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Abstract: This work proposes an effective synergy of the Intervals’ Number k- nearest 

neighbor (INknn) classifier, that is a granular extension of the conventional knn classifier in the 

metric lattice of Intervals’ Numbers (INs), with the gravitational search algorithm (GSA) for 

stochastic search and optimization. Hence, the gsaINknn classifier emerges whose effectiveness 

is demonstrated here on twelve benchmark classification datasets. The experimental results show 

that the gsaINknn classifier compares favorably with alternative classifiers from the literature. 

The far-reaching potential of the gsaINknn classifier in computing with words is also delineated. 
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1.   Introduction 

This work introduces a stochastically optimized, granular k- nearest neighbor (knn) classifier 

based on INs, where IN stands for Intervals’ Number. 

        An IN is a mathematical object, which may represent either a fuzzy interval or a probability 

distribution [44]. In any case, an IN can be interpreted as an information granule. INs have been 

studied in a series of publications. In particular, as explained in [31], it has been shown that the 

set F1 of INs is a metric lattice with cardinality 1, where 1 is the cardinality of the set R of 
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real numbers; moreover, F1 is a cone in a linear space. Note that previous work [20, 21] has 

employed the term FIN (i.e., fuzzy interval number) instead of the term IN because it stressed a 

fuzzy interpretation. Likewise, the term CALFIN, proposed previously for an algorithm which 

induces a FIN from a population of measurements, was later replaced by the term CALCIN [44]. 

Recall that an IN computed by algorithm CALCIN retains all-order data statistics [31]. In the 

aforementioned context, the capacity as well as the rich potential of INs, especially in industrial 

applications, has been demonstrated [24, 26, 44]. 

        INs have been used in an array of computational intelligence applications regarding 

clustering, classification and regression [25, 26, 27, 30, 31, 44, 45]. There is experimental 

evidence that a parametric, IN-based scheme can be optimized toward clearly improving 

performance. More specifically, optimization has been pursued by stochastic search techniques 

including genetic algorithms [27, 30, 31, 44] and particle swarm optimization [45] since, 

currently, there are no analytic optimization methods available in the lattice of INs. 

        Previous works have frequently employed an inclusion measure () function as an 

instrument for decision making in the lattice of INs [26, 30, 31, 45]. The interest of this work is 

in (fuzzy) nearest neighbor classification [10]. Note that, lately, a number of knn classifiers 

based on INs, namely INknn classifiers, have been introduced [32, 43, 61]; nevertheless, none of 

the latter classifiers was optimized. On the grounds of compelling evidence, as explained above, 

this work proposes an optimized INknn classifier toward improving performance. We remark 

that various heuristic optimization methods have been proposed in machine learning including 

Simulated Annealing (SA) [6], Ant Colony [7], Particle Swarm Optimization (PSO) algorithms 

[17, 40], Differential Evolution (DE) [37, 54], Genetic Algorithms (GAs) [46], etc. Lately, 

Rashedi and colleagues have proposed the gravitational search algorithm (GSA) [47], that is a 

swarm based meta-heuristic search algorithm based on the Newtonian laws of gravity. The GSA 

has already been successfully applied to numerous problems [2, 36, 48, 49, 50, 51, 53, 60, 66]. 

This work proposes a synergy of GSA with the INknn classifier toward improving the capacity 

of the latter classifier. Hence, the (granular) gsaINknn classifier emerges whose capacity is 

demonstrated here comparatively on twelve benchmark datasets. 

        In a more general context, the proposed gsaINknn classifier is a scheme of the emerging 

lattice computing (LC) paradigm. Note that LC was originally defined as “the collection of 

Computational Intelligence tools and techniques that either make use of lattice operators inf and 
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sup for the construction of the computational algorithms or exploit Lattice Theory for language 

representation and reasoning” [12]. Recent work has extended the meaning of LC as “an 

evolving collection of tools and methodologies that process lattice ordered data per se including 

logic values, numbers, sets, symbols, graphs, etc” [24, 31, 33]. The LC paradigm provides 

instruments for granular computing, where uncertainty/ambiguity is accommodated in 

partially/lattice-ordered information granules [19, 22, 39, 57]. 

        A number of LC models have already been proposed in the context of mathematical 

morphology. For instance, morphological neural networks (MNN) including both morphological 

perceptrons and fuzzy morphological associative memories (FMAMs) [56, 57, 58, 62] can be 

classified as LC models. In particular, Sussner and colleagues have employed a FMAM to 

implement a fuzzy inference system based on the complete lattice structure of the class of fuzzy 

sets [59, 63, 64]. Furthermore, Graña and colleagues have applied LC techniques to image 

analysis applications of mathematical morphology [14, 15, 16]. Of particular interest in LC is the 

notion of a fuzzy lattice, which has been proposed by Nanda toward fuzzifying a partial order 

relation [42]. Working independently Kaburlasos and colleagues, inspired from the adaptive 

resonance theory (ART) for neural computation [4, 5], have proposed a number of fuzzy lattice 

neural networks for clustering and classification [21] operating on fuzzy lattice reasoning (FLR) 

principles. The FLR classifier was introduced in [29] for inducing descriptive decision-making 

knowledge (rules) in a mathematical lattice data domain, including the space RN as a special 

case; moreover, the FLR classifier has been successfully applied to a variety of problems such as 

ambient ozone estimation as well as air quality assessment [1]. Recent trends in lattice 

computing appear in [13, 23, 28]. 

      The layout of this paper is as follows. Section 2 outlines the mathematical background. 

Section 3 presents the INknn classifier including an explanatory application example. Section 4 

describes the GSA optimization algorithm. Section 5 details the gsaINknn classifier. Section 6 

presents comparatively experimental results regarding twelve benchmark classification datasets. 

Finally, section 7 concludes by both summarizing our contribution and delineating future work. 
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2.   Mathematical background 

This section outlines general lattice notions followed by a hierarchy of lattices ending up to 

Intervals’ Numbers, or INs for short. 

 

2.1   General lattices 

A set P with a partial order (binary) relation ⊑ is called partially ordered set or poset for short, 

symbolically (P,⊑) [3, 21, 24, 26, 52]. A function : PQ from a poset (P,⊑) to a poset (Q,⊑) is 

called isomorphic iff x⊑y  (x)⊑(y). It is well known that the inverse ⊒, namely dual (order), 

of an order relation ⊑ is itself an order relation. A lattice (L,⊑) is a poset with the additional 

property that any two of its elements a,bL have both an infimum denoted by a⊓b = inf{a,b} and 

a supremum denoted by a⊔b = sup{a,b}. The lattice operations ⊓ and ⊔ are called meet and join, 

respectively. A lattice (L,⊑) is called complete when each of its subsets has a supremum as well 

as an infimum in L. A non-void complete lattice has both a least element and a greatest element 

denoted by o and i, respectively. A lattice (L,⊑) is called totally-ordered iff for a,bL it is either 

a⊒b or a⊏b. In this work we use ‘‘square symbols’’ such as ⊔, ⊓ and ⊑ with general lattice 

elements, ‘‘straight symbols’’ ,  and  with real numbers, and symbols  ,  and  with sets. 

      An aggregate lattice (L,⊑) is the Cartesian product of N component lattices L1,…,LN; i.e. 

(L,⊑) = (L1,⊑1)…(LN,⊑N). The product lattice L operations join and meet are defined as 

(a1,…,aN)⊔(b1,…,bN) = (a1⊔1b1,…,aN⊔1bN)     and     (a1,…,aN)⊓(b1,…,bN) = (a1⊓Nb1,…,aN⊓NbN) 
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      A valuation on a lattice (L,⊑) is a real function v: LR which satisfies v(a)+v(b) = 

v(a⊓b)+v(a⊔b). A valuation v is called positive iff a⊏b implies v(a)<v(b). A positive valuation 

function v: LR implies a metric function d: LL 0
R  given by d(x,y) = v(x⊔y)-v(x⊓y). 

      Generalized interval is an element of the product lattice (L,⊒)(L,⊑) = (LL,⊒⊑). The latter 

lattice may simply be denoted by (Δ,⊑). A generalized interval is denoted by [a,b]. The ordering 

(⊑), join (⊔) and meet (⊓) operations in lattice (Δ,⊑) are given as follows: 

[a,b] ⊑ [c,d]  (c⊑a and b⊑d),       [a,b] ⊔ [c,d] = [a⊓c,b⊔d],     and     [a,b] ⊓ [c,d] = [a⊔c,b⊓d] 

      Here, we are interested in a dual isomorphic function : LL on a general lattice (L,⊑) such 

that x⊏y  (x)⊐(y). Based on both a positive valuation function v: LR and a dual 

isomorphic function : LL on a general lattice (L,⊑), a positive valuation function vΔ is 

defined on lattice (Δ,⊑) as follows:   vΔ([a,b]) = v( (a)) + v(b). 

 

2.2   A hierarchy of complete lattices 

Next, we constructively develop a hierarchy of lattices from a reference set LR , where R  = 

R{-,+∞} is the totally-ordered set of extended real numbers. In particular, we choose L so 

that (L,) is a complete lattice. For example, L can be R  itself or it might be an interval 

[a,b]R . In particular, for L=R  it is o=- and i=+∞, whereas for L=[a,b] it is o=a and i=b. 

      Any strictly increasing real function v: LR is a positive valuation on lattice (L,). 

Moreover, any strictly decreasing function θ: LL is a dual isomorphic function on (L,). Note 

that choosing a suitable valuation function is problem dependent [18, 29, 38]. 

      Consider the lattice (Δ,⊑) of generalized intervals stemming from lattice (L,). A metric 

distance function dΔ: ΔΔ 0
R  is defined on (Δ,⊑) as follows: 



  6

dΔ([a,b],[c,d]) = vΔ([a,b]⊔[c,d]) - vΔ([a,b]⊓[c,d]) = vΔ([ac,bd]) - vΔ([ac,bd])          (1) 

      We define the set of conventional intervals as J(L) = {[a,b]: a,bL and a⊑b}. Augmenting 

J(L) by the empty interval, denoted by O, there follows the complete lattice (J1 = J1(L) = 

J(L){O},), namely lattice of Type-1 intervals, or simply intervals, ordered by the set 

inclusion relation (). The least and greatest element in lattice (J1,) are denoted by O=[i,o] and 

I=[o,i]=L, respectively. 

      Consider the following definition. 

Definition 1: A Type-1 Intervals’ Number, or (Type-1) IN for short, is a (Type-1) interval 
function F.: [0,1]J1 which satisfies   1) h1  h2  

1hF 
2hF  and  2)  P  [0,1]: h



 P
h P

F F∨ . 

      Let F1 denote the set of INs. It turns out that (F1,) is a complete lattice with order F G   

(h[0,1]: FhGh)  (xL: F(x)G(x)). We remark that there are two equivalent 

representations for an IN F, namely the interval-representation F(.): [0,1]J1 and the 

membership-function-representation F(.): R[0,1]. An IN F is called trivial iff Fh is a trivial 

interval, i.e. Fh = [a,a], h[0,1] and aL. The following proposition introduces a metric on 

lattice (F1,). 

Proposition 1: Let F and G be INs in lattice (F1, ). Assuming that the following integral exists, 

a metric function 
1 0:  F 1 1F F Rd  is given by

1

h h
0

( , ) ( , ) d F G d F G dh
1F

. 

      Given two N-tuple INs N
1 N( ,..., ) FF F F 1  and N

1 N( ,..., ) FG G G 1 , a Minkowski metric 

N N
p 0:  d 1 1F F R  is defined as    

1 1

1 pp p

p 1 1 N N

/

( , ) ( , ) ... ( , )     
d F G d F G d F GF F . 

      A Type-2 interval is defined as an interval of Type-1 intervals; moreover, a Type-2 IN is 

defined as an interval of Type-1 INs [30, 31]. It turns out that the aforementioned Minkowski 

metric can extend to N-tuple Type-2 INs. 

      An IN F can be induced from a set {x1,,xn} of data samples by defining a piecewise linear, 

strictly increasing, cumulative real function  c: R 0
R  such that c(xi) = 

1

n
|{xj: j{1,,n} and xj 
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 xi}|, i{1,,n}; where |S| denotes the cardinality of the set S. Let x0 be such that c(x0) = 0.5. 

Finally, IN F is defined such that for x  x0 it is F(x) = 2c(x), whereas for x > x0 it is F(x) = 2(1-

c(x)) as illustrated in [30] (section 4.1). In practice, the membership function F(.): L[0,1] is 

specified by two vectors pts and val which hold the corresponding abscissa values and ordinate 

values, respectively, of the membership function F. In the context of this work, we define the 

weight of an IN F as the number of data samples used to induce IN F. 

 

3.   The INknn classifier 

In the following we present an extension, namely INknn, of the conventional knn classifier for 

k=1 in the metric lattice (F1,)N of INs (see in The INknn algorithm). 

      In words, the INknn classifier operates by calculating the (metric) distance of an unlabeled 

testing datum 0F  N
1F  from all the labeled training data. In conclusion, 0F  is assigned the label 

of its nearest training datum JF  provided that the corresponding distance is less than a user-

defined threshold 0 . Otherwise, if d2( 0F , JF ) > 0, then 0F  is of “unknown” class. Note that the 

proposed INknn classifier uses the Minkowski metric N N
2 0:  1 1F F Rd . 

      The following example illustrates the relation between IN weight (the latter was defined at the 

very end of the previous section) and Classification Accuracy; the latter is the percentage of 

correctly classified data and it can be computed by Eq.(8). 

 

The INknn algorithm 

1.  Consider labeled, training data {( 1F ,c1),…,( nF ,cn)}, where iF  N
1F , ciL for i{1,…,n} and L is a set of 

class labels. 

2.  Consider a new, unlabeled (testing) datum 0F  N
1F  for classification.  

3.  For each training datum iF , i{1,…,n} compute the Minkowski distance d2( 0F , iF ). 

4.  Let 2 0 i
i 1 n

arg
{ ,..., }
min { ( , )}


J d F F . 

5.  The class label of 0F  is defined to be cJL given that d2( 0F , JF )0, where 0 is a user-defined threshold; 

otherwise, if d2( 0F , JF ) > 0, then the class of 0F  is “unknown”. 
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An application example: The spiral problem involves a nontrivial benchmark dataset for testing 

the capacity of a learning scheme [5, 35]. The corresponding dataset includes sample points 

(xn,yn) from two 2D spirals given by (xn,yn)= (rnsinan+0.5, rncosan+0.5), where n

105 n
0 4

104
.

   
 

r , 

n

n 1

16

( ) 
a . In particular, here we employed sample points (xn,yn), n=1,…,97 from the first 

spiral/class as well as sample points (1-xn,1-yn), n=1,…,97  from the second spiral/class shown in 

Fig.1(a); hence, we employed a total of 97+97 = 194 sample points or, equivalently, 194 data. 

      We carried out a series of INknn classification experiments such that, after shuffling 

randomly the 194 data before an experiment, we engaged 10,20,…,170 and 180 data, 

respectively, for training. In particular, half of the engaged data originated from each spiral class. 

In conclusion, in each experiment we used all the training data available from a class in order to 

compute a single (2-tuple) IN per class. Hence, two (2-tuple) INs were calculated per experiment 

with (sum of) weights equal to 10,20,…,170 and 180, respectively. The previous completes step 

1 of the INknn algorithm. In the remaining steps of the INknn algorithm, a testing datum (xn,yn) 

was represented by a pair ([xn,xn],[yn,yn]) of trivial INs for h[0,1]. 

      Fig.1(b) displays the Classification Accuracy regarding the training/testing datasets versus the 

(sum of) IN weights per experiment. In particular, Fig.1(b) shows that accommodating ever more 

data into the two INs, first, typically keeps the Classification Accuracy on the training dataset in 

the range 50%-60% due to the intermingling of the two classes and, second, it progressively 

increases Classification Accuracy on the testing dataset due to an improvement of INknn’s 

capacity for generalization especially as the number of the testing data decreases. 

 

      The optimal number of INs per class depends on the data. For instance, were all the data of a 

class both near each other and apart from the data in any other class then one (N-tuple) IN per 

class would suffice; otherwise, more than one INs are required per class. The optimal number of 

INs in a specific application is not known “a priori” but rather it is to be induced from the data. 
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 (a) (b) 

 

Fig. 1. (a) The two-classes Spiral dataset.   (b) Training/testing Classification Accuracy versus IN weight. 

 

4.   The gravitational search algorithm 

This section delineates the Gravitational Search Algorithm, or GSA for short, that is a 

population-based stochastic search heuristic [47, 48], where a population member is called agent. 

An agent represents (part of) the training data with k (N-tuple) INs per class in N data 

dimensions. The mechanics of GSA is inspired from the Newtonian laws of gravity and motion. 

More specifically, a GSA agent is dealt with as a physical object with mass. The position of an 

agent represents a solution to an optimization problem, whereas an agent’s mass represents the 

corresponding Classification Accuracy such that larger masses correspond to better solutions. All 

agents interact with one another with gravity forces resulting in motion. During the life time of 

GSA, agents with large masses grow larger and move more slowly toward computing better 

solutions. The basic equations of the GSA are presented next. 

      Given a user-defined number Na of agents, we define the position Xi of agent i as 

Xi = 1 d N
i i i( , , , , ) x x x , i = 1,,Na,                                                  (2) 

where N is the search space dimension. A normalized mass for agent i is computed as follows 

Mi(t) = 
 a

i
N

jj=1

( ) - ( )

( ) - ( )
fit t worst t

fit t worst t
, i = 1,,Na,                                                  (3) 
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where fiti(t) is the fitness value (calculated by Eq.(8)) of agent i at time t{1,…,T}, ( )worst t  for 

a maximization (resp. minimization) optimization problem is the minimum (resp. maximum) 

fitness of all agents. 

      We compute the next position d
i ( +1)x t  of agent i{1,,Na} in dimension d at time t+1 as 

follows. First, we use Eq.(4) to compute the force d
i ( )F t  at time t applied by the K largest masses 

in the set “Kbest”; second, we compute the corresponding acceleration d
i ( )a t  by Eq.(5); third, we 

compute the velocity d
i ( +1)v t  at time t+1 as a fraction of the velocity at time t increased by the 

acceleration at time t according to Eq.(6); finally, we compute d
i ( +1)x t  using Eq.(7). 

d
i ( )F t  =  j i d d

j j i
j Kbest, j i ij

( ) ( )
( ) ( )

( ) ( )
( )  




M t M t
rand G t x t x t

R t
                                       (4) 

d
d i
i

( )
( ) =

( )i


F t

a t
M t

 =  j d d
j j i

j Kbest, j i ij

( ) ( )
( )

( ) ( )
( )  




M t
rand G t x t x t

R t
                                (5) 

d d d
i i i i( +1) = ( ) ( ) + ( )v t rand v t a t                                                           (6) 

d d d
i i i( +1) = ( ) + ( )x t x t v t + 1                                                             (7) 

where 

 both “randi” and “randj” are random numbers, uniformly distributed over the interval [0,1], 

 “Rij(t)” is the Euclidean distance between agents i and j, 

 “ε” is a small, positive number (to avoid dividing by zero), 

 “Kbest” is the set of the K largest masses, where K is a decreasing function of time t with a 

user-defined initial value “K(t=0)=K0=Na” and final value “K(t=T)=1”, and 

 “ 0( )



t

a
TG t G e ” is the gravitational constant with initial value G0, α is a user-defined constant, 

t{1,…,T} is the iteration no., and T is the total number of iterations. 

      Note that Eq.(4) uses “Rij(t)” instead of the square “ 2
ij ( )R t ” in Newton’s laws because it was 

confirmed empirically that “Rij(t)” typically produces better results than “ 2
ij ( )R t ”. 
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5.   The gsaINknn classifier 

Given a dataset for training in the N-dimensional Euclidean space with a number of C classes, 

the objective is to compute an optimal INknn classifier using GSA heuristics. 

      Using a random training dataset partition (including Na parts) we assume an initial population 

of Na agents such that a different agent corresponds to a different partition part. In conclusion, an 

agent is represented by a (CkNS)-dimensional vector, where C is the number of classes, k 

denotes the (user-defined) maximum number of INs per class, N is the dimension of the data 

(feature) space, moreover S equals the (user-defined) number of abscissa/ordinate samples used 

to represent an IN membership function. The objective is to compute an agent that produces as 

large classification accuracy as possible. Note that, during training, only the S = 2L abscissa 

(interval ends) values of an IN membership function update, whereas the corresponding L 

ordinate values remain constant spaced uniformly from 0 to 1 included. 

      The fitness function, for computing the mass Mi(t) of agent i{1,…,Na} at iteration time 

t{1,…,T}, was calculated as follows. 

i 100 


CC
fit

CC IC
                                                                   (8) 

where CC and IC denote the number of correctly and incorrectly classified data, respectively. 

The objective is to maximize fiti for an agent i{1,…,Na}. A cycle of computing the next agent 

position repeats until the stop condition “t > T” is met as shown in The gsaINknn classifier 

algorithm. Recall the final value “K(t=T)=1” mentioned in the previous section; that is, only a 

single agent remains in the set Kbest at the termination of the gsaINknn classifier algorithm. 

Since there is no guarantee that the single agent at time t=T corresponds to the best solution, we 

keep storing the best solution calculated during the life time of the gsaINknn classifier algorithm. 
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The gsaINknn classifier algorithm 

For a classification problem with a number of C classes in the N-dimensional feature space: 
  1.  A user-defines: The number Na of agents in the population; the maximum number k of INs per 

class; the initial number K(t=0)=K0=Na of largest masses; the total number T of iterations; the 
number S of abscissa values of an IN membership function; 

  2.  Randomly initialize a (CkNS)-dimensional swarm of Na agents; 
  3.  while t  T do 
  4.    Decrease the integer number K; increase the time t by 1; 
  5.    Identify the set Kbest of the largest K masses; 
  6.      for each agent i=1,…,Na, 
  7.            Evaluate the fitness function using Eq. (8); 
  8.            Calculate the normalized mass using Eq. (3); 
  9.            Calculate the acceleration using Eq. (5); 
10.            Update the velocity using Eq. (6); 
11.            Update the next position using Eq. (7); 
12.      end for 
13.  end while 
14.  Best solution found. 

 

 

6.   Experiments and results 

This section demonstrates the application of the gsaINknn classifier comparatively with 

alternative classifiers from the literature on eleven benchmark datasets from the University of 

California Irvine repository of machine learning databases [11]. In addition, we used the Ripley’s 

benchmark dataset from Web site http://www.stats.ox.ac.uk/pub/PRNN/. 

 

6.1.   Benchmark datasets 

Table 1 displays selected characteristics of the twelve benchmark datasets used in this work. In 

particular, note that the original Ecoli benchmark dataset includes 336 instances partitioned in 8 

classes. Nevertheless, since 3 of the classes contain only 2, 2 and 5 instances, respectively, we 

decided to omit them. Hence, we employed a modified Ecoli dataset with 5 classes including 327 

instances. Furthermore, since one of the 10 classes of the original Yeast dataset includes only 5 

instances, we decided to omit it. In conclusion, we employed a modified Yeast benchmark 

dataset with 9 classes including 1479 instances. 
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Table 1  Selected characteristics of the twelve benchmark datasets used in this work. 

Benchmark dataset name # of instances Missing value # training data # testing data # attributes # of classes 

1.  Dermatology 366 Yes 258 108 34 6 
2.  Ecoli 327 No 237 90 7 5 
3.  Haberman's Survival 306 No 216 90 3 2 
4.  Iris 150 No 105 45 4 3 
5.  Pima Indians Diabetes 768 No 543 225 8 2 
6.  Ripley’s 1250 No 250 1000 2 2 
7.  Wine 178 No 130 48 13 3 
8.  Credit Approval 690 Yes 483 207 14 2 
9.  Statlog (Heart) 270 No 189 81 13 2 
10.  Thyroid 215 No 155 60 5 3 
11.  Yeast 1479 No 1038 441 8 9 
12.  Breast Cancer Wisconsin 
       (Diagnostic) 

569 No 401 168 30 2 

 

 

6.2.   Data preprocessing and classifier initialization 

In a data preprocessing step, N-dimensional instances, where N is the corresponding number of 

attributes/dimensions, were normalized in the unit hypercube [0,1]N by replacing an attribute 

value x by the normalized value min
norm

max min





x x

x
x x

, where xmin and xmax stand for the 

corresponding minimum and maximum attribute values, respectively. 

      We employed a number of alternative classifiers from the literature including the GSA [2], 

fuzzy-ART [4], (conventional) knn [8], SOM [34], INknn [43], GRNN [55] and Support Vector 

Machine (SVM) [65] all implemented in the C++ programming language. For a fair comparison 

we used identical datasets for training/testing. When a training/testing dataset was not given 

explicitly for a benchmark dataset, we engaged a random 70% of the instances for training; 

whereas the remaining instances were used for testing. Care was taken so that each class is 

represented fairly in the dataset for training as well as in the dataset for testing; that is, each class 

was represented in the training/testing dataset in proportion to its corresponding total number of 

instances in the dataset. A missing value in an instance attribute was replaced by the 

corresponding attribute average. The initialization of different classifiers is described next. 

        Computational experiments with the SOM classifier were carried out using a 44 grid of 

units for 100 epochs. Since the results by SOM depend on the initial values of the weights, we 

chose the weights that yielded the best results on the training dataset in 10 random initializations. 

The GRNN classifier was considered with values of the variance parameter between 0 and 0.5 in 

steps of 0.001. For the fuzzy-ART we assumed a choice parameter value equal to 0.01; 
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furthermore, the values of the vigilance parameter were between 0 and 1 in steps of 0.01. For 

both knn and INknn classifiers, k=1 was user-defined; that is, only the (one) nearest neighbor 

was considered. Regarding the SVM classifier, we employed the “one versus all” binary 

classification method; moreover, for the SVM classifier here we employed Gaussian radial basis 

function kernels with a default scaling factor sigma of 1; furthermore, we used the Sequential 

Minimal Optimization (SMO) method to compute the separating hyperplanes of the SVM 

classifier. The parameters for the GSA classifier were tuned as described in [2]. More 

specifically, a population of Na agents was user-defined so as to cover the training data. 

Moreover, the gsaINknn classifier ran for T=100 iterations with an initial value of the G 

parameter in the range [0.5,5.0]. The value of “k” in the product “CkNS” was (user-defined 

to) k=1. In addition, “S” was user-defined to S=2L=2*32=64. We point out that the number of 

data employed for inducing an IN by either classifier INknn or gsaINknn depended on the 

specific (benchmark) classification dataset. In addition, the functions θ(x)=1-x and v(x)=x were 

employed by both classifiers INknn and gsaINknn. 

 

6.3.   Comparative experimental results and discussion 

Table 2 and Table 3 display (a) the average classification accuracy in 10 computational 

experiments for different (random) data permutations, and (b) the ranking (within parentheses) of 

each classifier for each benchmark dataset regarding training and testing, respectively. In other 

words, each Table cell displays the average (percentage) correct classification of a specific 

classifier on a specific dataset in 10 computational experiments. The best result for each 

benchmark dataset is displayed in bold. Note that the training data classification accuracy of the 

knn classifier on the Haberman's Survival benchmark (Table 2) is less than 100% because some 

training data are erroneously repeated with different class labels. 

        Both Tables 2 and 3 demonstrate the well-known fact that there is no “universally optimal 

classifier”, in the sense that a classifier may perform well on some datasets and poorly on other 

ones [9]. On the one hand, Table 2 demonstrates the very good accuracy of both GRNN and knn 

classifiers: their ranking is either 1 or 2. Nevertheless, both GRNN and knn need to store the 

entire training dataset. Both classifiers SOM and fuzzy-ART have demonstrated a moderate 

performance. The INknn classifier typically achieved one of the worst rankings on most 

benchmark datasets. On the other hand, Table 3 demonstrates that the GSA and/or gsaINknn 
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classifiers achieved some of the best recognition results on the testing datasets. Table 2 and 

especially Table 3 demonstrate the typically poor performance of the SVM classifier. 

        Table 4 summarizes the overall (average) classification accuracy of every classifier over the 

twelve benchmark classification datasets considered in this work. More specifically, each cell in 

Table 4 displays the average of a column of either Table 2 or Table 3 regarding the training 

datasets and the testing datasets, respectively. In addition, each cell in Table 4 displays (within 

parentheses) the corresponding overall ranking of each classifier. Table 4 indicates that the knn 

classifier has demonstrated the best overall accuracy (ranking 1) on the training datasets 

followed by the GRNN (ranking 2) and the GSA (ranking 3) classifiers. The INknn classifier has 

demonstrated the worst overall accuracy (ranking 8) on the training datasets and a bad accuracy 

(ranking 7) on the testing datasets. The proposed gsaINknn classifier performed rather poorly on 

the training datasets (ranking 5); nevertheless, it outperformed all other classifiers on the testing 

datasets (ranking 1). In other words, the proposed gsaINknn classifier has demonstrated a better 

overall capacity for generalization than any other classifier on the datasets considered here. 

        Table 5 sums up the rankings of each classifier for each benchmark classification dataset 

regarding both training (Table 2) and testing (Table 3). In addition, each Table 5 cell displays 

(within parentheses) the overall ranking of each classifier. In the aforementioned sense, Table 5 

indicates that the best two classifiers in training are the knn classifier (ranking 1) and the GRNN 

classifier (ranking 2). Nevertheless, both aforementioned classifiers performed poorly in testing 

with rankings 7 and 6, respectively. The GSA classifier achieved a moderate overall ranking of 4 

in training and an improved overall ranking of 2 in testing. The INknn has demonstrated the 

worst overall ranking (8) in training and a moderate overall ranking (4) in testing. Finally, the 

proposed gsaINknn classifier has demonstrated a moderate overall ranking (5) in training and the 

best overall ranking (1) in testing. 

        Next, we examined the impact of different parameter initializations regarding the proposed 

gsaINknn classifier. Table 6 indicates the impact of different parameter initializations on the 

classification results as well as on the CPU processing times of the gsaINknn classifier regarding 

three different benchmark datasets. More specifically, different initial values of the parameters 

Na (number of agents), IN weight and G0 (gravitational constant), shown in columns two, three 

and four of Table 6, were employed resulting in the train and test classification accuracies (%) 

shown in the next two columns of Table 6, respectively. The last column of Table 6 displays the 
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corresponding CPU processing times (in msec). Our experience with different parameter 

initializations for the gsaINknn classifier suggested that the best training/testing classification 

accuracies were typically obtained for smaller “IN weight” values (hence for larger number Na of 

agents), whereas the initial value G0 of the gravitational constant does not effect significantly the 

classification accuracies and not at all the CPU processing times as shown in Table 6. 

        Table 7 displays the CPU processing times (in msec) of all the classifiers on the benchmark 

datasets used in this work. We remark that a processing time shown in Table 7 includes both the 

time for training and the time for testing. It turns out that, even though the knn and GRNN 

classifiers require no training, fuzzy-ART is the fastest classifier here because fuzzy-ART mostly 

computes minima. The SOM and SVM classifiers are fairly fast because they carry out specific 

vector data processing. Likewise, the INknn classifier is fairly fast. Nevertheless, both the GSA 

and gsaINknn classifiers require substantially more time because they carry out stochastic 

search. More specifically, the number of agents employed by either classifier GSA or gsaINknn 

increases in proportion to the number of instances in a benchmark dataset thus leading to longer 

training times. Typically, the GSA is faster than the gsaINknn because the GSA does not involve 

INs. However, the gsaINknn may reduce the number of its INs, hence it may achieve smaller 

processing times. For example, for the Credit Approval dataset in Table 7, note that the GSA and 

gsaINknn classifiers have employed 240 and 10 agents resulting in processing times of 

1,066,730 [msec] and 447,616 [msec], respectively. 

        Another point of interest regards the effectiveness of the GSA method. Note that alternative 

stochastic search and optimization methods, namely genetic algorithms, have been employed 

with an INknn classifier, and similar classification improvements have been reported. More 

specifically, genetic algorithms have improved the performance of INknn classifiers by 

estimating optimally the parameters of both positive valuation functions and dual isomorphic 

functions [27, 61] in classification experiments regarding the Iris and the Wine benchmark 

datasets. We point out that any differences between the classification results reported in [27, 61] 

and the corresponding results reported here (regarding the Iris and the Wine benchmark datasets) 

are not statistically significant. Nevertheless, a detailed comparison of alternative optimization 

methods for the INknn classifier is a topic for future research. 

        In conclusion, INs have demonstrated here comparatively a significant potential in 

classification applications, which (potential) is attributed to the fact that an IN can represent all-
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order data statistics [31]. In addition, the computational experiments in this work have 

demonstrated that INs without optimization result in a rather poor classification accuracy as 

shown in both Tables 4 and 5 for the INknn classifier; whereas, an optimization (pursued here by 

the GSA) of the INknn classifier has significantly improved the classification accuracy. 

 

7.   Conclusion 

This work has presented an optimized, granular knn classifier (with k=1) in the metric lattice of 

Intervals’ Numbers (INs). Optimization was justified on the grounds of improving the 

classification results. Since there are no analytic optimization methods currently available in the 

metric lattice of INs, we resorted to stochastic optimization techniques. In particular, this paper 

introduced a synergy, namely gsaINknn, of the gravitational search algorithm (gsa) for stochastic 

optimization with the INknn classifier. An application on twelve benchmark classification 

datasets from the literature has demonstrated that the gsaINknn classifier achieved better results 

than either the GSA or the INknn classifier alone. Moreover, our experimental results have 

demonstrated that the proposed gsaINknn classifier compares favorably with alternative 

classifiers from the literature. 

        Potential future work includes the consideration of more than one (N-tuple) IN per class as 

well as the employment of alternative tunable non-linear functions v(x) and θ(x) rather than the 

functions v(x)=x and θ(x)=1-x employed in this work. Alternative optimization methods to GSA 

will also be considered comparatively in a future work. The IN inputs to the gsaINknn classifier 

in this work have been trivial. However, Proposition 1 has paved the way for accommodating 

non-trivial IN inputs toward dealing with input uncertainty and/or ambiguity. Further future 

work extensions include the employment of Type-2 INs toward Computing With Words [41]. 
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Table 2 Average classification accuracy % in 10 experiments (with ranking within parentheses) by different 
classifiers regarding training. 

Benchmark dataset \ Classifier SOM GRNN fuzzy-ART knn GSA SVM INknn gsaINknn 
Dermatology 96.05 

(4) 
100.00 

(1) 
95.50 

(5) 
100.00 

(1) 
99.08 

(2) 
100.00 

(1) 
96.17 

(3) 
99.08 

(2) 
Ecoli 87.55 

(6) 
98.52 

(2) 
87.81 

(5) 
100.00 

(1) 
89.90 

(4) 
90.98 

(3) 
84.30 

(7) 
71.12 

(8) 
Haberman's Survival 75.79 

(5) 
96.53 

(2) 
78.43 

(4) 
98.52 

(1) 
70.90 

(7) 
79.03 

(3) 
58.40 

(8) 
73.00 

(6) 
Iris 96.95 

(6) 
100.00 

(1) 
97.71 

(5) 
100.00 

(1) 
98.95 

(2) 
97.62 

(4) 
90.68 

(7) 
98.67 

(3) 
Pima Indians Diabetes 81.77 

(3) 
100.00 

(1) 
80.67 

(5) 
100.00 

(1) 
78.12 

(6) 
91.75 

(2) 
73.34 

(7) 
80.00 

(4) 
Ripley’s 86.76 

(6) 
94.40 

(2) 
89.44 

(3) 
100.00 

(1) 
87.60 

(5) 
77.60 

(8) 
84.80 

(7) 
89.16 

(4) 
Wine 97.85 

(5) 
100.00 

(1) 
98.23 

(4) 
100.00 

(1) 
99.13 

(3) 
100.00 

(1) 
93.41 

(6) 
99.44 

(2) 
Credit Approval 78.96 

(7) 
100.00 

(1) 
85.18 

(6) 
100.00 

(1) 
88.35 

(3) 
98.84 

(2) 
85.44 

(5) 
88.15 

(4) 
Statlog (Heart) 83.33 

(6) 
100.00 

(1) 
87.72 

(4) 
100.00 

(1) 
89.11 

(3) 
99.68 

(2) 
82.78 

(7) 
87.56 

(5) 
Thyroid 95.42 

(7) 
99.94 

(2) 
96.64 

(6) 
100.00 

(1) 
99.56 

(4) 
97.66 

(5) 
75.89 

(8) 
99.89 

(3) 
Yeast 54.94 

(7) 
89.10 

(2) 
56.78 

(6) 
100.00 

(1) 
61.16 

(4) 
66.29 

(3) 
52.67 

(8) 
59.78 

(5) 
Breast Cancer Wisconsin 
(Diagnostic) 

95.71 
(5) 

100.00 
(1) 

96.08 
(4) 

100.00 
(1) 

98.35 
(3) 

99.98 
(2) 

92.60 
(6) 

98.35 
(3) 

 
Table 3 Average classification accuracy % in 10 experiments (with ranking within parentheses) by different 

classifiers regarding testing. 
Benchmark dataset \ Classifier SOM GRNN fuzzy-ART knn GSA SVM INknn gsaINknn 
Dermatology 96.39 

(4) 
96.02 

(5) 
95.09 

(6) 
95.83 

(3) 
96.99 

(1) 
30.00 

(8) 
92.85 

(7) 
96.79 

(2) 
Ecoli 86.44 

(2) 
81.22 

(8) 
84.78 

(4) 
82.56 

(7) 
85.29 

(3) 
83.78 

(5) 
83.61 

(6) 
97.67 

(1) 
Haberman's Survival 74.33 

(3) 
69.56 

(6) 
74.67 

(2) 
65.33 

(7) 
69.71 

(5) 
75.44 

(1) 
53.64 

(8) 
71.99 

(4) 
Iris 96.22 

(4) 
96.44 

(3) 
96.44 

(3) 
96.22 

(4) 
97.78 

(2) 
96.22 

(2) 
90.86 

(5) 
98.22 

(1) 
Pima Indians Diabetes 80.59 

(1) 
71.07 

(6) 
68.44 

(8) 
69.56 

(7) 
71.53 

(5) 
73.60 

(3) 
76.64 

(2) 
72.02 

(4) 
Ripley’s 85.38 

(2) 
82.10 

(5) 
82.66 

(4) 
80.40 

(6) 
84.09 

(4) 
75.50 

(7) 
86.20 

(1) 
84.12 

(3) 
Wine 95.83 

(3) 
95.62 

(4) 
95.42 

(5) 
94.38 

(6) 
97.88 

(2) 
74.58 

(8) 
91.54 

(7) 
98.65 

(1) 
Credit Approval 78.26 

(6) 
79.71 

(5) 
80.72 

(4) 
79.71 

(5) 
86.19 

(2) 
68.07 

(7) 
85.00 

(3) 
86.67 

(1) 
Statlog (Heart) 77.28 

(5) 
75.80 

(6) 
77.78 

(4) 
74.07 

(7) 
84.11 

(1) 
69.26 

(8) 
79.67 

(3) 
82.67 

(2) 
Thyroid 93.33 

(8) 
96.17 

(5) 
93.50 

(7) 
97.50 

(3) 
98.16 

(1) 
93.67 

(6) 
97.92 

(2) 
96.96 

(4) 
Yeast 53.86 

(2) 
46.37 

(8) 
50.14 

(5) 
50.95 

(3) 
46.60 

(7) 
54.86 

(1) 
49.25 

(6) 
50.35 

(4) 
Breast Cancer Wisconsin 
(Diagnostic) 

94.40 
(7) 

97.50 
(3) 

95.66 
(6) 

95.96 
(5) 

98.34 
(1) 

83.04 
(8) 

96.39 
(4) 

98.11 
(2) 
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Table 4 Overall average classification accuracies % (with ranking within parentheses) of the classifiers used in 
this work. 

Overall Accuracy \ Classifier SOM GRNN fuzzy-ART knn GSA SVM INknn gsaINknn 
Training datasets 85.92 

(6) 
98.21 

(2) 
87.52 

(4) 
99.88 

(1) 
88.35 

(3) 
80.87 

(7) 
80.40 

(8) 
87.02 

(5) 
Testing datasets 84.36 

(3) 
82.30 

(5) 
82.94 

(4) 
81.87 

(6) 
84.72 

(2) 
73.17 

(8) 
81.48 

(7) 
86.18 

(1) 

 
 

Table 5 Sums of rankings (with the resulting overall ranking within parentheses) of the classifiers used in 
this work. 

Sum of Rankings \ Classifier SOM GRNN fuzzy-ART knn GSA SVM INknn gsaINknn 
Training datasets 58 

(7) 
17 
(2) 

49 
(6) 

12 
(1) 

39 
(4) 

35 
(3) 

67 
(8) 

41 
(5) 

Testing datasets 44 
(3) 

60 
(6) 

54 
(5) 

59 
(7) 

31 
(2) 

64 
(8) 

51 
(4) 

25 
(1) 

 
 

Table 6 Impact of choosing different initialization parameters “Na”, “IN weight” and “G0” on the classification 
accuracies % as well as on the CPU processing times (in msec) of the gsaINknn classifier regarding 
three of the benchmark datasets. 

Benchmark Dataset Na IN weight G0 trainacc (%) testacc (%) proc time (msec) 
Iris 5 7 0.5 97.14 97.78 9,735 
 5 7 1.0 98.10 97.78 9,735 
 5 7 1.5 98.10 95.56 9,735 
 5 7 2.0 99.05 95.46 9,735 
 7 5 0.5 99.05 97.78 12,015 
 7 5 1.0 99.05 97.78 12,015 
 7 5 1.5 99.05 97.78 12,015 
 7 5 2.0 97.14 95.46 12,015 
Ripley’s 5 25 0.5 86.40 89.30 10,030 
 5 25 1.0 87.60 87.60 10,030 
 5 25 1.5 88.40 82.30 10,030 
 5 25 2.0 87.60 82.50 10,030 
 25 5 0.5 88.40 84.10 33,797 
 25 5 1.0 88.40 83.70 33,797 
 25 5 1.5 88.40 84.00 33,797 
 25 5 2.0 88.00 84.70 33,797 
Breast Cancer 5 40 0.5 93.50 95.86 640,244 
 5 40 1.0 93.50 95.86 640,244 
 5 40 1.5 93.50 95.86 640,244 
 5 40 2.0 93.50 96.45 640,244 
 20 10 0.5 95.75 95.86 1,539,240 
 20 10 1.0 97.25 98.22 1,539,240 
 20 10 1.5 97.25 98.22 1,539,240 
 20 10 2.0 97.50 97.04 1,539,240 
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Table 7 CPU processing times (in msec) of all the classifiers on all the benchmark datasets used in this work. 

Benchmark dataset \ Classifier SOM GRNN fuzzy-ART knn GSA SVM INknn gsaINknn 
Dermatology 688 249 107 174 25,926 521 535 172,317 
Ecoli 176 82 27 39 1,788 201 127 23,269 
Haberman's Survival 116 52 15 41 1,031 119 69 8,144 
Iris 52 30 9 13 1,340 81 73 12,015 
Pima Indians Diabetes 465 294 70 239 103,387 361 518 243,864 
Ripley’s 101 31 14 27 4,822 70 60 33,926 
Wine 179 77 29 61 13,021 133 180 47,943 
Credit Approval 799 327 127 432 1,066,730 380 756 447,616 
Statlog (Heart) 242 87 40 62 41,825 113 204 92,656 
Thyroid 113 43 15 30 1,284 81 40 20,229 
Yeast 812 801 124 650 6,810 2,587 440 87,174 
Breast Cancer Wisconsin (Diagnostic) 759 621 193 493 1,543,530 326 796 1,539,240 
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