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Abstract 

We present a Computer Assisted Diagnosis (CAD) system for Alzheimer’s disease (AD). 

The proposed CAD system employs MRI data features by applying a Lattice Computing 

(LC) approach. To this end feature extraction methods are adopted from the literature, 

which provide information allowing the discrimination of healthy people from Alzheimer 

diseased ones. The detection process is accomplished by a k-NN classifier defined in the 

LC context by handling this task from two different perspectives. Firstly, it performs 

dimensionality reduction over the high dimensional feature vectors and, secondly it 

classifies the subjects inside the lattice space by generating adaptively class boundaries. 

Computational experiments using a benchmark dataset regarding MRI data on AD 

patients have shown that the proposed classifier performs competitively to state-of-the-art 

classification models.   
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1. Introduction 

Alzheimer’s disease (AD) is becoming a form of pandemia all over the world (with a 

remarkable increase in developing countries) affecting people over 65 years old [1]. 

Currently there is no cure for this disease. However, an early non-invasive detection of 

AD can improve the life quality of the patients and their families. It can also help 

researchers in the development of appropriate treatments. Moreover, due to the significant 

economical impact of AD to society [2], the development of a system for an early 

automatic AD detection is economically highly desirable. 

Much effort has been expended in this direction, resulting in a variety of approaches 

for early AD detection using MRI data. These approaches address the extraction of 

discriminative features [3-8], the selection of the most appropriate features [6,9] from a 

large pool, and the selection of efficient classification models [5,10,11] from machine 

learning and computational intelligence. This paper reports works in the last two research 

directions, namely the feature vector dimensional reduction and the development of an 

efficient classifier. 

Both aforementioned two objectives are pursued here in the framework of Lattice 

Computing (LC). Lattice Computing was initially defined as “the collection of 

Computational Intelligence tools and techniques that either make use of lattice operators 

inf (infimum) and sup (supremum) for the construction of the computational algorithms or 

exploit Lattice Theory for language representation and reasoning” [12]. Lattice computing 

techniques have been used successfully in a number of applications including, industrial 

dispensing [13], structure identification [14], human facial expression recognition [15], 

face recognition using thermal infrared images [16], etc. 

The contribution of this work is twofold: (1) the employment of the LC framework for 

dimensionality reduction of the feature vectors extracted from Magnetic Resonance 

Imaging (MRI) data, and (2) the detection of Alzheimer’s disease. The former novelty is 

accomplished by the Intervals’ Numbers (INs) meta-representation enabling the 

transformation of the feature vectors to h-cuts of user defined size. The extracted h-cuts 

vectors are used to classify subjects into healthy and AD classes by an evolutionary 

adjustable k-NN classifier defined in the LC context. 

The reported experimental results on the OASIS [17] benchmark MRI dataset are 

promising. The proposed classifier has demonstrated comparable results with some state-

of-the-art classification models (e.g. neural networks, SVM), in terms of features vectors’ 

dimension, classification accuracy, sensitivity and specificity. 
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The paper is organized as follows. Section 2 details the feature extraction methods 

applied to describe the MRI data. Section 3 discusses the properties of the proposed 

minimum distance classifier defined in the lattice space. Section 4 presents experimental 

results, comparing alternative classification models, as well as alternative feature 

extraction techniques from the literature. Finally, section 5 concludes by summarizing our 

contribution and discussing future work. 

 

2. Feature Extraction 

We have considered two different feature extraction methods, resulting in two different 

datasets for the computational experiments. More specifically, the first approach uses the 

results of a Voxel-based Morphometry (VBM) analysis, whereas the second approach 

uses scalar maps computed from the deformation based morphometry (DBM) analysis, as 

detailed next. 

 

2.1 Voxel-based Morphometry 
 

Morphometry analysis is a widely used tool in clinical research for brain anatomy studies 

based on MRI. It allows a comprehensive measurement of anatomical differences within a 

group or across groups throughout the entire brain.  

Specifically, VBM is an approach that measures differences in local concentrations of 

brain tissue. Often grey matter is considered in the studies through a voxel-wise 

comparison of brain MRI volumes (in the form of NIfTI “Neuroimaging Informatics 

Technology Initiative” data files) across subjects. The result of a VBM analysis is a 

thresholded statistical parametric map (SPM) which is used here as a spatial mask 

specifying the voxels sites selected to obtain a feature vector from each subject. These 

feature vectors (denoted MSD in the results section) are composed of the mean and 

standard deviation of each voxel cluster in the SPM. The processing pipeline of VBM is 

illustrated in Fig. 1, while the overall procedure is explained in more detail in [5].  
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Figure 1: Pipeline of the VBM procedure. 

 

2.2 Deformation-based Morphometry 

Deformation-based Morphometry (DBM) uses non-linear spatial normalization data to 

find differences between groups. We built a custom brain template with the subjects in 

OASIS, performing a non-linear registration [18] of selected 98 subjects. As a result, one 

volume of 3D displacement vectors for each subject is obtained. These displacement 

vector fields provide the details of the deformation of the template brain to the subject's 

MRI data. For each voxel i, the displacement field for one subject has a vector  , ,i i ix y z  

representing the ending point, in millimetres, of voxel i in the registration process. We 

compute two scalar maps from these displacement vectors [4]: the displacement 

magnitude (DM) and the Jacobian determinant of the field gradient matrices (JD). The 

processing pipeline for feature extraction from DBM procedure is illustrated in Fig. 2. 
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Figure 2: Pipeline of the DBM procedure. 

 

Note that the pipeline of the DBM procedure of Fig.2 starts from noise corrected and 

skull-stripped volumes. Feature selection is accomplished by the computation of the 

correlation between the scalar maps across subjects and the categorical variable (0 healthy 

controls, 1 AD patients) for each voxel independently. We compute the empirical 

distribution of the absolute (Pearson, Spearman) correlation values, we select voxel sites 

according to a set percentile on this distribution. Specifically, in the experiments we use 

0.990, 0.995 and 0.999 percentiles.  

 

 

3. Classification in the Lattice Computing (LC) context 

This section delineates the mathematical background, namely lattice theory, and it 

presents novel classification tools.  

 

3.1 Basics 

A lattice is a partially ordered set (L,⊑) with the additional property that any two elements 

,x y L  have both a greatest lower bound, namely infimum, denoted by x y  and a least 

upper bound, namely supremum, denoted by x y . If in a lattice (L,⊑) every  ,x y pair 
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satisfies either  x⊑y or x⊐y then we say that the lattice (L,⊑) is totally-ordered. Moreover, 

a lattice (L,⊑)is called complete iff each of its subsets X has both an infimum and a 

supremum in L (hence, taking X = L, we see that a complete lattice has both a least 
element and a greatest element) [19-20]. 

Based on the above definitions, novel data-mining and classification techniques have 

been proposed lately, into the lattice space, to deal successfully with disparate types of 

numerical and nominal data [21]. By lattice space we mean a set of lattice-ordered data. 

Our interest here is in developing a classification scheme in the lattice space of Interval’s 

Numbers [22] defined next.   

 

 

3.2 INs Meta-Representation  

In the first place, we define a (Type-1) interval. 

 

Definition 3.1. A (Type-1) interval 1 2[ , ]A    is defined by  

 1 2 1 2[ , ] :x x and x       . 

 

Let I denote the set of intervals on the real line including also the empty interval (is 

identical to the empty set). 

A (Type-1 ) Intervals’ Number is defined next: 

Definition 3.2. An Intervals' Number (IN) is a function F: [0,1]I which satisfies 

1 21 21) .

2) [0,1] : .

h h

h P
h P

h h F F

P F F


  

    (1)

where IhF  denotes the image (interval) of  0,1h and P the supremum of the 

set [0,1]P  . We remark that the “ ” in Definition 3.2 denotes the conventional set-

inclusion. 

Based on the following theorem one can associate every IN to a fuzzy interval [23].  

We define 1F  the set of all (Type-1) INs. 

Theorem 3.3. Given IN 1FE , a fuzzy set E  as    : sup : hx E x h x E    is defined. 

 
where hE  is the h-cut (identical to the α-cut of fuzzy theory) of IN E. The h-cuts of  E  are 

denoted by hE  and by definition, satisfy:   [0,1] : : .hh E x E x h     Then, for all 

[0,1]h we have  hE E x   . Hence, E is a fuzzy interval. 
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Based on the above, there follow two equivalent representations for a Type-1 IN, 

namely the interval-representation and the membership-function-representation [22] 

illustrated below. 

Furthermore, given an IN F the symbol  0,1I, hF h  is attached to its interval-

representation, whereas the symbol    0,1 ,F x x  is attached to its membership-

function representation. 

It is already known [24] that any set of fuzzy intervals is equipped with the fuzzy sets 

order relation  , is a complete lattice. Just like fuzzy intervals, INs are equipped with a 

partial order relation   as follows: 

 

  0,1 : h hF G h F G     (2)

with 1, FF G  . The relation   is a lattice order and the lattice  1,F  of INs is complete. 

 

3.2.1 INs Extraction 

 

Considering a population of data samples (features), an algorithm [13, 16] for inducing 

an IN needs to be applied according to the following description.     

Suppose a set X of real data samples, e.g. X 1 n= ( , , )x x . Two elements xi, xj of the 

set X are called successive iff there is no other element  , 1,...,kx k n  such 

that < <i j k i jx x x x x  , where and are the min and max operators, respectively. 

A strictly-increasing, cumulative real function 0:c   is computed by defining 

      1
: 1,...,   and , 1,...,i j j ic x x j n x x i n

n
     (3)

 

where S  denotes the cardinality of the set S ; finally, function 0:c   is defined by 

straight-line connecting any two points   ,i ix c x  and   ,j jx c x , where ,i jx x  are 

successive elements of set X. Obviously, there is a unique real number 0x such 

that  0 0.5c x  . In conclusion, an IN is calculated from function  c  such as for values 

less-than or equal-to 0x the corresponding IN envelope function is  2c x , whereas for 

values larger than 0x the corresponding IN envelope function is   2 1 c x . An example 

of a Type-1 IN induction from a data samples population is detailed in Fig.3.  
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Furthermore, an IN envelope is represented by a user-defined number of Nh equally 

spaced intervals from h=0 to h=1 (Fig.3d) and thus any population of data samples in the 

set X can be represented by Nh intervals stored in a Nh x2 size matrix.  

 

     

 
Figure 3: Induction of a Type-1 IN from a data samples population whose median value equals 7.45. (a) 

the data samples population, (b) the cumulative function c, (c) the membership-function representation of a 

Type-1 IN and (d) the corresponding intervals representation a Type-1 IN (Nh =32). 
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The representation of a distribution of data samples by an IN enables the employment 

of established, useful mathematical instruments for measuring a distance as well as for 

calculating a (fuzzy) degree of partial order of different data distributions [15, 22]. 

 

 

3.3 Dimensionality Reduction with INs 

It is worth noting that the IN meta-representation includes all order data statistics of the 

initial population. This characteristic along with the ability to provide an IN meta-

representation of any size for the data set X, makes this meta-representation appealing for 

big (numeric) data, such as in Alzheimer’s disease detection, where initial feature vector 

sizes are of the order of several hundreds or even thousands..  

Dimensionality reduction is achieved by ad-hoc selecting the number Nh of h-cuts such 

that  / 2hN DataSize where DataSize is the size of the initial population data samples. 

Although, a number of Nh =32 h-cuts is usually used [15,22],  several numbers up to 

DataSize can be examined. 

 

3.4 Lattice Computing k-NN (LC-kNN) 

An extension of the well known k-NN classifier in the LC context is described in this 

section. The main functionality of the k-NN classifier is the computation of the distances 

between the training samples and a test sample to find the nearest neighbours. Finally, the 

sample is classified according to a majority vote on the classes of its k nearest neighbours. 

The k-NN classifier can be reformulated in the LC framework by incorporating a 

distance (metric) over the meta-representation of the samples as INs. Such a distance is 

defined as follows: 

 
Definition 3.4. A metric distance [25] d in a nonempty set A is a real function d:AA 

[0,+∞) which satisfies the following conditions, " x, y, z A: 

 

 C1.  , 0d x y x y      (coincidence) 

 C2.    , ,d x y d y x    (symmetry) 

 C3.      , , ,d x z d z y d x y    (triangle inequality) 

A distance function 0:F F Fd    in the lattice  ,F  of INs is defined [16] as: 
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1

0

, ,F I h hd F G d F G dh   (4)

where function 0:I I Id   is a distance in the lattice  ,I  given by 

          
   

, , ,

;

Id a b c d v a c v a c

v b d v b d

      
     

 (5)

where 0:v   and :   are strictly increasing and decreasing functions, 

respectively.  

In conclusion, a distance function 0: F FN Nd    is given by  

        1 1
1

, ,..., , ,..., ,F

N

N N i i
i

d d F F G G d F G


 F G  (6)

where F,G are N-tuples of INs, i.e.  1,..., NF FF . 

The following functions 0:v   and :   have been used in Eq.(5) 

       and  2
1 x

A
v x x x

e    
 

  


 (7)

where ,A   and  are free parameters increasing the flexibility of the distance 

function when comparing two INs at different resolutions which need to be tuned 

appropriately. The estimation of the three parameters of Eq.(7) can be performed by 

stochastic (e.g., genetic algorithm, PSO, ACO) optimization techniques.    

 

4. Experimental Study 

In order to investigate the detection performance of the proposed LC-kNN classifier, a set 

of appropriate experiments were conducted. For the experimental purposes, specific 

software was developed in MATLAB 2012b integrated development environment. All 

experiments were executed in an Intel i5 3.3GHz PC with 8GB RAM. 

4.1 Dataset  

A subset of the Open Access Series of Imaging Studies (OASIS) database [17] was 

selected in order to evaluate the detection performance of the proposed LC-kNN 

classifier. This two-class dataset has a cross-sectional collection of 416 subjects covering 

the adult life span aged 18–96 including individuals with early-stage Alzheimer’s disease. 

A subset of the original OASIS dataset including 98 right-handed women (aged 65-96 yr) 

is considered herein. More precisely, the used subset consists of 49 subjects who have 

been diagnosed with very mild to mild AD (class 1) and 49 non-demented (class 2). A 
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summary of subject demographics and dementia status is shown in [5]. The feature 

extraction methods (MSD, DM, JD) discussed in section 2 were adopted to build the 

datasets used in the experimental evaluation of an AD classification system using on the 

lattice based LC-kNN. 

4.2 Experimental Results  

A “10-fold cross-validation” validation strategy was applied, hence the dataset is 

partitioned in ten parts with one-tenth of the data being used for testing, whereas the 

remaining nine-tenths are used for training the classifier. The experiment is repeated using 

a different partition as test in each turn, so that all tenths of the data were used for testing. 

Care was taken so that all classes are represented equally in both the training and the 

testing data. 

The actual feature datasets have been used in several works in the literature, hence 

results obtained with a variety of classifier models are publicly available for comparison. 

The AD detection statistics, accuracy, sensitivity and specificity (mean values and 

standard deviation inside parentheses) for the OASIS subset of 98 subjects, of the 

proposed LC-kNN classifier in comparison with the state-of-the-art models [5, 11] using 

the MSD features are summarized in Table 1. 

 

Table 1. AD detection statistics of several classifiers using the MSD features. Bold typeface identifies 

performances above 0.80. 

Feature 

Type 

Classifier 

Type 

#Features Accuracy Sensitivity Specificity 

MLP-BP 0.78 (0.12) 0.69 (0.14) 0.88 (0.13) 

RBF 0.66 (0.13) 0.65 (0.24) 0.68 (0.14) 

PNN 0.78 (0.09) 0.62 (0.14) 0.94 (0.10) 

LVQI 0.81 (0.18) 0.72 (0.27) 0.90 (0.14) 

LVQ2 0.83 (0.12) 0.74 (0.23) 0.92 (0.10) 

Linear SVM 0.78 (N/A) 0.72 (N/A) 0.88 (N/A) 

rbf SVM 0.81 (N/A) 0.75 (N/A) 0.89 (N/A) 

Indep-linear-SVM 0.74 (N/A) 0.51 (N/A) 0.97 (N/A) 

Indep-rbf-SVM 0.75 (N/A) 0.56 (N/A) 0.95 (N/A) 

linear-AB-SVM 0.71 (N/A) 0.54 (N/A) 0.88 (N/A) 

rbf-AB-SVM 0.79 (N/A) 0.78 (N/A) 0.80 (N/A) 

rbf-DAB-SVM 0.85 (N/A) 0.78 (N/A) 0.92 (N/A) 

Kernel-LICA-DC 

24 

0.74 (N/A) 0.96 (N/A) 0.52 (N/A) 

MSD 

LC-kNN (k=3) 12 0.80 (0.13) 0.80 (0.19) 0.79 (0.20) 
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By examining the results of Table 1, it is deduced that the LC-kNN with k=3 show 

superior detection performance than some conventional classifiers such as MLP-BP, RBF, 

PNN, Linear SVM and some advanced classification models (Indep-linear-SVM, Indep-

rbf-SVM, linear-AB-SVM, rbf-AB-SVM, Kernel-LICA-DC). Moreover, it performs 

comparatively well with the most effective models LVQ1, LVQ2, rbf- SVM (lower by 

1%-3%), while it is worst by 5% than the rbf-DAB-SVM classifier. However, it is worth 

noting that although the proposed LC-kNN has 5% lower detection rate, it uses 50% 

smaller feature vectors (12 instead of 24) than all the other classifiers under comparison.   

Considering the DM (Displacement Magnitude - see section 2.2) feature type, the LC-

kNN outperforms the linear SVM classifier [4] with extremely lower feature dimension. 

Moreover, the LC-kNN classifier retains its superiority even when a dimensionality 

reduction process [4] is applied to the other classifiers. The detection performance of the 

classifiers for the case of the DM features and Pearson (Pe), Spearman (Sp) correlation 

functions is presented in the following Table 2. 

 

  Table 2. AD detection statistics of several classifiers using the DM features. Bold typeface identifies 

performances above 0.80. 

Feature 

Type 

Classifier 

Type 

#Features Accuracy Sensitivity Specificity 

12229 0.76 (0.15) 0.77 (0.28) 0.75 (0.17) 
Linear SVM 

250 0.79 (0.10) 0.90 (0.13) 0.67 (0.17) DM_Sp995 

LC-kNN (k=3) 64 0.82 (0.09) 0.86 (0.14) 0.78 (0.22) 

1861 0.66 (0.14) 0.70 (0.20) 0.62 (0.21) 
Linear SVM 

250 0.72 (0.15) 0.80 (0.11) 0.65 (0.29) DM_Sp999 

LC-kNN (k=3) 64 0.82 (0.13) 0.88 (0.14) 0.76 (0.21) 

27474 0.84 (0.10) 0.90 (0.17) 0.77 (0.14) 
Linear SVM 

250 0.84 (0.10) 0.92 (0.12) 0.75 (0.17) DM_Pe995 

LC-kNN (k=3) 64 0.83 (0.04) 0.84 (0.13) 0.82 (0.18) 

 

The above results clearly show the superiority of the LC-kNN classifier against the 

popular Linear SVM, since it detects the AD with 3%-10% higher accuracy by using 75% 

less features. This performance is very impressive and highlights the ability of the h-cuts 

and therefore of the INs meta-representation, to embody discriminant information for 

accurate classification. 

Following the same experimental protocol, the third JD feature type was applied and 

the corresponding detection statistics are summarized in Table 3.  
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The results for the case of JD (Jacobian Determinant - see section 2.2) features and 

Pearson (Pe), Spearman (Sp) correlation functions are similar with the previous ones. 

More precisely, the LC-kNN classifier shows 3% higher accuracy or performs equal than 

the Linear SVM model in the worst case. However, the dimension of the feature vector 

used by LC-kNN is extremely lower (30 times) than that of SVM, 64 instead of 2000. 

 

 Table 3. AD detection statistics of several classifiers using the JD features. Bold typeface identifies  

the highest performances. 

Feature 

Type 

Classifier 

Type 

#Features Accuracy Sensitivity Specificity 

17982 0.76 (0.14) 0.77 (0.27) 0.75 (0.16) 
Linear - SVM 

2000 0.65 (0.15) 0.65 (0.21) 0.65 (0.24) JD_Sp995 

LC-kNN (k=3) 64 0.79 (0.11) 0.74 (0.21) 0.84 (0.16) 

43967 0.66 (0.19) 0.70 (0.20) 0.62 (0.24) 
Linear - SVM 

2000 0.75 (0.13) 0.75 (0.26) 0.75 (0.17) JD_Pe990 

LC-kNN (k=3) 64 0.74 (0.11) 0.82 (0.15) 0.66 (0.21) 

 

The reduction of the data dimensions is achieved by selecting the Nh parameter that 

controls the number of extracted h-cuts. This selection of the control parameter (Nh) is 

performed empirically (by trial and error) without taking into account specific data-driven 

information. Therefore, it is not a priori known what is the optimum value of Nh. 

Moreover, due to the fact that the INs representation is a meta-representation of the initial 

data vectors, these two information carriers have different accuracy independent on their 

size. Thus the lower dimensionality reduction does not guarantee a higher accuracy.    

However the authors have scheduled a future research in investigating that reduces the 

dimension (selection of Nh parameter) of the data vectors by considering the classes’ 

distributions and separability. 

The aforementioned experimental analysis demonstrates the potential of the lattice 

computing framework through the remarkable high performance of the proposed LC-kNN 

classifier in terms of accuracy and representation simplicity.  

      

 

5. Conclusion 

 

A new k-NN classifier defined in the LC context was proposed. The introduced LC-kNN 

model was applied in AD disease detection showing promising results, since it detected 

the diseased subjects accurately enough by using features of high compactness (low 
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dimension) and discriminability. The INs representation along with the adaptive nature of 

the used distance metric defining in the lattice space, constitute the main factors of the 

LC-kNN classifier efficiency. Although the results are acceptable and in some cases 

impressive, some additional actions such as the application of the LC-kNN to the entire 

OASIS dataset and the employment of other feature types, need to be scheduled for future 

work. 
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