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Abstract

This paper describes the recognition of image patterns based on novel representation learning techniques by
considering higher-level (meta-)representations of numerical data in a mathematical lattice. In particular, the interest
here focuses on lattices of (Type-1) Intervals’ Numbers (INs), where an IN represents a distribution of image features
including orthogonal moments. A neural classifier, namely fuzzy lattice reasoning (flr) fuzzy-ARTMAP (FAM), or
flrFAM for short, is described for learning distributions of INs; hence, Type-2 INs emerge. Four benchmark image
pattern recognition applications are demonstrated. The results obtained by the proposed techniques compare well
with the results obtained by alternative methods from the literature. Furthermore, due to the isomorphism between
the lattice of INs and the lattice of fuzzy numbers, the proposed techniques are straightforward applicable to Type-1
and/or Type-2 fuzzy systems. The far-reaching potential for deep learning in big data applications is also discussed.

Index Terms- Computer vision, fuzzy lattice reasoning, intervals’ number, Jaccard similarity measure, type-2

fuzzy set

1 I. INTRODUCTION

> Over the past decades, traditional computational intelligence has faced bottlenecks regarding algorithmic
slearning. In particular, one bottleneck has been the (slow) learning speed mainly due to gradient-based

+ algorithms employed in theéV-dimensional Euclidean spade”. Note that due to the conventional

Corresponding author Vassilis G. Kaburlasos contact e-mail: vgkabs@teikav.edu.gr



s measurement procedure [12], traditional computational intelligence techniques are intimately linked to
s the notion of “feature space” such that an object is represented by a point (i.e., a vector of numbers)
7in RY. A vector data representation is popular mainly due to the abundance of analytical/computational
s tools available inRY. Nevertheless, a vector data representation itself is another bottleneck since it cannot
s represent sophisticated (data) semantics.

1 In response, on the one hand, novel techniques emerged to meet the (slow) learning speed including
1 the extreme learning machines (ELMSs) [2], [10]; the latter have reported good generalization performance
12 even thousands of times faster than conventional feedforward neural networks. On the other hand, there
13iS @ sustained interest in learning in non-(geo)metric spaces involving data other than vectorial ones [9].
12 Non-vectorial data such as text, images, graphs, ontologies, hierarchies, schemata, etc, have proliferate
1s With the proliferation of computers. Therefore, there is a need to deal with non-vectorial (or, equivalently,

1s nonnumerical) data representations as well. We remark that in the context of “machine learning” it is
17 accepted that the success of machine learning algorithms depends on the data representation [1]; moreove
18 representation learning might be the crux of the matter regardésyp learningi.e., induction of more

19 abstract — and ultimately more useful — data representations.

2 By departing from a vector space, one is confronted with the challenging task of defining (dis)similarity

21 between non-vector data [9]. A popular approach for dealing with nonnumerical data is by “ad-hoc”
2 transforming them to numerical ones. However, a problem with the aforementioned approach is that it
23 introduces data distortions that might result in irreversible performance deterioration. Another approach
22 for dealing with nonnumerical data is by developing domain-specific (mathematical) tools. Drawbacks of
»s the latter approach include: first, different mathematical tools need to be “ad-hoc” devised in different
2s (nonnumerical) data domains and, second, performance cannot, often, be tuned [3], [4]. Yet another
27 approach has been proposed lately based on mathematical lattice theory as explained next.

s The premise has been that popular types of data of interest in practical applications are lattice-ordered
20 [12]. In conclusion, lattice computing, or LC for short, has been proposed as “an evolving collection of

2 tools and mathematical modeling methodologies with the capacity to process lattice-orderpdrdsga

a1 including logic values, numbers, sets, symbols, graphs, etc” [6], [16], [29]. The existence of suitable real
22 functions on lattice-ordered data allows for “fine-tuning” as demonstrated in this work. An advantage of
23 LC is its capacity to rigorously compute with semantics represented by the lattice order relation. Specific

s examples of the LC approach are described in [13]. Recent trends in LC appear in [5], [14], [16], [27].



s In the context of LC, of special interest here are Intervals’ Numbers (INs) [13], [16], [21], [22],

3 [26]. Recall that an IN is a mathematical object which can be interpreted either probabilistically or
7 possibilistically [21]. Similarities as well as differences between Type-1 (respectively, Type-2) INs and
s Type-1 (respectively, Type-2) fuzzy sets have been reported [15]. In the remaining of this work “Type-1"
s Will be denoted by “T1”, for short; likewise, “Type-2” will be denoted by “T2”. Our interest here is in

w0 digital image pattern recognition applications based on INs. We also discuss a potential enhancement of
a ELMSs.

«2 This paper builds on recently published work [16], [22], [24], [26] regarding human face recognition

s based on INs induced from orthogonal moments features. Differences with this work are summarized
a next. First, this work uses a (different) flrFAM classifier based on inclusion measure functions. Second,
ss this work also employs 3-D T2 INs such that one 3-D T2 IN is represented3iya2 x 4 matrix of real

s NUMbers. Third, this work employs comparatively additional features as well as additional classifiers in
« additional benchmark image pattern recognition problems. Furthermore, this work presents an improved
ss mathematical notation as well as extensions of inclusion measure functions to the space of T2 INs. In
s addition, this work introduces an axiomatically extended Jaccard similarity measure.

so The paper is organized as follows. Section Il summarizes a hierarchy of mathematical lattices. Section
s1 11l defines a similarity measure in a general lattice; moreover, it introduces Jaccard similarity measure
s2 extensions. Section IV outlines an flrFAM classifier. Section V describes the image pattern recognition
ss problem as well as a technique for computing 3-D T2 INs. Section VI demonstrates, comparatively, com-
s« putational experiments; it also includes a discussion of the results. Section VII concludes by summarizing

ss our contribution as well as by describing potential future work.

56 1. A HIERARCHY OF COMPLETELATTICES

sz This section introduces useful mathematical tools regarding INs [12], [13], [16], based on lattice theory.
ss  Definition 2.1: Let (P,C) be a mathematical lattice. A function: P x P —[0, 1] is calledinclusion

ss measurdff the following two properties hold.

o0 Cl ul w< o(u,w) =1.

00 C2 ul w=o(x,u) <o(x,w).

2 \We remark that an inclusion measure function P x P —[0, 1] can be interpreted as a fuzzy order

s3 relation on lattice(IP, ). Hence, the notations(u,w) ando(u C w) will be used interchangeably.



s In the following we summarize a hierarchy of complete lattices in seven steps and define certain
ss INClusion measure functions.

s Step-1 We assume a totally-ordered, complete lattite <) of real numbers, wherg& C R=RU
7 { —00, +00} with least and greatest elements denoted layndi, respectively. The corresponding inf)
s and sup ) operators are the min and the max operators, respectively. In léitice) we consider both
s9 @ Strictly increasing functiom : L. — [0, c0), such thatv(o) = 0 as well asv(i) < +o00, and a strictly
7o decreasing functiod : L — L, such that)(o) =i as well asf(i) = o.

n  Step-2 We assume the partially-ordered, complete latticeC) of (T1) intervals in latticgLL, <). The
7 corresponding infrd) and sup () operations are given by, b] N [c,d] = [aV ¢, bAd] and[a,b]U|c,d] =
73 [a A c,bV d], respectively. We remark that if vV ¢ £ b A d then, by definition,[a, b] N [¢, d] equals the
7 empty set (). Two inclusion measure functions, : I; x I; — [0,1] ando : I; x I; — [0,1] are given

75 in lattice (I;, ) based on a length functio¥i : I; — [0, 00) as follows.

1, for z = 0. )
on(x,y) =
D= v o 45 g
V(z) ? :
1, forz Uy = 0.

oy(T,y) = 2)

V(y) ‘
Tt forx Uy D 0.

7 Recall that a length functiol” : I; — [0, o0) is defined as

0, x=10
Vi(z =lay,as]) =

(0 () +v(a), 50

7 where functionsy(.) and(.) are as in Step-1.

»  Step-3 We assume the partially-ordered, complete lattite C) of T2 intervals in lattice(I;, C) —
7 Recall that a T2 interval is defined as an interval of T1 intervals. The corresponding)irgngd sup
s (U) operations are given bla, as], [by, ba]] N [[c1, 2], [di, dao]] = [[a1 A c1, a2 V ¢3], [by V di, by A ds]], and
a1 [[ay, as), [b1, ba]] U [[c1, cal, [d1, da]] = [[a1 V c1, a2 A el [b1 A dy, by V ds]], respectively. We remark that if
82 [a1 Acy,aVeo] € [b1Vdy, by Ads] then, by definition][ay, as], [b1, ba]] N [[c1, co], [d1, do]] equals the empty
s3 set (). Two inclusion measure functions, : I, x I, — [0,1] ando, : I, x I, — [0, 1] are given in lattice

s (I, C) based on a length functiovi : I, — [0, 00) as follows.



1, bl > bg.

0, by < bg,by Vdy > by Ads.

on (HCL17 a2]7 [bla b2“ g [[617 62]7 [dlu d2]]> == O, b]_ S bQ, bl V dl S b2 A\ dQ, (3)
[(11 A C1, Q9 V CQ] Z [bl V dl, bg A dQ}
V({[a1,a2],[b1,b2]]N([[c1,c2],[d1,d2]]) i
\ ool bl , otherwise
1, b1 > bQ.
oy ([[ar, a2, [br, ba]] € [[e1, ca], [dr, do]]) = {0, by < by, dy > ds. (4)

V ([[e1,¢2],[d1,d2]])

Vsl bal s cal ) Otherwise

ss  Recall that a length functiol” : I, — [0, o0) is defined as

0, T =

0
V(z = [la1, as], [br, b2]]) =
v(ar) +v(0(a)) +v (0 (b)) +v(b), D0

ss  Where functionsy(.) and(.) are as in Step-1.

s Step-4 We assume the partially-ordered latti@, <) of (T1) Intervals’ Numbers, or (T1) INs for short.

s Recall that an IN is defined as a functién: [0, 1] — I; that satisfies botth,; < hy, = F),, O Fj, and

o VX C [0,1] : NpexFr = Fy x. In particular, an “interval (T1) INF™ is defined such thak}, = [a, b], Vh €

% [0, 1]; in other words, the aforementioned interval (T1) INe F, represents the intervad, b] € I;. An

a1 IN is interpreted as an information granule [12]. An lNcan equivalently be represented either by a set
o2 Of intervals F,,, h € [0,1] (an IN’s interval-representation or by a functionF'(z) = \/ {h:z € F,}

hel0,1]
a3 (an IN’s membership-function-representatjoiror F, G € F; we have

F<G& (Vhel0,1]:F,C Gy e (Vo el: Flz) < G(x)). (5)

o« The heighthgt(F') of an IN F' is defined as the supremum of its membership function values, i.e.,
ss hgt(F) = \/ F(z). The corresponding infA)) and sup {) operations in lattic§[F,, <) are given by

w (F'AG)p :xe;h NGy and (FYQ), = F, UG, respectively, forh € [0, 1]. Next, we define two inclusion

o» measure functions, : F; x F; — [0,1] andoy : F; x F; — [0,1] based on the inclusion measure

e functionson : I; x I; — [0,1] andoy, : I; x I; — [0, 1], respectively.



1
7. (E.F) = [ on(En. Fa)ah. (6)
0

O'y(E, F) Z/UU(Eh,Fh)dh. (7)
0

e Specific advantages of an inclusion measure function in a Fuzzy Inference System (FIS) context have
100 been reported [13].

w Step-5 We assume the partially-ordered, complete latfi€g <) of T2 INs — Recall that a T2 IN is

12 defined as an interval of T1 INs; that is, a T2 IN by definition equ&ldV] ={X e F;: U < X < W},

w3 WhereU is called lower IN, andV is called upper IN (of the T2 INU, W]). In the latter sense we say

ws that X is encoded in[U, W]. The corresponding infA) and sup {) operations in lattic§F,, <) are

10s given by (F A G),, = F,NG), and(FYQ);, = F, UG, respectively. We can define two inclusion measure
ws functionso, : Fy x Fy — [0,1] and oy : Fy x Fy — [0, 1], based on the inclusion measure functions
w 0n Iy x I, — [0,1] and o, : I x I, — [0, 1], using equations (6) and (7), respectively. The computation
108 Of the join and meet operations in the lattid@®,, <) is demonstrated next.

w9 Consider the two T2 IN§f, F] and[g, G] shown in Fig.1(a), wherg, F', g, G € F; such thatf < F and

uw g <X G. The (join) T2 IN[f, F|Y[g,G] = [f A g, FYG] is shown in Fig.1(b), wheréf A ¢), = 0,Vh €

wu (hy, 1]. Fig.1(c) shows the (meet) T2 IN, F| A [9,G] = [fYg, F A G], where(fYg), = 0,Yh € (hs, 1],

uz2 moreover(F A G), = 0,Yh € (hy, 1].

us  Step-6 The T1/T2 INs above have 2-dimensional (2-D) function representations, which can be extended
14 to 3-dimensional (3-D) as follows. A 3-D T1 (respectively, T2) IN is defined as a fundétiofp, 1] — F,
uswhereF = F; (respectivelyF = F,), which satisfies:; < 2z, = F,, = F.,. In other words, a 3-D T1

16 (respectively, T2) INF' has 3-dimensional function representatibn such that for constant = z, the

w7 I, namely zSlice, is a 2-D T1 (respectively, T2) IN. A 3-D T2 IN example is plotted below. The symbol
us IF, denotes either the set of 3-D T1 INs or the set of 3-D T2 INs. It turns out(fhat<) is a lattice

us Whose order isF/ < F' < E, < F,,Vz € [0,1]. An inclusion measure functiosy, : F, x F; — [0,1] is

0 defined as

O’FQ(E, F) U]I((Ez)h, (Fz)h)dhd27 (8)

I
O\H
o\“_l



FYG

h

(b)

Fig. 1. (a) T2 INs[f, F] and[g, G], wheref, F, g, G € F1 such thatf < F andg < G. (b) The (join) T2 IN[f, F]Y[g,G] = [f L g, FYG].
(c) The (meet) T2 IN[f, F] A [9,G] = [fYg, F A G].

12z Whereoy(.,.) may be given by any one of the equations (1), (2), (3) and (4).
122 Step-7 We assumeV-tuples of T1/T2 INs, where on&-tuple T1/T2 IN will be indicated by a boldface

122 Symbol, e.gX = (Xi,..., Xy). Given non-negative numbers, ..., \y such that\; +---+ Ay =1, an

124 INclusion measure is defined in the complete latticéVefuple INs by the following convex combination

N
UC<<X17 S 7XN)7 (Yla s 7YN)) = Z)\ZUZ(X’H Y;) (9)
i=1
125 [l. SIMILARITY MEASURES ONLATTICES

126 Various definitions for (dis)similarity have been proposed in the literature in various data domains [3],
127 [4], [25] without consensus. Motivated by a popular definition of similarity between fuzzy sets [25], we
128 propose the following definition in a mathematical lattice.

o Definition 3.1: Let (P,C) be a mathematical lattice. A function: P x P —[0, 1] is calledsimilarity

130 measurdff the following three properties hold.



wm Sl u=w<e s(u,w) = 1.

12 S2 s(u,w) = s(w,u).

1w S3ul vl w= s(u,v) > s(u,w) < s(v,w).

v Let (P,C) = (P,54) X -+ X (Py,En) = (P; X -+ x Py, Xx---x Cy) be the Cartesian
ws product of N lattices; let functions; : P; x P; — [0,1] be a similarity measure on latticé;, C),
wi € {1,...,N}; let \;,..., Ay be non-negative numbers such that+ --- + Ay = 1. Then, as it
w7 Will formally be proven elsewhere, the function: P x P — [0, 1] given by the convex combination

1w S((Uy, ..., Uyn), Wh,...,Wnx)) = Ais1(Up, W) + -+ + Ansn(Un, Wy) is a similarity measure.

139 A. Jaccard Similarity Measure Extensions

1o Even though a number of similarity measures from the literature do not satisfy all the properties of
11 Definition 3.1, the populadaccard similarity measuréor, equivalently, Jaccard coefficient) given %

122 does satisfy them all. Next, we propose a parametric extension of the Jaccard similarity measure.

w  Let (I, C) be the complete lattice of either T1 intervals (ile= I;) or T2 intervals (i.e.] = [,), and

wlet V : T — [0,00) be a length function ofi. Then, as it will formally be proven elsewhere, the function

ws Jp - I x 1 —[0,1] given by Ji(A, B) = ‘;Eﬁggg, where A + (), is a similarity measure, namely extended
1 Jaccard similarity measure. For non-overlapping intervalnd B, Ji(A, B) equals zero and vice versa.
1 We extendJy(.,.) to the complete latticélF, <) of T1/T2 INs.
us Let (F, <) be the complete lattice of either T1 INs (i.&,= ;) or T2 INs (i.e.,F = ), and let
w V : 1T — [0, 00) be alength function on the corresponding lat{iteC ) of intervals. Then, as it will formally
10 be proven elsewhere for INs with continuous membership functions, the fungtioR x F —[0, 1] given
151 by Jp(A, B) = jl’JH(Ah, By)dh is a similarity measure.

0

152 Similarity measures can further be extended to 3-D T2 INs:

Ie(EF) = [ [ R(ED (F)u)dn (10)
0 O
s We remark thaUH((Ez)h, (Fz)h) = V((giggz)(f‘)z)h) V((gigfs)(}})z)h) = O-ﬂ(<Ez)h7 (Fz>h)ao((pz)h7 (Ez)h)
154 IV. AN INTERACTIVE FUzzY LATTICE REASONING (FLR) NEURAL CLASSIFIER

155 The flrFAM classifier is a single hidden layer neural architecture, inspired from the biologically mo-

156 tivated adaptive resonance theory [16] based on reasoning techniques [13]. This section proposes ar



157 enhancement of the flrFAM classifier in [16]. The latter was described by four algorithms: for clustering,
1ss for training (Structure Identification subphase), for training (Parameter Optimization subphase) and for
150 testing. The difference between the algorithms employed here and the algorithms in [16] is that a neuron
1o activation functiona : F)Y x F)Y — [0, 1] here may be either a similarity measure or an inclusion measure
161 function rather than the inclusion measure functionl?¥ x IV — [0, 1] in [16]. Hence, here we compute

162 With distributions defined on a neighborhood rather than with the neighborhood alone.

we  GivenX = (Xy,...,Xy), W = (Wy,...,Wy) € FJ, an activation function : FY x F)Y — [0, 1]

1641S computed by the convex combinatier{X, W) = \jaq (X1, W1) + -+ + Ayvan(Xn, Wy), where

w o Fg xFy —[0,1], ¢ € {1,..., N}, is an activation function in the latticé,, <). In particular, first,

166 the activation functionn; can be an inclusion measure given by equation (8); therefore, in this case,
157 the activation functionoy, (X, W) filters h-level-wise an input datunX € F) “bottom-up”. Second,

168 the activation functiony; can be the extended Jaccard similarity measure given by equation (10); hence,
10 in this case, the activation functiof, (X, W) simultaneously filters:-level-wise both an input datum

o X € FY “bottom-up” and it filters a class cod® < F)Y “top-down” as indicated in the remark following

11 equation (10).

12 The flrFAM algorithm here was inspired from Active Learning [19]. Nevertheless, active learning
s requires human intervention. We improved on active learning by assuming a “bottom-up”-“top-down”
172 interplay between the training data and the class (learned) codes as it was explained above. In particular
ws a functionoy, (Wy, X;) always filtersh-level-wise W ; € IE‘;V “top-down”. In conclusion,W ;Y X; may

176 conditionally replacéW ; depending on the (diagonal) size W ;Y X; [12]. The capacity of the flrFAM

177 classifier for generalization is demonstrated by the successraten the testing dataset. AN-tuple of

178 INS (granule) induced by the flrFAM classifier is interpreted as decision-making knowledge (i.e., a rule)

179 Induced from the data [15], [16], [21], [22].

180 V. THE IMAGE PATTERN RECOGNITION PROBLEM AND ITS DATA REPRESENTATION

111 This section demonstrates the capacity of our proposed techniques in image pattern recognition applica-
182 tions. The latter were selected due to the vast number of images generated globally, especially from mobile
183 devices; hence, automated image learning as well as image pattern recognition is motivated, interesting

12 @S well as timely.



10

1s A. Data Preprocessing

1ss  We carried out the following three information processing tasks: #1. Image Acquisition, #2. Pattern
17 Localization, and #3. Feature Extraction. Note that, typically, an image is represented in the literature as
1 an N-dimensional point in the Euclidean spaRé€ by extracting features such as wavelet features, facial

180 A@ttributes, Gabor features, Zernike moments, etc [1], [16].

10 This paper retains a basic Feature Extraction employed elsewhere [16], [22], [24], [26]; that is, a
101 population of numerical features is induced from an image to be learned/recognized. In particular, we
1wz induced orthogonal moments as well as other features due to their practical effectiveness [16], [22],
103 [26]. Then, a distribution of features is “meta-represented” by an IN [24] induced by algorithm CALCIN
14 [13]. A recent work [27] has demonstrated specific advantages for an IN meta-representation including a

105 Significant dimensionality reduction as well as a superior pattern recognition performance.

156 B. Image Pattern Representation

17 Recall that a population of features, which are induced from an image pattern, can be represented by a
18 (T1) IN. This section investigates the representation of a class by a 3-D T1 IN (or a 3-D T2 IN) toward
190 representing the distribution of T1 INs used for inducing it.

20 For example, consider the seventeen trivial T2 [Ns C;], ¢ € {1,...,17} in Fig.2(a). Fig.2(b) displays

201 the corresponding lattice joiike}/[[CZ-, G = [iélci’izlci]’ I ={1,...,17}. Note that any inclusion measure

202 function o : Fo x Fy — [0, 1] results ino([C;, C], [jeICj,j\ErICj]) =1,1€ I ={1,...,17} according

203 to Definition 2.1. The lattice joir;\e/I[CZ-,Ci] = [jeICj,j\e(IC’j] is a (2-D) T2 IN whose lower membership

204 fUNction j)eLICj has heighthgt(jjetICj) = 0.6471 and whose upper membership functijoén]Cj has height

205 hgt(jwefl(]j) =1, as shown in Fig.2(b).

26 A disadvantage of a 2-D T2 IN is that it does not retain any information regarding the distribution of
207 INS used to induce it. We will try to turn the aforementioned disadvantage into an advantage by inducing
208 AN “h-secondary membership functions” as explained in Fig.3(a), where such functions will be induced
awat h = 0.135 and h = 1, respectively. Fig.3(b) displays twhk-secondary membership functions along

20 the line throughh = 0.135, with supports[2.65, 3.86] and [6.3,7.3], respectively; furthermore, Fig.3(c)

2u displays oneh-secondary membership function along the line throtigh 1, with support[4.6, 5.9].

22 Fig.4(a) displays the 3-D surface, which is induced from all khgecondary membership functions,

a1z truncated by a plane through= 0.3 parallel to ther — h plane. By definition, a zSlice is the intersection
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0.8

0.64711

h axis

041

0.2

0.6471

h axis

Fig. 2. (a) Seventeen trivial T2 INE;, C;],7 € {1,...,17} are displayed in their membership-function-representation. (b) The lattice join
VIC:, Cs] = [_JELIQ, LC"]’ wherel = {1,...,17}.

ier
214 Of the latter surface with a plane throughe [0, 1] parallel to ther — h plane. By construction, a zSlice

21s includes two functions, namelgrimary membership functionslefined by the ends of the supports of
216 all the h-secondary membership functions on a zSlice. For example, the zSlice=fdr of the surface

217 calculated from the INs in Fig.2(a) is the (2-D) T2 IN shown in Fig.2(b). Fig.4(b) displays the two
218 primary membership functions on the zSlice shown in Fig.4(a)zfoe 0.3. The (truncated) surface

210 Shown in Fig.4(a) is a 3-D T2 IN; whereas, the “T2 INs” shown in Fig.1 are 2-D T2 INs. Recall that
20 the previously defined “(T1) INs” are alternatively called 2-D (T1) INs. Likewise, 3-D (T1) INs can be

221 induced by computing-secondary membership functions as detailed above.
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h axis

1 i i i \
] 265 38646 5%3 73 10
X axis
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0.8

Z axis

0.6

0.4r

0.21

0 265 3.86 63 7.3 10
X axis

(a)

0.8

Z axis

0.6

0.4r

0.2

] 46 59 10
X axis

(b)

Fig. 3. (@) h-secondary membership functions will be inducedhat 0.135 and h = 1, respectively. (b) Twoh-secondary membership
functions ath = 0.135 with supports[2.65, 3.86] and [6.3, 7.3], respectively. (c) Onéi-secondary membership function at= 1 with
support[4.6, 5.9].

222 VI. EXPERIMENTS AND RESULTS

223 In this section we provide experimental evidence regarding the capacity of our proposed techniques in
222 iMmage pattern recognition applications. More specifically, we have dealt with image pattern recognition

225 @S a classification problem as explained below.
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0.6471r

h axis

0 2 4 6 8 10
X axis

(a (b))

Fig. 4. (a) A 3-dimensional surface computed from theecondary membership functions of the INs in Fig.2(a), truncated (the surface)
by a plane throughr = 0.3 parallel to thex — & plane. (b) The two primary membership functions on the zSlice of Fig.4(a):(fer0.3).

26 A. Benchmark Datasets and Feature Extraction

22z We have employed the following four benchmark datasets.

28 1) YALE dataset [30]: It regards face recognition. It contaiis (8-bit) images $20 x 243 pixels each)

220 Of 15 individuals (i.e., classes). More specifically, there Bremages per subject, one per different facial

23 eXpression or configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-light, sad,
231 Sleepy, surprised, and wink. In order to remove irrelevant image content, the images were preprocessec
222 by the Viola-Jones face detector followed by ellipse masking as described in [16]. The resulting localized
233 faces were cropped to a fixed size 3¥ x 32 pixels each.

20 2) TERRAVIC dataset [11]: It regards infrared face recognition. It cont2in508 images of20 persons

2s under different conditions such as front, left and right poses, indoor/outdoor environments with glasses
23s and/or hat accessories; each image hag8-hit, 320 x 240 pixels size. We used) images per person for

237 the first 10 persons (i.e., classes) as described in [26].

s 3) JAFFE dataset [18]: It regards facial expression recognition. It corkahfontal images Z56 x 256

230 pixels each) ofl0 different persons corresponding Tocommon human facial expressions (i.e., classes),

20 NamMely neutral (30), angry (30), disgusted (29), fear (32), happy (31), sad (31), and surprise (30) regarding
21 Japanese female subjects, where a number within parentheses indicates the number of images availabl
212 per facial expression. In order to remove irrelevant image content, the images were preprocessed as ir
23 the YALE dataset above. In conclusion, face imageg6of x 160 pixels each were produced.

24 4) TRIESCH | dataset [28]: It regards hand posture recognition. It contalis images (28 x 128
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TABLE 1
CHARACTERISTICS OF THE IMAGE DATASETS USED INLO-FOLD CROSSVALIDATION EXPERIMENTS.

FEATURE TYPE #INSTANCES #TRAINING DATA #TESTING DATA  #CLASSES

DATASET NAME ~ (#FEATURES) PER FOLD PER FOLD

YALE LBP (59) 165 149 16 15
TERRAVIC ZMs (16) 700 630 70 10
JAFFE dHMs (16) 213 192 21 7
TRIESCH | HOG ( 9) 240 216 24 10

225 pixels each) ofl0 hand postures (i.e., classes) regardidgoersons in dark background.

s It is understood that none of the above mentioned datasets is “big (data)”; nevertheless, any of the
27 above datasets is big enough for the objectives here, where a large number of experiments were carriec
228 OUt toward comparing various classifiers.

29 We extracted six types of features per image. More specifically, we computed four different families
250 Of orthogonal moments including Zernike (ZMs), Gaussian-Hermite (GHMSs), Tchebichef (TMs) and dual
251 Hahn (dHMs) moments [23]; the order of each moment family was selected such thatimensional

22 Vector was produced. Another two types of features, popular in face recognition applications, were
253 extracted, namely the Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) [24].
24 Regarding LBP, uniform patterns of2, N) = (1, 8) regions were computed. The vector length for LBP

s and HOG wash9 and 9, respectively.

s Table 1 summarizes the characteristics of the image datasets used in our 10-fold cross-validation
257 experiments. More specifically, the first column in Table 1 indicates the type of (image) feature that
258 produced the best classification results for a dataset as well as the corresponding number of input features
250 FOr instance, for the YALE dataset, the best classification results were obtained for the 59 LBP input
20 features, etc. The remaining columns in Table 1 display the number of instances (i.e., the total number
21 Of images used), the number of training data (per fold), the number of testing data (per fold), and the

262 NumMber of classes.

263 B. Experimental Setup

e We employed ten traditional classifiers including three versions of the Minimum Distance Classifier
26s (MDC) corresponding to the Chi Squarg?], Euclidean and Manhattan distances, respectively [26] —

266 AN MDC classifier here engaged “mean feature vectors” [24]. In addition, we employed a kNN (k=1), a
27 Naive-Bayes, an RBF ELM, a three-layer feedforward backpropagation Neural Network, and three types

263 Of Support Vector Machines (SVMs) including linear, polynomiit‘(order) and RBF, respectively — The
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260 Neural Network dimensions wer@uo. features) x (no.features) x (no.classes). Both RBF SVM and

20 RBF ELM [7] used a pai(C, ) of tunable parameters computed optimally by the grid search method [8].

2n In conclusion, the pairéC, v) = (2°,271%) and(C, ) = (2'2,2*) were calculated and used for RBF SVM

a2 and RBF ELM, respectively, for all datasets. We also employed flrFAM classifiers as explained below.
23 An fIrFAM classifier processed INs induced from vectors of features, whereas an alternative classifier
21 processed the corresponding vectors of features instead.

s An flrFAM classifier represented a class by aNetuple IN. In particular, we used two different class

276 Fepresentations, namely per Feature (pF) and per Feature Vector (pFV), respectively [24] as follows. First,
277 regarding pF, a T1 IN was induced from all values of a feature (i.e., dimension) in a class; second,
s regarding pFV, a T2 IN was induced from all T1 INs in a class, where one T1 IN was representing
29 @N image. Hence, the pF represented a class by(oengeatures)-tuple of T1 INs, whereas the pFV

20 represented a class by one T2 IN. Note that a T1 IN was either an interval in 2-D (thus resulting in a
281 Class representation by a hyperbox) of it could be a 3-D T1 IN; the former (hyperbox) IN representation
2.2 Was pursued by a “2-D T1 (interval) flrFAM” architecture, whereas the latter was pursued by a “3-D T1
283 fIFFAM” architecture. Likewise, a T2 IN could be either a “2-D T2 (interval) IN” representation, pursued

22 Dy @ “2-D T2 (interval) flrFAM” architecture, or a “3-D T2 IN” one pursued by a “3-D T2 flrFAM”

2ss architecture. In all cases, we employed the IN interval-representation with32 [13]. The activation

26 function employed by an flrFAM classifier was based on eithgt, .) or Ji(., ).

257 For every classifier, on every dataset, we carried out a “10-fold cross-validation” computational exper-
2s Iment. More specifically, a dataset was partitioned in ten parts; nine-tenths of the dataset were used for
280 training, whereas the remaining one-tenth was used for testing a classifier. In turn, all tenths of the dataset
200 Were used for testing. Care was taken so that all classes were represented fairly in both the training data
201 and the testing data. The same training/testing data were used by all classifiers. As generalization rate
22 We define the percentagé) of the testing dataset classified correctly. For a “10-fold cross-validation”

203 COMputational experiment we recorded both the minimum and the maximum generalization ra@es in

200 COMputational experiments as well as the corresponding average (ave) and standard deviation (std).

25 Regarding an flrFAM classifier we employed 10% of the training data for validation toward optimal

206 Parameter estimation [16]. More specifically, parameter optimization was pursued by a Genetic Algorithm
207 (GA) such that the phenotype of an individual (flrfFAM classifier) consisted of specific values for the

208 tWO parameters\ € Ry and u € R of two functions, i.e. the (strictly increasing) sigmoid function
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TABLE 2
YALE DATASET: PERCENTAGE (%) GENERALIZATION RATE STATISTICS IN10 COMPUTATIONAL EXPERIMENTS BY SEVERAL
CLASSIFIERS(LBP FEATURE)

CLASSIFIER NAME [ MIN, MAX]  AVE (STD)

01. MDC (Chisquare) [ 40.00, 80.00] 56.67 (11.44)
02. MDC (Euclidean) [ 26.67, 73.33] 42.67 (12.65)
03. MDC (Manhattan) [ 33.33,80.00] 53.33 (12.57)
04. kNN (k=1) [ 20.00, 53.33] 38.67 (10.80)
05. Ndve-Bayes [ 33.33, 60.00] 46.00 ( 7.98)
06. RBF ELM [ 40.00, 73.33] 60.67 ( 9.66)
07. Neural Network (backprop) [ 6.67, 20.00] 12.00 ( 4.22)
08. Linear SVM [ 20.00, 53.33] 36.67 (10.06)
09. Polynomial SVM [ 20.00, 33.33] 25.33 ( 5.26)
10. RBF SVM [ 33.33, 66.67] 48.00 (10.80)
11. 2-D T1 fifFAM (o)) [ 20.00, 46.67] 35.33 ( 9.45)
12. 2-D T1 firFAM (Jr) [6.67,33.33] 22.00(7.73)
13. 3-D T1 fIfFAM (@) [ 40.00, 73.33] 58.00 (11.78)
14. 3-D T1 fIrFAM (J1) [ 40.00, 73.33] 53.33 (12.96)

200 Ug(2; A\, 1) = 1/ (14 e @) and the (strictly decreasing) functidt{z; 1) = 2u — = as described in

200 Step-1 of section Il; an additional parameter was the baseline vigilan¢g6]. Hence, a total number

201 Of three parameters per feature were binary-encoded in the chromosome of an individual. For both an
sz inclusion measure and a Jaccard coefficient we used a convex combinatiok, with- - = \y = %

w3 10 avoid a combinatorial explosion of the number of Tables with results presented in this paper, we
a0 Selected the “best” feature type per benchmark dataset as follows. For each benchmark dataset, for eac
a0s Of the aforementioned ten traditional classifiers, we carried out a “10-fold cross-validation” computational
a0s €Xperiment per feature type. Hence, for each benchmark dataset we recorded six Tables (i.e., one Table pe
s07 feature type) including the generalization rate statistics of the ten traditional classifiers. Then, we selected
a08 the “best” feature type per benchmark dataset, that is the one that produced the highest overall classificatior
a00 Fesults on the testing data. The “best” statistics of the aforementioned ten traditional classifiers, for the

a0 YALE dataset, are displayed in Table 2.

a1 C. Computational Experiments and Results

sz We normalized the data by transforming them linearly to the unit intgfval. In the following, for

aiz lack of space, we display detailed generalization rate statistics regarding solely the YALE dataset.

aa 1) Experiments with the YALE dataséihe LBP was the best feature selected as explained above. Table
a5 2 displays the generalization rate statistics of the classifiers employed in this rather difficult classification
a1s problem. The 3-D T1 flrFAM classifiers on the average performed as good as or better than most classifiers,
a1z Whereas the 2-D T1 (interval) flrFAM classifiers on the average performed around medium. Typically, an

as inclusion measure; produced better results than a Jaccard similarity meagure
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TABLE 3
AREA UNDER THE CURVE (AUC) STATISTICS"(AVERAGE, STANDARD DEVIATION)” IN 10 COMPUTATIONAL EXPERIMENTS BY
SEVERAL CLASSIFIERS ON ALL DATASETS

DATASET NAME

CLASSIFER NAME YALE TERRAVIC JAFFE TRIESCH |

01. MDC (Chisquare) 0.73 (0.11) 0.99 (0.02) 0.68 (0.13)  0.95 (0.03)
02. MDC (Euclidean) 0.72 (0.11) 1.00 (0.01) 0.64 (0.12) 0.95 (0.03)
03. MDC (Manhattan) 0.73 (0.11) 1.00 (0.01) 0.65 (0.10)  0.94 (0.03)
04. kNN (k=1) 0.72 (0.10) 1.00 (0.00) 0.87 (0.07) 0.94 (0.03)
05. Ndve-Bayes 0.78 (0.12) 1.00 (0.00) 0.81 (0.10) 0.97 (0.03)
06. RBF ELM 0.90 (0.08) 0.83 (0.24) 0.80 (0.18)  0.92 (0.11)
07. Neural Network (backprop) 0.54 (0.09) 0.93 (0.05) 0.67 (0.09) 0.70 (0.09)
08. Linear SVM 0.86 (0.13) 1.00 (0.00) 0.84 (0.07)  0.88 (0.06)
09. Polynomial SVM 0.76 (0.16) 1.00 (0.00) 0.86 (0.04) 0.88 (0.07)
10. RBF SVM 0.87 (0.10) 0.95 (0.08) 0.76 (0.17)  0.92 (0.09)
11. 2-D T1 firfFAM (o -)) 0.72 (0.16) 1.00 (0.01) 0.71 (0.10) 0.95 (0.03)
12. 2-D T1 flrFAM (Jp) 0.72 (0.17) 1.00 (0.01) 0.73 (0.13) 0.95 (0.03)
13. 3-D T1 fIlfFAM (o)) 0.75 (0.15) 0.99 (0.04) 0.67 (0.12) 0.96 (0.03)
14. 3-D T1 flrFAM (Jr) 0.75 (0.15) 0.99 (0.03) 0.65 (0.12) 0.96 (0.02)

as  2) Experiments with the TERRAVIC dataséhe ZMs was the best feature selected as explained above.
20 Any T1 fIrfFAM (with o) classifier always gave the maximum generalization raté00fc. Moreover,

szn@ 3-D T1 flrFAM classifier (with.J;) performed clearly better than the corresponding 2-D T1 (interval)

a22 fIrFAM classifier (with Jp).

w23 3) Experiments with the JAFFE datasefthe dHMs was the best feature selected as explained above.
=4 All flrFAM classifiers performed rather poorly. An inclusion measurgtypically produced better results

a5 than a Jaccard similarity measure

w2 4) Experiments with the TRIESCH | datas@ihe HOG was the best feature selected as explained
227 above. An flrFAM classifier on the average performed as good as or better than most classifiers. For
=s the 2-D T1 (interval) flrFAM classifier, an inclusion measure on the average produced clearly larger

220 generalization rates than a Jaccard similarity meagyiewas vice versa for the 3-D T1 flrFAM classifier.

a0 All computational experiments, for all benchmark datasets, with a T2 flrFAM classifier produced a
s generalization rate aroun@lo — 15% less than the generalization rate of its corresponding T1 flrFAM

s22 Classifier. On the average, a 3-D T2 flrFAM classifier clearly outperformed its 2-D T2 (interval) counterpart.
.3 In order to show the significance of the results for each classifier we carried out Receiver Operating
s Characteristics (ROC) curve analysis [16]. For lack of space, we only display the corresponding Area
ss Under Curve (AUC) statistics (i.e., average and standard deviation) in Table 3 for all classifiers and
as6 all datasets in “10-fold cross-validation” computational experiments — Recall that the closer a classifier’'s
ss7 AUC is to numberl the better the classifier performs. Table 3 confirms comparatively the high confidence

s regarding the good performance of a 3-D T1 flrFAM classifier for all datasets but the JAFFE dataset.
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339 D. Discussion of the Results

a0 In this section we studied experimentally the performance of two different image representations,
s namely pF and pFV, in image pattern classification applications using a number of flrFAM classifiers
a2 @applicable on INs induced from vectors of (image) features; alternatively, traditional classifiers were
us applied comparatively on the aforementioned vectors of features. In the context of this work, we did
aa Implement all the classifiers in order to compare them fairly on the same data for training/testing.

us  The pF image representation engaged ¢ne.features)-tuple of T1 INs per class, whereas the

us PFV image representation engaged one T2 IN per class. A pF (respectively, pFV) image representation
arwas processed by a T1 (respectively, T2) flrFAM classifier. For any flrfFAM classifier we tested all
s combinations of (2-D interval)/3-D INs witle-/J; functions. On the one hand, T1 flrFAM classifiers

ao typically demonstrated a competitive image pattern recognition capacity compared to traditional classifiers.
ss0 ON the other hand, the T2 flrFAM classifiers on the average performed clééily (5%) less than their

ss1 corresponding T1 counterparts thus confirming previous work [24]; that is, this work confirmed that the pF
352 IS @ better image representation than the pFV representation. Our explanation is that the pFV representatior
353 mingles features from different data dimensions thus deteriorating their discriminative power.

2 Based on recorded experimental evidence, we confirmed that a 3-D T1 flrFAM classifier clearly
sss outperformed its 2-D T1 (interval) counterpart. Our explanation is that a 3-D T1 IN represents more
6 data statistics. More specifically, given that an IN represents a distribution, a 3-D T1 IN represents a
ss7 distribution of (image features) distributions. Likewise, for the same reason, the (recorded) generalization
s rates for a 3-D T2 flrFAM classifier were clearly better than for its 2-D T2 (interval) counterpart.

s0  An inclusion measure, (., .), in general, produced better generalization rates than a Jaccard similarity
ss0 measureJy(.,.). The latter was attributed to the fact thaf A, B) equals zero for nonoverlapping intervals

1 A and B. In additional experiments we confirmed that the inclusion measu(é, B) produced very

362 Similar results to the ones reported above for #he4, B), for the same reason.

3 The average generalization rate of a 3-D T1 flrFAM classifier was not (statistically) significantly different
s« from the corresponding average of the best of ten traditional classifiers in three benchmark image pattern
sss recognition problems, namely YALE, TERRAVIC and TRIESCH I. Only for the JAFFE benchmark, the

a6 performance of any 3-D T1 flrFAM classifier clearly lagged behind the performance of three traditional
se7 Classifiers, namely kNN (k=1), RBF ELM and (polynomial) SVM. We point out that our work in [16]

w8 has reported a competitive performance of an flrFAM classifier with the performance of a kNN (k=1)
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a0 Classifier due to two reasons: first, a flrFAM classifier in [16] emplogddple INs induced from six

a0 different types of features (moments), concatenated and, second, a different FLR classifier in [16] induced
s more than one {-tuple of INS) granule per class; whereas, here we used only one type of features as
a2 Well as only one {V-tuple of INs) granule per class.

a2z There is one more reason for characterizing “remarkable” the capacity of a 3-D T1 flFFAM classifier
a2 here for generalization. More specifically, recall that no flrFAM classifier was used for selecting the
ars “best” feature type per benchmark dataset. Hence, the generalization rate of an flrFAM classifier here
a7s truly demonstrates its capacity for generalization.

a7 Regarding the learning (time) complexity note that an flrFAM scheme involves both IN induction and
78 parameter optimization. More specifically, first, IN induction typically requires negligible time. Second,
s79 parameter optimization typically requires substantial time due to the application of stochastic optimization
a0 techniques including a GA. However, note that previous work has demonstrated that GA application can
a1 be substantially accelerated by a parallel GA implementation [22].

2 Compared to the aforementioned traditional classifiers, an flFfFAM scheme here was only faster than the
se3 (Dackprop) neural network. Nevertheless, recall that the performance of some traditional classifiers such
s @S the RBF ELM/SVM depends critically on certain parameters (e.g., polynomial @rder, etc) that

s can be tuned by grid search techniques [8]. We experimentally confirmed that a grid search applied to an
ses fITFAM scheme here, results in a learning (time) complexity comparable to the learning (time) complexity
a7 Of @ traditional classifier. We also remark that an flrFAM testing (time) complexity is comparable to the

ses testing (time) complexity of a traditional classifier.

389 VIlI. CONCLUSION

a0 This work has introduced a mathematically sound extension of the fllFAM neural classifier to the
sa1 (Non-Euclidean) space of T1/T2 INs based on novel similarity/inclusion measure functions. A new type
302 Of learning was pursued, that is learning distributions of (image features) distributions. Comparative
03 COMputational experiments regarding image pattern recognition have demonstrated the viability of the
s proposed techniques. The good generalizability of the proposed classification schemes was attributed tc
as the synergy of INs, which can represent all order data statistics [14], with image feature descriptors.

s The T1/T2 N-tuple of INs (granules) induced by an flrFAM classifier were interpreted as rules that

7 May represent large numbers of data. In this sense, an flrFAM classifier could be valuable for data

¢ MiNiNg abstract representations in big data and deep learning applications [1]. Apart from interpreted
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a0 probabilistically, an IN can also be interpreted possibilistically [21]. Hence, based on the isomorphism
w0 between T1/T2 INs and T1/T2 fuzzy sets, the mathematical tools proposed here are straightforward
«01 applicable to T2 fuzzy sets. The latter is significant due to the fact that within the fuzzy sets and systems
s02 COMMunity its “(linguistic) T2 component” currently clearly leads the way [20].

w3 An advantageous ELM extension from spa@", <) to a cone(F", <) of INs is feasible based on

s the fact that the algebraic operations of ELMs [2], [10] can be carried out in cones of T1/T2 INs [17].
s Therefore, potential future work includes an extension of ELMs to a cone of INs with substantial expected
06 benefits regarding the data processing speed. More specifically, even though an IN-based scheme (suc
w7 @s an flrFAM) processes its data (INs) slower than an ELM processes its own data (vectors), an IN-based
w08 SCheme can improve the overall data processing speed by representing thousands/millions (or more) dat:
w00 by a single IN. In the aforementioned manner, an ELM extension to a cone of INs is promising toward
a0 further improving the data processing speed in certain big data applications.

a1 Future work extensions of the flrFAM classifier will seek to optimize the numbeNefuple of INS)

a1z granules induced per class as well as the induction of INs.
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