}, C_{i}\right]=\left[\curlywedge_{j \in I} C_{j}, \underset{j \in I}{\gamma} C_{j}\right]$ is a (2-D) T2 IN whose lower membership 204 function $\underset{j \in I}{\curlywedge} C_{j}$ has height $\operatorname{hgt}\left(\underset{j \in I}{\curlywedge} C_{j}\right)=0.6471$ and whose upper membership function $\underset{j \in I}{\gamma} C_{j}$ has height ${ }^{205} \operatorname{hgt}\left(\underset{j \in I}{ } C_{j}\right)=1$, as shown in Fig.2(b).
206 A disadvantage of a 2-D T2 IN is that it does not retain any information regarding the distribution of 207 INs used to induce it. We will try to turn the aforementioned disadvantage into an advantage by inducing 208 an " h-secondary membership functions" as explained in Fig.3(a), where such functions will be induced 209 at $h=0.135$ and $h=1$, respectively. Fig.3(b) displays two h-secondary membership functions along 210 the line through $h=0.135$, with supports $[2.65,3.86]$ and $[6.3,7.3]$, respectively; furthermore, Fig.3(c) ${ }_{211}$ displays one h-secondary membership function along the line through $h=1$, with support [4.6, 5.9].

Fig.4(a) displays the 3-D surface, which is induced from all the h-secondary membership functions, ${ }_{213}$ truncated by a plane through $z=0.3$ parallel to the $x-h$ plane. By definition, a zSlice is the intersection

Fig. 2. (a) Seventeen trivial T2 INs $\left[C_{i}, C_{i}\right], i \in\{1, \ldots, 17\}$ are displayed in their membership-function-representation. (b) The lattice join $\bigvee_{i \in I}\left[C_{i}, C_{i}\right]=\left[\curlywedge_{i \in I} C_{i},{ }_{i \in I} C_{i}\right]$, where $I=\{1, \ldots, 17\}$.

214 of the latter surface with a plane through $z \in[0,1]$ parallel to the $x-h$ plane. By construction, a zSlice 215 includes two functions, namely primary membership functions, defined by the ends of the supports of 216 all the h-secondary membership functions on a zSlice. For example, the zSlice for $z=0$ of the surface ${ }_{217}$ calculated from the INs in Fig.2(a) is the (2-D) T2 IN shown in Fig.2(b). Fig.4(b) displays the two ${ }_{218}$ primary membership functions on the zSlice shown in Fig.4(a) for $z=0.3$. The (truncated) surface 219 shown in Fig.4(a) is a 3-D T2 IN; whereas, the "T2 INs" shown in Fig. 1 are 2-D T2 INs. Recall that 220 the previously defined "(T1) INs" are alternatively called 2-D (T1) INs. Likewise, 3-D (T1) INs can be 221 induced by computing h-secondary membership functions as detailed above.

Fig. 3. (a) h-secondary membership functions will be induced at $h=0.135$ and $h=1$, respectively. (b) Two h-secondary membership functions at $h=0.135$ with supports $[2.65,3.86]$ and $[6.3,7.3]$, respectively. (c) One h-secondary membership function at $h=1$ with support [4.6, 5.9].

VI. Experiments and Results

In this section we provide experimental evidence regarding the capacity of our proposed techniques in 224 image pattern recognition applications. More specifically, we have dealt with image pattern recognition 225 as a classification problem as explained below.

Fig. 4. (a) A 3-dimensional surface computed from the h-secondary membership functions of the INs in Fig.2(a), truncated (the surface) by a plane through $z=0.3$ parallel to the $x-h$ plane. (b) The two primary membership functions on the zSlice of Fig.4(a) (for $z=0.3$).

226

A. Benchmark Datasets and Feature Extraction

${ }_{227}$ We have employed the following four benchmark datasets.

1) YALE dataset [30]: It regards face recognition. It contains 165 (8 -bit) images (320×243 pixels each) ${ }_{229}$ of 15 individuals (i.e., classes). More specifically, there are 11 images per subject, one per different facial ${ }_{230}$ expression or configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-light, sad, ${ }_{231}$ sleepy, surprised, and wink. In order to remove irrelevant image content, the images were preprocessed 232 by the Viola-Jones face detector followed by ellipse masking as described in [16]. The resulting localized ${ }_{233}$ faces were cropped to a fixed size of 32×32 pixels each.
2) TERRAVIC dataset [11]: It regards infrared face recognition. It contains 24,508 images of 20 persons 235 under different conditions such as front, left and right poses, indoor/outdoor environments with glasses ${ }_{236} \mathrm{and} /$ or hat accessories; each image has an 8 -bit, 320×240 pixels size. We used 70 images per person for ${ }_{237}$ the first 10 persons (i.e., classes) as described in [26].
3) JAFFE dataset [18]: It regards facial expression recognition. It contains 213 frontal images (256×256 ${ }_{239}$ pixels each) of 10 different persons corresponding to 7 common human facial expressions (i.e., classes), 240 namely neutral (30), angry (30), disgusted (29), fear (32), happy (31), sad (31), and surprise (30) regarding ${ }_{241}$ Japanese female subjects, where a number within parentheses indicates the number of images available ${ }_{242}$ per facial expression. In order to remove irrelevant image content, the images were preprocessed as in ${ }_{243}$ the YALE dataset above. In conclusion, face images of 160×160 pixels each were produced.
4) TRIESCH I dataset [28]: It regards hand posture recognition. It contains 8 -bit images (128×128

TABLE 1
CHARACTERISTICS OF THE IMAGE DATASETS USED IN 10-FOLD CROSS-VALIDATION EXPERIMENTS.

DATASET NAME	FEATURE TYPE (\#FEATURES)	\#INSTANCES	\#TRAINING DATA PER FOLD	\#TESTING DATA PER FOLD	\#CLASSES
YALE	LBP (59)	165	149	16	15
TERRAVIC	ZMs (16)	700	630	70	10
JAFFE	dHMs (16)	213	192	21	7
TRIESCH I	HOG (9)	240	216	24	10

${ }_{245}$ pixels each) of 10 hand postures (i.e., classes) regarding 24 persons in dark background.
246 It is understood that none of the above mentioned datasets is "big (data)"; nevertheless, any of the 247 above datasets is big enough for the objectives here, where a large number of experiments were carried 248 out toward comparing various classifiers.

249 We extracted six types of features per image. More specifically, we computed four different families 250 of orthogonal moments including Zernike (ZMs), Gaussian-Hermite (GHMs), Tchebichef (TMs) and dual ${ }_{251}$ Hahn (dHMs) moments [23]; the order of each moment family was selected such that a 16 -dimensional 252 vector was produced. Another two types of features, popular in face recognition applications, were ${ }_{253}$ extracted, namely the Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) [24]. ${ }_{254}$ Regarding LBP, uniform patterns of $(R, N)=(1,8)$ regions were computed. The vector length for LBP 255 and HOG was 59 and 9 , respectively.
${ }_{256}$ Table 1 summarizes the characteristics of the image datasets used in our 10 -fold cross-validation ${ }_{257}$ experiments. More specifically, the first column in Table 1 indicates the type of (image) feature that ${ }_{258}$ produced the best classification results for a dataset as well as the corresponding number of input features. ${ }_{259}$ For instance, for the YALE dataset, the best classification results were obtained for the 59 LBP input 260 features, etc. The remaining columns in Table 1 display the number of instances (i.e., the total number 261 of images used), the number of training data (per fold), the number of testing data (per fold), and the 262 number of classes.

B. Experimental Setup

We employed ten traditional classifiers including three versions of the Minimum Distance Classifier 265 (MDC) corresponding to the Chi Square (χ^{2}), Euclidean and Manhattan distances, respectively [26] 266 An MDC classifier here engaged "mean feature vectors" [24]. In addition, we employed a kNN (k=1), a 267 Naïve-Bayes, an RBF ELM, a three-layer feedforward backpropagation Neural Network, and three types 268 of Support Vector Machines (SVMs) including linear, polynomial (2 $2^{\text {nd }}$ order) and RBF, respectively - The

269 Neural Network dimensions were (no.features) $\times($ no.features $) \times($ no.classes $)$. Both RBF SVM and ${ }_{270}$ RBF ELM [7] used a pair (C, γ) of tunable parameters computed optimally by the grid search method [8]. ${ }_{271}$ In conclusion, the pairs $(C, \gamma)=\left(2^{5}, 2^{-10}\right)$ and $(C, \gamma)=\left(2^{12}, 2^{4}\right)$ were calculated and used for RBF SVM 272 and RBF ELM, respectively, for all datasets. We also employed flrFAM classifiers as explained below. ${ }_{273}$ An flrFAM classifier processed INs induced from vectors of features, whereas an alternative classifier 274 processed the corresponding vectors of features instead.

275 An flrFAM classifier represented a class by one N-tuple IN. In particular, we used two different class ${ }_{276}$ representations, namely per Feature (pF) and per Feature Vector (pFV), respectively [24] as follows. First, ${ }_{277}$ regarding pF , a T1 IN was induced from all values of a feature (i.e., dimension) in a class; second, 278 regarding pFV , a T2 IN was induced from all T1 INs in a class, where one T1 IN was representing 279 an image. Hence, the pF represented a class by one (no.features)-tuple of T1 INs, whereas the pFV 280 represented a class by one T2 IN. Note that a T1 IN was either an interval in 2-D (thus resulting in a ${ }_{281}$ class representation by a hyperbox) of it could be a 3-D T1 IN; the former (hyperbox) IN representation 282 was pursued by a "2-D T1 (interval) flrFAM" architecture, whereas the latter was pursued by a " $3-\mathrm{D}$ T1 ${ }_{283}$ flrFAM" architecture. Likewise, a T2 IN could be either a "2-D T2 (interval) IN" representation, pursued 84 by a "2-D T2 (interval) flrFAM" architecture, or a "3-D T2 IN" one pursued by a "3-D T2 flrFAM" 285 architecture. In all cases, we employed the IN interval-representation with $L=32$ [13]. The activation 286 function employed by an flrFAM classifier was based on either $\sigma_{\dot{\cup}}(.,$.$) or J_{\mathbb{I}}(.,$.$) .$

For every classifier, on every dataset, we carried out a " 10 -fold cross-validation" computational exper288 iment. More specifically, a dataset was partitioned in ten parts; nine-tenths of the dataset were used for 289 training, whereas the remaining one-tenth was used for testing a classifier. In turn, all tenths of the dataset 290 were used for testing. Care was taken so that all classes were represented fairly in both the training data 291 and the testing data. The same training/testing data were used by all classifiers. As generalization rate 292 we define the percentage (\%) of the testing dataset classified correctly. For a " 10 -fold cross-validation" 293 computational experiment we recorded both the minimum and the maximum generalization rates in 10 294 computational experiments as well as the corresponding average (ave) and standard deviation (std).

Regarding an flrFAM classifier we employed 10% of the training data for validation toward optimal 296 parameter estimation [16]. More specifically, parameter optimization was pursued by a Genetic Algorithm 297 (GA) such that the phenotype of an individual (flrFAM classifier) consisted of specific values for the ${ }_{298}$ two parameters $\lambda \in \mathbb{R}_{0}^{+}$and $\mu \in \mathbb{R}$ of two functions, i.e. the (strictly increasing) sigmoid function

TABLE 2
YALE dataset: Percentage (\%) generalization rate statistics in 10 computational experiments by several classifiers (LBP Feature)

CLASSIFIER NAME	[MIN, MAX]	AVE (STD)
01. MDC (Chisquare)	$[40.00,80.00]$	$56.67(11.44)$
02. MDC (Euclidean)	$[26.67,73.33]$	$42.67(12.65)$
03. MDC (Manhattan)	$[33.33,80.00]$	$53.33(12.57)$
04. kNN (k=1)	$[20.00,53.33]$	$38.67(10.80)$
05. Naïve-Bayes	$[33.33,60.00]$	$46.00(7.98)$
06. RBF ELM	$[40.00,73.33]$	$60.67(9.66)$
07. Neural Network (backprop)	$[6.67,20.00]$	$12.00(4.22)$
08. Linear SVM	$[20.00,53.33]$	$36.67(10.06)$
09. Polynomial SVM	$[20.00,33.33]$	$25.33(5.26)$
10. RBF SVM	$[33.33,66.67]$	$48.00(10.80)$
11. 2-D T1 flrFAM $\left(\sigma_{\dot{U}}\right)$	$[20.00,46.67]$	$35.33(9.45)$
12. 2-D T1 flrFAM $\left(J_{\mathbb{I}}\right)$	$[6.67,33.33]$	$22.00(7.73)$
13. 3-D T1 flrFAM $\left(\sigma_{\dot{ن}}\right)$	$[40.00,73.33]$	$58.00(11.78)$
14. 3-D T1 flrFAM $\left(J_{\mathbb{I}}\right)$	$[40.00,73.33]$	$53.33(12.96)$

$299 v_{s}(x ; \lambda, \mu)=1 /\left(1+e^{-\lambda(x-\mu)}\right)$ and the (strictly decreasing) function $\theta(x ; \mu)=2 \mu-x$ as described in 300 Step-1 of section II; an additional parameter was the baseline vigilance $\overline{\rho_{a}}$ [16]. Hence, a total number 301 of three parameters per feature were binary-encoded in the chromosome of an individual. For both an 302 inclusion measure and a Jaccard coefficient we used a convex combination with $\lambda_{1}=\cdots=\lambda_{N}=\frac{1}{N}$.
${ }_{303}$ To avoid a combinatorial explosion of the number of Tables with results presented in this paper, we 304 selected the "best" feature type per benchmark dataset as follows. For each benchmark dataset, for each 305 of the aforementioned ten traditional classifiers, we carried out a " 10 -fold cross-validation" computational ${ }_{306}$ experiment per feature type. Hence, for each benchmark dataset we recorded six Tables (i.e., one Table per 307 feature type) including the generalization rate statistics of the ten traditional classifiers. Then, we selected 308 the "best" feature type per benchmark dataset, that is the one that produced the highest overall classification 309 results on the testing data. The "best" statistics of the aforementioned ten traditional classifiers, for the ${ }_{310}$ YALE dataset, are displayed in Table 2.

${ }_{311}$ C. Computational Experiments and Results

${ }_{312}$ We normalized the data by transforming them linearly to the unit interval $[0,1]$. In the following, for ${ }_{313}$ lack of space, we display detailed generalization rate statistics regarding solely the YALE dataset.

314 1) Experiments with the YALE dataset: The LBP was the best feature selected as explained above. Table 3152 displays the generalization rate statistics of the classifiers employed in this rather difficult classification ${ }_{316}$ problem. The 3-D T1 flrFAM classifiers on the average performed as good as or better than most classifiers, 317 whereas the 2-D T1 (interval) flrFAM classifiers on the average performed around medium. Typically, an ${ }_{318}$ inclusion measure $\sigma_{\dot{\cup}}$ produced better results than a Jaccard similarity measure $J_{\mathbb{I}}$.

TABLE 3
Area Under the Curve (AUC) statistics "(average, standard deviation)" in 10 computational experiments by SEVERAL CLASSIFIERS ON ALL DATASETS

CLASSIFER NAME	YALE	DATASET NAME TERRAVIC	JAFFE	TRIESCH I
01. MDC (Chisquare)	$0.73(0.11)$	$0.99(0.02)$	$0.68(0.13)$	$0.95(0.03)$
02. MDC (Euclidean)	$0.72(0.11)$	$1.00(0.01)$	$0.64(0.12)$	$0.95(0.03)$
03. MDC (Manhattan)	$0.73(0.11)$	$1.00(0.01)$	$0.65(0.10)$	$0.94(0.03)$
04. kNN $(\mathrm{k}=1)$	$0.72(0.10)$	$1.00(0.00)$	$0.87(0.07)$	$0.94(0.03)$
05. Naïve-Bayes	$0.78(0.12)$	$1.00(0.00)$	$0.81(0.10)$	$0.97(0.03)$
06. RBF ELM	$0.90(0.08)$	$0.83(0.24)$	$0.80(0.18)$	$0.92(0.11)$
07. Neural Network (backprop)	$0.54(0.09)$	$0.93(0.05)$	$0.67(0.09)$	$0.70(0.09)$
08. Linear SVM	$0.86(0.13)$	$1.00(0.00)$	$0.84(0.07)$	$0.88(0.06)$
09. Polynomial SVM	$0.76(0.16)$	$1.00(0.00)$	$0.86(0.04)$	$0.88(0.07)$
10. RBF SVM	$0.87(0.10)$	$0.95(0.08)$	$0.76(0.17)$	$0.92(0.09)$
11. 2-D T1 flrFAM $\left(\sigma_{\dot{U}}\right)$	$0.72(0.16)$	$1.00(0.01)$	$0.71(0.10)$	$0.95(0.03)$
12. 2-D T1 flrFAM $\left(J_{\mathbb{I}}\right)$	$0.72(0.17)$	$1.00(0.01)$	$0.73(0.13)$	$0.95(0.03)$
13. 3-D T1 flrFAM $\left(\sigma_{\dot{ن}}\right)$	$0.75(0.15)$	$0.99(0.04)$	$0.67(0.12)$	$0.96(0.03)$
14. 3-D T1 flrFAM $\left(J_{\mathbb{I}}\right)$	$0.75(0.15)$	$0.99(0.03)$	$0.65(0.12)$	$0.96(0.02)$

2) Experiments with the TERRAVIC dataset: The ZMs was the best feature selected as explained above. 320 Any T1 flrFAM (with $\sigma_{\dot{ن}}$) classifier always gave the maximum generalization rate of 100%. Moreover, ${ }^{321}$ a 3-D T1 flrFAM classifier (with $J_{\mathbb{I}}$) performed clearly better than the corresponding 2-D T1 (interval) 322 flrFAM classifier (with $J_{\mathbb{I}}$).
3) Experiments with the JAFFE dataset: The dHMs was the best feature selected as explained above. 324 All flrFAM classifiers performed rather poorly. An inclusion measure $\sigma_{\dot{\cup}}$ typically produced better results ${ }_{325}$ than a Jaccard similarity measure $J_{\mathbb{I}}$.
4) Experiments with the TRIESCH I dataset: The HOG was the best feature selected as explained ${ }_{327}$ above. An flrFAM classifier on the average performed as good as or better than most classifiers. For ${ }_{328}$ the 2-D T1 (interval) flrFAM classifier, an inclusion measure $\sigma_{\dot{ن}}$ on the average produced clearly larger ${ }_{329}$ generalization rates than a Jaccard similarity measure $J_{\mathbb{I}}$; it was vice versa for the 3-D T 1 flrFAM classifier. 330 All computational experiments, for all benchmark datasets, with a T 2 flrFAM classifier produced a ${ }_{331}$ generalization rate around $5 \%-15 \%$ less than the generalization rate of its corresponding T 1 flrFAM ${ }_{332}$ classifier. On the average, a 3-D T2 flrFAM classifier clearly outperformed its 2-D T2 (interval) counterpart.

In order to show the significance of the results for each classifier we carried out Receiver Operating ${ }_{334}$ Characteristics (ROC) curve analysis [16]. For lack of space, we only display the corresponding Area ${ }_{335}$ Under Curve (AUC) statistics (i.e., average and standard deviation) in Table 3 for all classifiers and ${ }^{336}$ all datasets in " 10 -fold cross-validation" computational experiments - Recall that the closer a classifier's ${ }_{337}$ AUC is to number 1 the better the classifier performs. Table 3 confirms comparatively the high confidence ${ }_{338}$ regarding the good performance of a 3-D T1 flrFAM classifier for all datasets but the JAFFE dataset.

D. Discussion of the Results

 ${ }_{342}$ applicable on INs induced from vectors of (image) features; alternatively, traditional classifiers were ${ }_{343}$ applied comparatively on the aforementioned vectors of features. In the context of this work, we did 344 implement all the classifiers in order to compare them fairly on the same data for training/testing.The pF image representation engaged one (no.features)-tuple of T1 INs per class, whereas the ${ }_{346} \mathrm{pFV}$ image representation engaged one T 2 IN per class. A pF (respectively, pFV) image representation ${ }_{347}$ was processed by a T1 (respectively, T2) flrFAM classifier. For any flrFAM classifier we tested all ${ }_{348}$ combinations of (2-D interval)/3-D INs with $\sigma_{\dot{\cup}} / J_{\mathbb{I}}$ functions. On the one hand, T 1 flrFAM classifiers 349 typically demonstrated a competitive image pattern recognition capacity compared to traditional classifiers. ${ }_{350}$ On the other hand, the T2 flrFAM classifiers on the average performed clearly $(5 \%-15 \%)$ less than their 351 corresponding T1 counterparts thus confirming previous work [24]; that is, this work confirmed that the pF 352 is a better image representation than the pFV representation. Our explanation is that the pFV representation ${ }_{353}$ mingles features from different data dimensions thus deteriorating their discriminative power.

355 outperformed its 2-D T1 (interval) counterpart. Our explanation is that a 3-D T1 IN represents more 356 data statistics. More specifically, given that an IN represents a distribution, a 3-D T1 IN represents a 357 distribution of (image features) distributions. Likewise, for the same reason, the (recorded) generalization ${ }_{358}$ rates for a 3-D T2 flrFAM classifier were clearly better than for its 2-D T2 (interval) counterpart.

An inclusion measure $\sigma_{\dot{\cup}}(.,$.$) , in general, produced better generalization rates than a Jaccard similarity$ ${ }_{360}$ measure $J_{\mathbb{I}}(.,$.$) . The latter was attributed to the fact that J_{\mathbb{I}}(A, B)$ equals zero for nonoverlapping intervals ${ }_{361} A$ and B. In additional experiments we confirmed that the inclusion measure $\sigma_{\cap}(A, B)$ produced very 362 similar results to the ones reported above for the $J_{\mathbb{I}}(A, B)$, for the same reason.

The average generalization rate of a 3-D T1 flrFAM classifier was not (statistically) significantly different 364 from the corresponding average of the best of ten traditional classifiers in three benchmark image pattern 365 recognition problems, namely YALE, TERRAVIC and TRIESCH I. Only for the JAFFE benchmark, the ${ }_{366}$ performance of any 3-D T1 flrFAM classifier clearly lagged behind the performance of three traditional ${ }_{367}$ classifiers, namely $\mathrm{kNN}(\mathrm{k}=1)$, RBF ELM and (polynomial) SVM. We point out that our work in [16] 368 has reported a competitive performance of an flrFAM classifier with the performance of a $\mathrm{kNN}(\mathrm{k}=1)$ ${ }_{370}$ different types of features (moments), concatenated and, second, a different FLR classifier in [16] induced ${ }^{371}$ more than one (N-tuple of INs) granule per class; whereas, here we used only one type of features as 374 here for generalization. More specifically, recall that no flrFAM classifier was used for selecting the 375 "best" feature type per benchmark dataset. Hence, the generalization rate of an flrFAM classifier here ${ }_{376}$ truly demonstrates its capacity for generalization. ${ }_{379}$ parameter optimization typically requires substantial time due to the application of stochastic optimization 380 techniques including a GA. However, note that previous work has demonstrated that GA application can 381 be substantially accelerated by a parallel GA implementation [22].

Compared to the aforementioned traditional classifiers, an flrFAM scheme here was only faster than the ${ }_{383}$ (backprop) neural network. Nevertheless, recall that the performance of some traditional classifiers such 384 as the RBF ELM/SVM depends critically on certain parameters (e.g., polynomial order, C, γ, etc) that ${ }_{385}$ can be tuned by grid search techniques [8]. We experimentally confirmed that a grid search applied to an ${ }_{386}$ flrFAM scheme here, results in a learning (time) complexity comparable to the learning (time) complexity 387 of a traditional classifier. We also remark that an flrFAM testing (time) complexity is comparable to the 388 testing (time) complexity of a traditional classifier.

VII. Conclusion

This work has introduced a mathematically sound extension of the flrFAM neural classifier to the 391 (non-Euclidean) space of T1/T2 INs based on novel similarity/inclusion measure functions. A new type 392 of learning was pursued, that is learning distributions of (image features) distributions. Comparative 393 computational experiments regarding image pattern recognition have demonstrated the viability of the 394 proposed techniques. The good generalizability of the proposed classification schemes was attributed to 395 the synergy of INs, which can represent all order data statistics [14], with image feature descriptors.

The T1/T2 N-tuple of INs (granules) induced by an flrFAM classifier were interpreted as rules that 397 may represent large numbers of data. In this sense, an flrFAM classifier could be valuable for data 398 mining abstract representations in big data and deep learning applications [1]. Apart from interpreted
${ }_{399}$ probabilistically, an IN can also be interpreted possibilistically [21]. Hence, based on the isomorphism 400 between T1/T2 INs and T1/T2 fuzzy sets, the mathematical tools proposed here are straightforward 401 applicable to T2 fuzzy sets. The latter is significant due to the fact that within the fuzzy sets and systems 402 community its "(linguistic) T2 component" currently clearly leads the way [20].

An advantageous ELM extension from space $\left(\mathbb{R}^{N}, \leq\right)$ to a cone $\left(\mathbb{F}^{N}, \preceq\right)$ of INs is feasible based on 404 the fact that the algebraic operations of ELMs [2], [10] can be carried out in cones of T1/T2 INs [17]. 405 Therefore, potential future work includes an extension of ELMs to a cone of INs with substantial expected 406 benefits regarding the data processing speed. More specifically, even though an IN-based scheme (such 407 as an flrFAM) processes its data (INs) slower than an ELM processes its own data (vectors), an IN-based 408 scheme can improve the overall data processing speed by representing thousands/millions (or more) data 409 by a single IN. In the aforementioned manner, an ELM extension to a cone of INs is promising toward 410 further improving the data processing speed in certain big data applications.

Future work extensions of the flrFAM classifier will seek to optimize the number of (N-tuple of INs) ${ }_{412}$ granules induced per class as well as the induction of INs.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.
[2] E. Cambria, "Extreme learning machines," IEEE Intelligent Systems, vol. 28, no. 6, pp. 30-59, 2013.
[3] V. Cross, X. Yu, and X. Hu, "Unifying ontological similarity measures: A theoretical and empirical investigation," Intl. J. of Approximate Reasoning, vol. 54, no. 7, pp. 861-875, 2013.
[4] Y. Dou, L. Zhu, and H.S. Wang, "Solving the fuzzy shortest path problem using multi-criteria decision method based on vague similarity measure," Applied Soft Computing, vol. 12, no. 6, pp. 1621-1631, 2012.
[5] E. Esmi, P. Sussner, H. Bustince, and J. Fernández, "Theta-fuzzy associative memories (Theta-FAMs)," IEEE Transactions on Fuzzy Systems, vol. 23, no. 2, pp. 313-326, 2015.
[6] E. Esmi, P. Sussner, and S. Sandri, "Tunable equivalence fuzzy associative memories," Fuzzy Sets and Systems, doi: http://dx.doi.org/10.1016/j.fss.2015.04.004
[7] Extreme Learning Machines: http://www.extreme-learning-machines.org
[8] C.-W. Hsu and C.-J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415-425, 2002.
[9] D. Hofmann, A. Gisbrecht, and B. Hammer, "Efficient approximations of robust soft learning vector quantization for non-vectorial data," Neurocomputing, vol. 147, pp. 96-106, 2015.
[10] G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.

432 [

433 [12] V.G. Kaburlasos, Towards a Unified Modeling and Knowledge-Representation Based on Lattice Theory. Heidelberg, Germany: Springer,

467 [29] M.E. Valle and P. Sussner, "Quantale-based autoassociative memories with an application to the storage of color images," Pattern Recognition Letters, vol. 34, no. 14, pp. 1589-1601, 2013.

469 [30] Yale face database URL: http://vision.ucsd.edu/content/yale-face-database.

