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Abstract
This paper proposes a fundamentally new and inherently hierarchical approach to neurocomputing
that is fuzzy lattice neurocomputing (FLN).  The application domain of the FLN is a general
mathematical lattice.  The notion fuzzy lattice is introduced herein to be a lattice whose inclusion-
relation (≤) has been fuzzified.  The FLN proposes a synergistic combination of fuzzy sets and
lattice theory with adaptive resonance theory (ART) and min-max neurocomputing.  The new
theoretical notion (lattice) inclusion measure is defined and it is employed practically for learning
and decision making by the FLN.  Necessary conditions for the existence of a specific inclusion
measure in a lattice are shown.  The merits of the FLN are demonstrated practically in the set RN on
synthetic and benchmark data sets, where the FLN outperforms other neurocomputing schemes.
An example is shown in the lattice of fuzzy sets over a universe of discourse.  Lattices of disparate
objects may be treated jointly with mathematical consistency.  Another novelty is that the inputs to
the FLN do not have to be individual lattice elements but they may be intervals of lattice elements.

Key words: Competitive neural networks, lattice theory, fuzzy set theory, clustering, pattern
recognition, parallel processing.

1   Introduction and the Origins

A scheme for machine learning and decision making is typically crafted, either explicitly or
implicitly, in the Euclidean space or the set RN.  With regards to neurocomputing in particular, the
goal during the “learning phase” is to separate effectively that domain into regions, namely
categories or classes c1,…,cK, with respect to certain constraints.  To this effect, a function fi(.)
i=1,…,K is defined during learning for each category ci, i=1,…,K such that when a new and
hitherto unknown input, typically an N-dimensional point, is presented during the “testing phase” to
be correctly classified to its corresponding class.

In this work we tried to go beyond the Euclidean space and to develop a neurocomputing
scheme that can be applied on less structured sets; namely complete lattices.  The goal meant to be
a versatile scheme applicable on a wide domain.  The result has been a novel neural scheme for
learning and decision making, namely fuzzy lattice neurocomputing (FLN) scheme, which currently
is used only for clustering.  Different aspects of the FLN have been reported recently [9, 10].  Note
that in the context of lattices the Euclidean space is only one alternative application domain.
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According to the approach we have taken, a class of lattice elements is defined by a finite set of
overlapping or non-overlapping lattice intervals.  This implies that when the lattice RN is employed
in particular, then N-dimensional hyperboxes will be used to define a class.  In this sense, our
approach is similar to the one taken by the biologically motivated adaptive resonance theory (ART)
[2, 3] and the min-max neural networks [11, 12].  But even though it is originated in the adaptive
resonance as well as the min-max neural networks, fuzzy lattice neurocomputing (FLN) proceeds
far beyond these approaches.  It generalizes both of them by employing the theory of lattices [1]
which is blended efficiently with the theory of fuzzy sets [13].  Thus, the activation function
employed by FLN’s neurons is lattice applicable instead of being strictly applicable to the set of real
numbers.

A theoretical by-product of this research has been the introduction of the novel concept of
fuzzy lattice, that is a lattice that fuzzifies its conventionally binary-valued inclusion-relation (≤).
The fuzzy lattice framework or FL-framework is introduced herein with the aspiration to form a
basis for the development of intelligent machine schemes.  A fuzzy lattice is not to be confused with
an L-fuzzy set [5].  The latter is a mapping from a universe of discourse onto a lattice and as such it
is a generalization of a fuzzy set.  On the other hand, the FLN is a neurocomputing scheme which
approximates sets of lattice elements by lattice intervals and, as such, it is a generalization of the
min-max neural networks [12] and the ART [3].  Lattice theory also provides for the hierarchical
feature of the FLN since the product of lattices is a lattice [1].  Our oldest known attempt to fuzzy
lattice neurocomputing (FLN) is noted in [8].  However, the work herein significantly systematizes
and enhances it.  Another important innovation introduced herein is that an input to be learned or to
be classified can be a lattice interval.  For the lattice RN in particular, this remark implies that an
input to the FLN can be a hyperbox instead of solely an N-dimensional point.

The domain of the FLN includes not only the Euclidean space but it includes other sets of
objects retaining a “loose” relation to each other as in a lattice - for instance, the set of all
waveforms and that of all images as well as their respective Fourier transforms.  Another illustration
is the set of all fuzzy sets defined on a universe of discourse, the corresponding Boolean set being
one specific case.  Additional examples is the set of hyperboxes inside the unit hypercube and the
set of hyperspheres inside the unit hypersphere.  Conventional N-dimensional vectors have been
treated to-date by different neurocomputing paradigms without resorting to lattice theory.
However, paradigms, like the adaptive resonance theory (ART) [2] which deals with binary vectors,
the fuzzy ART [3] and the min-max neural networks [11, 12] which deal with analog vectors that
describe hyperboxes, may be regarded in the context of FLN as its domain-specific variations.

Section 2 presents the new theoretical perspective for learning and decision making which is
based on the theory of lattices.  The mathematics involved is out of the usual track made for
neurocomputing.  Hence we avoided diligently any diversions into various obscure theoretical
issues.  Instead we dealt only with those aspects of the theory indispensable to reveal the
hierarchical nature, the capacity for handling disparate data, and the consistency of learning and
decision making.  The proofs of the theorems are given in the appendix.  Section 3 introduces the
fuzzy lattice neurocomputing (FLN) scheme.  New concepts are defined again wherever necessary.
Section 4 reports on the capacity of the FLN for pattern discrimination and recognition on various
data sets, and it compares it with that of other neural networks.  Finally a brief discussion in section
5 accentuates the technological potential implied by an efficient hardware implementation of the
FLN.
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2   A Novel Framework to Learning and Decision Making

2.1  A hierarchy of fuzzy lattices

A lattice is a partly ordered set any two of whose elements have a greatest lower bound or
meet denoted by x∧y and a least upper bound or join denoted by x∨y.  A lattice  is called complete
when each of its subsets X has a least upper bound and a greatest lower bound.  Moreover, a non-
void complete lattice contains a least and a greatest element denoted by O and I respectively [1].

Let  be a lattice which may or may not be complete.  Consider the relation R of the induced
partial ordering in , and let x,y∈ .  Then it is known that (x,y)∈R or (y,x)∈R or none of the
previous ordered pairs belongs to R.  The novel notion fuzzy lattice is introduced at this very point
in order to extend the crisp lattice relation, if it exists, of partial ordering to any pair (x,y) of the
space {(x,y): x,y∈ }.  Such an extended relation is denoted by P and it is, in fact, a fuzzy inclusion
relation.  That is, to every (x,y)∈{(x,y): x,y∈ } a real number from the interval [0,1] is attached to
denote the degree of inclusion of x in y, that is the degree of truth of x≤y, where x,y∈ .  Formally
the relation  can be defined [15] by

P = {((x,y),µP(x,y)) : x,y∈ , µP(x,y)∈[0,1]}, where
the real function µP(x,y) specifies the degree of inclusion of x in y.

To keep the extension P meaningful and compatible with the original lattice’s  partial
ordering relation R, the fuzzy relation P is defined under the constraint that µP(x,y)=1 if and only if
x≤y in .  The definition of a fuzzy lattice ensues naturally.

Definition 1
A fuzzy lattice is a pair ( , µP(x,y)), where  is a conventional lattice and µP(x,y) is a fuzzy relation
defined on {(x,y): x,y∈ } which specifies the degree of inclusion of x in y.  It is µP(x,y)=1 if and
only if x≤y in .

The notion “fuzzy lattice” is meant to complement computationally the set of real numbers in
the design of intelligent schemes for automated machine learning and decision making.  We will
refer to the set of all fuzzy lattices by the term fuzzy lattice framework or FL-framework in short.

To define a fuzzy lattice out of a conventional lattice , a real number will be attached to each
element of lattice  by a function v: → .  In the set of all such functions that may be defined on 
only the subset of the positive valuations will be considered.  A valuation on a lattice  is a real-
valued function v(.) on  which satisfies [1]

v(x) + v(y) = v(x∨y) + v(x∧y).
A valuation is isotone if and only if   x ≤ y implies v(x) ≤ v(y), and positive if and only if  x < y
implies v(x) < v(y).

A reason for selecting the set of the positive valuations is that in a lattice  with a positive
valuation v(.), a distance function d(x,y) = v(x∨y) - v(x∧y) can be defined and hence  becomes a
metric lattice [1].  Recall that the distance or metric is a nonnegative function d(x,y) for all (x,y)
which satisfies        (1) d(x,y)=0, if and only if x=y, (2) d(x,y)=d(y,x), and (3) d(x,y)+d(y,z)≥d(x,z)



4

(triangle inequality).  Another implication of the existence of a positive valuation in  is that an
inclusion measure can be defined in this lattice as well as in the lattice of its closed intervals as it
will be shown in this section.

A lattice property states that the product of N lattices 1,…, N, that is, = 1×…× N, is lattice
anew with an induced partial ordering relation defined by (x1,x2,…,xN) ≤ (y1,y2,…,yN) ⇒ x1≤y1,
x2≤y2,…, xN≤yN [1].  This partial ordering relation is called herein relation r1.  Lattice = 1×…× N

is called product lattice, and each one of the i, i∈{1,…,N} is called a constituent lattice.  Note
that if the constituent lattices i, i∈{1,…,N} are all complete then apparently the composite lattice

= 1×…× N will as well be a complete lattice.  With regards to positive valuations in the
constituent lattices 1,…, N the following statement can be made.

Lemma 1
Let = 1×…× N be the product of N lattices with positive valuations v1(.),…,vN(.) respectively.
Then the function v(x1,…,xN)=v1(x1)+…+vN(xN) defines a positive valuation in = 1×…× N.

Lemma 1 is easily proven.  We omit the proof for lack of space.

At this point it is necessary to cite a convention with regards to the notation employed.
Specifically let  denote a product lattice, and let 1,…, N, denote its constituent lattices.  We
agree to denote an element of the product lattice  by a plain letter without any subscript, for
instance x∈ .  On the other hand, an element of a constituent lattice i is denoted by a letter with a
subscript, for instance xi∈ .  Same subscripts imply elements of the same constituent lattice and
vice-versa.

2.2  The lattices 1 and 2 on the product set ××

To keep building up the hierarchy of lattices consider a complete product lattice  with O and
I denoting its least and its greatest element respectively.  In line with the previous analysis it can be
inferred that if  is a complete lattice then the product ×  is itself a complete lattice, which will be
denoted by 1= × .  Furthermore recall that the implied relation of partial ordering in 1, that is
(a,b)≤(c,d) if and only if a≤c and b≤d, is the same relation r1 as before implied by the product lattice

= 1×…× N.  The join and the meet in 1 are defined as follows
(a,b)∨(c,d) = (a∨c,b∨d),  and   (a,b)∧(c,d) = (a∧c,b∧d), where a,b,c,d∈

The least element of the complete lattice PL1 is (O,O) whereas its greatest element is (I,I).
By virtue of Lemma 1 it can be shown that if v(.) is a valuation in a lattice , then the function

V((a,b))= v(a)+v(b) defines a derived valuation in 1.  Moreover, it can also be easily shown that
if the valuation v(.) is isotone (positive) in , then likewise is V(.) in 1.  Hence it is noted that
when there exists a positive valuation in  then there exists another one in 1.  In the sequel
another lattice, that is the lattice 2 of generalized intervals in , is defined on the same product
set ×  as it did lattice 1 above.  But the lattice 2 of generalized intervals is defined with a
different partial ordering.
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Theorem 1
Let the set 2 be 2= {[a,b]: a,b∈ } where  is a complete product lattice, and let two binary
operations between elements of 2 be defined as follows :

[a,b]∧[c,d]= [a∨c,b∧d],  and   [a,b]∨[c,d]= [a∧c,b∨d], where a,b,c,d∈
Then 2 is a complete lattice because the following laws L1-L4 are satisfied, for a,b,c,d,e,f in 
[1].

L1. [a,b]∧[a,b] = [a,b],  and   [a,b]∨[a,b] = [a,b] (Idempotent)
L2. [a,b]∧[c,d] = [c,d]∧[a,b], and [a,b]∨[c,d] = [c,d]∨[a,b] (Commutative)
L3. [a,b]∧([c,d]∧[e,f]) = ([a,b]∧[c,d])∧[e,f]

[a,b]∨([c,d]∨[e,f]) = ([a,b]∨[c,d])∨[e,f] (Associative)
L4. [a,b]∧([a,b]∨[c,d]) = [a,b]∨([a,b]∧[c,d]) = [a,b] (Absorption)

The proof of theorem 1 is given in the Appendix.

The implied relation [a,b] ≤ [c,d] of partial ordering in 2 is equivalent to [a,b]∧[c,d] = [a,b]
⇔ a∨c=a, b∧d=b ⇔ c≤a, b≤d, and it will be called (partial ordering) relation r2.  Note that [I,O] is
the least element and [O,I] is the greatest element in the complete lattice 2.  An element of 2 is
called generalized interval because of the way lattice 2 is defined.  Note that lattice 2

considers the set {(x,y): x,y∈ }, as it does lattice 1.  Nevertheless, parentheses ( ) are used to
embrace the elements of 1, whereas brackets [ ] are embracing the elements of 2 intentionally,
to underline the two different lattice orderings on the same product set × .

It can be proven easily that if v(.) is a valuation in a lattice , then the function V([a,b]) =
v(a)+v(b) defines a derived valuation in 2.  However note that an isotone valuation v(.) in  does
not imply an isotone valuation of the form V([a,b])=v(a)+v(b) in 2 as it did before in 1.  This
can be shown by considering the relation [a,b]= x≤y =[c,d] ⇔ c≤a and b≤d.  If v(.) is isotone in 
then it holds c≤a ⇒ v(c)≤v(a) and b≤d ⇒ v(b)≤v(d).  Hence the inequality relation between
V(x)=v(a)+v(b) and V(y)=v(c)+v(d) is case dependent.

The lattice 2 of generalized intervals is significant because it contains all the conventional
intervals whom families could be employed to represent a set of lattice  elements.  It would be
quite advantageous to have a positive valuation function in 2.  Recall that the importance of the
existence of a positive valuation in 2 lies first of all in the fact that a metric could be defined in it.
Second, a positive valuation function in 2 would imply an inclusion measure as shown in the
sequel, which is instrumental to applying the FLN scheme in the lattice in question.  Nevertheless
such a positive valuation could not be found in lattice 2, provided one in lattice .

Instead of searching for a positive valuation in lattice 2, which may not exist, we direct our
efforts to finding an isomorphic relation between lattices 2 and 1.  Such a search is fruitful and
a sufficient condition can be found for the existence of an isomorphism between 1 and 2.
Recall that an isomorphism between two lattices implies that the join of two elements in one of
them corresponds to the join of their images in the other lattice; a similar correspondence exists for
the meet.  On the other hand, when two lattices are dual-isomorphic to each other, then the join of



6

two elements in one of them corresponds to the meet of their images in the other lattice; further the
meet of two elements in one of them corresponds to the join of their images in the other lattice.  A
(dual-)isomorphic mapping whose domain is identical to its range is called a (dual-) automorphism
[1].

We find that the existence of a dual-automorphism in  can establish an isomorphism between
the already defined lattices 1 and 2.  To prove this statement, assume that there exists indeed a
dual-automorphism in the complete lattice , that is an one-to-one correspondence θ(.): →  such
that x≤y ⇒ θ(x)≥θ(y) x,y∈ .  Then [a,b]≤[c,d] in 2

 implies c≤a and b≤d ⇒ θ(c)≥θ(a) and b≤d ⇒
(θ(a),b)≤(θ(c),d) in 1.  Further, (a,b)≤(c,d) in 1

 implies a≤c and b≤d ⇒ θ(a)≥θ(c) and b≤d ⇒
[θ(a),b]≤[θ(c),d] in 2.  In conclusion there is a bijection (an one-to-one correspondence) between

2 and 1 which is order preserving. Therefore, in this case, we say that the lattices 2 and 1

are isomorphic to each other under θ(.).
Note that the dual-automorphism θ(.) in  implies θ(O)=I and θ(I)=O, and the least element

(O,O) of 1 maps into the least element [θ(O),O]=[I,O] of 2.  Likewise, the greatest element
(I,I) of 1 maps into the greatest element [θ(I),I]=[O,I] of 2.  Note in addition that a dual-
automorphism ψ(.), other than θ(.), in  establishes an isomorphism between 1 and 2 different
than the one under θ(.).  In fact, a dual-automorphism in  is only a sufficient and not a necessary
condition to establish an isomorphism between lattices 1 and 2.  Nevertheless, the task of
identifying a dual-automorphism θ(.) in a lattice  systematizes the definition of an isomorphism
between the lattices 1 and 2.

2.3  Lattice intervals and the “inclusion test”

Let us formally define crisp sets of lattice  elements.  We will start by dealing with the closed
interval [a,b] which is the set of all the elements x∈  such that a≤x≤b.  The set L of all closed
intervals, or simply intervals t=[a,b], a≤b of lattice  elements augmented by the least element [I,O]
of 2 is defined by

L = {[a,b] : a,b∈  and a≤b } ∪ {[I,O]}
It can be shown that L⊂ 2 is a complete lattice in its own right by virtue of theorem I.6 in

[1].  Note that lattice L topes the hierarchy of lattices that may be implied by the FL-framework.
A single element x of the original lattice  corresponds to [x,x] in L and the latter is called an
atom.  In the complete lattice L the implied binary relation ≤ of partial ordering, as in [a,b]≤[c,d]
⇔ c≤a≤b≤d, signifies the fact that [c,d] contains at least the elements of [a,b].  The following
definition suggests a “measure of the magnitude” of an interval in L with regards to a positive
valuation v(.) defined on .

Definition 2
Let  be a complete lattice with O and I its least and greatest elements respectively, let v(.) be a
positive valuation on , and [a,b] be an interval in L.  Then the size of [a,b] with respect to v(.) is
defined by the non-negative function Z([a,b])=v(b)-v(a)  (it is tacitly assumed that the size of the
least element [I,O] in L is zero, that is Z([I,O])=0).
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To do calculations in lattice L by employing its two operators, that is the join (∨) and the
meet (∧), note that the computation of the join [a,b]∨[c,d]=[a∧c,b∨d] in L is straightforward
because it is always a∧c≤b∨d.  However, the computation of the meet [a,b]∧[c,d] is completed only
after the following inclusion test in L :

a∨c≤b∧d (true) ⇒ [a,b]∧[c,d] = [a∨c,b∧d]
a∨c≤b∧d (false) ⇒ [a,b]∧[c,d] = [I,O]

Finally note that an implication of the existence of a dual-automorphism θ(.) in  is that a
distance between two intervals of L⊂ 2 can be determined.  Moreover the distance between any
two generalized intervals of 2, say [a,b] and [c,d], is taken to be equal to the distance of their
isomorphic images in 1.  That is
d([a,b],[c,d]) := d((θ(a),b),(θ(c),d)) =V((θ(a),b)∨(θ(c),d)) - V((θ(a),b)∧(θ(c),d)) =

= V(θ(a)∨θ(c),b∨d) - V(θ(a)∧θ(c),b∧d) = [v(θ(a)∨θ(c)) - v(θ(a)∧θ(c))] + [v(b∨d)-v(b∧d)] =
= [v(θ(a))+v(θ(c))] + [v(b)+v(d)] = [v(θ(a))+v(b)] + [v(θ(c))+v(d)] = d(θ(a),b) + d(θ(c),d).

It has already been explained that a positive valuation function occasions the definition of a
distance function in .  Underneath is shown that such a positive valuation furthermore occasions
the definition of an inclusion measure in the lattice in question.

2.4  Inclusion measure

Definition 3
Let ** be a complete lattice with least and greatest elements O and I respectively.  An inclusion
measure is a mapping σ: {(x,y): x,y∈ }→[0,1] from {(x,y): x,y∈ } onto the unit interval [0,1]
such that σ((x,u))≡σ(x≤u) satisfies the following conditions

(C1) σ(x≤O) = 0, x≠O.
(C2) σ(x≤I) = 1, ∀x∈ .
(C3) u≤w ⇒ σ(x≤u) ≤ σ(x≤w), x,u,w∈ (Consistency Property)

It can be argued that σ(x≤u) indicates the degree of truth of the lattice inclusion relation x≤u,
or in other words σ(x≤u) indicates the degree of inclusion of x in u.  Note that when the complete
lattice  is the lattice L of intervals of some complete lattice, whether it be a constituent or a
product lattice, then the Consistency Property above states that if an interval u is included in
another interval w, then any interval x is included in u less than it is in w.  Note also in definition 3
that an inclusion measure σ(x≤u) defines two “antipodal” fuzzy sets in , each one resulting in
when one of the x, u is kept constant while the other runs the whole of lattice .  Finally, it should
be noted that the definition of the inclusion measure above has been inspired from the definition of
the possibility measure [14, 15] and adapted to a lattice context.

                                                                   

**  Here  can be either a product lattice or a constituent lattice.
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Consider the function k(x,y) = v y
v x y

( )
( )∨

, where x,y∈  and v(.) is a positive valuation on lattice

 with v(O)=0.  Note that if for the positive valuation v(.) it is v(O)≠0, then a positive valuation
v+(.) with v+(.)=0 can always be defined out of v(.) by simply subtracting v(O) from all v(x), where
x∈ .  In the sequel it is tacitly assumed for all positive valuations v(.) considered that v(O)=0.  It
can be shown that the function k(x≤u)=k(x,y) defines an inclusion measure in .

Theorem 2
Let  be a complete lattice.  Then the existence of a positive valuation function v(.) in  (with

v(O)=0) is a sufficient condition for the function k(x≤u) = v u)
v x u)

(
( ∨

 to be an inclusion measure in .

The proof of theorem 2 is given in the Appendix.

Note that the function k(x≤y), called also characteristic function, is equal to 1 if and only if it
is x≤y.  Note that k(x≤y) defines a fuzzy set for each lattice element y; moreover it defines another
fuzzy set for each lattice element x.  The highest possible degree of membership is 1 (full
membership in y) attained for those x∈  for which it holds x≤y; the set of all such x(s) is called the
core of the fuzzy set defined by y [13].

Theorem 2 entails some further reaching implications when applied in lattice 1.  Recall that
when v(.) is a positive valuation in  then so is V((a,b)) = v(a)+v(b) in 1.  Hence, the function
k(x≤y), x,y∈ 1, defines an inclusion measure in 1.  Furthermore recall that the existence of a
dual-automorphism θ(.) in  suffices to establish an isomorphism between lattices 1 and 2.
Therefore, the existence of both a positive valuation v(.) and a dual-automorphism θ(.) in a
complete lattice , is a sufficient condition to define an inclusion measure in the lattice L of closed
intervals of  elements.  Note that the core [13] of the fuzzy set defined by y=[a,b] and with
characteristic function k(x≤y), x,y∈ L, (that is, the collection of intervals x=[c,d] such that
σ(x=[c,d]≤y=[a,b]) = 1) includes all the atoms [e,e] such that e∈  and a≤e≤b.  To calculate the
inclusion measure σ(x≤u) of a lattice interval x into another lattice interval u, first we map both x
and u where x,u∈ L⊂ 2 to their isomorphic x′ and u′, respectively, where x′,u′∈ 1.  Finally, the
inclusion measure σ(x′≤u′)= k(x′≤u′) is employed as the inclusion measure σ(x≤u) for all intervals
x,u∈ L.

Note that the characteristic function k(x≤u) always provides a non-zero measure of inclusion
of an interval x inside interval u, where u≠O.  A non-zero inclusion measure is important when it is
attempted to assign an interval x to one of the non-overlapping with x intervals u and w, as happens
frequently in the FLN scheme.

These notions have led us to a connectionist scheme, namely fuzzy lattice neurocomputing
(FLN), where learning occurs by defining and enhancing crisp lattice intervals which are in fact the
cores of fuzzy sets in L.  In this sense, the FLN is a generalization of the min-max neural networks
[11, 12] which have emanated likewise from the adaptive resonance theory (ART) [2].  A detailed
comparison of the FLN on one hand with both the ART and the min-max neural networks on the
other hand, will be given elsewhere, for lack of space.
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3   Description of the Fuzzy Lattice Neurocomputing (FLN) Scheme

The FLN deals with elements of L which are called intervals, codes, or nodes.  The elements
of the set L, by being closed intervals, define sets of akin, in the sense of “adjacent”, lattice 
elements.  Intelligent schemes can be crafted in L for defining sets of lattice elements which can be
represented by the set-union of L intervals.  Furthermore the existence of a positive valuation in 
was shown to enable the definition of an inclusion measure for lattice 1, and hence this lattice
becomes tractable for mathematical operations.  Finally, the existence of a dual-automorphism in 
“bridges the gap” between lattice 2⊃ L and lattice 1 by establishing an isomorphism between

1 and 2.  A concrete connectionist scheme for a crisp set identification will be shown in this
section, that is the fuzzy lattice neurocomputing (FLN) scheme.

The FLN operates similarly to an adaptive resonance theory (ART) model [2, 3].  In fact, a
neural implementation of the FLN for Euclidean space applications resembles that of the two-layer
ART [2].  In addition, the FLN proposes the following enhancements.  Instead of dealing
exclusively with Euclidean vectors that define hyperrectangles [3], the FLN deals instead with
codes in the complete lattice L.  It is important to note that even when only the Euclidean domain
is considered, the FLN is superior to an ART-based model in two points.  The first point is that an
input to the FLN might be an N-dimensional hyperrectangle instead of only an N-dimensional point.
Such a capacity is due to the nature of the lattice-applicable activation function σ(x≤w) employed
by the FLN’s upper layer neurons, where σ(.) is an inclusion measure, x is an input code to the
FLN, and w is a learned code.  The other point is the technique of maximal expansions which
enhances the overlapping of two codes by enlarging their lattice meet to the maximum and in all
possible ways.  A detailed description of the latter technique is given below.  Therefore, it can be
claimed that a traditional ART-based neurocomputing scheme becomes a domain-specific variation
of the more general FLN scheme.

Let {wk,i} be a family of intervals and ck be a class defined by the union of the family {wk,i},
as explained in [6]; that is, ck= wk,i

i

.  We say that a trivial interval or point, [a,a] is inside a class

ck= wk,i
i

  if and only if there is an interval wk,i for some value of the index i such that [a,a]≤wk,i.

Moreover if x is a single interval, then the degree of inclusion of x in ck is defined to be σ(x≤ck) =
σ(x≤ wk,i

i

) := max
i

σ(x≤wk,i).  Note that sometimes σ(x≤ wk,i
i

) will be denoted instead by

σ(x≤{wk,i}).  Furthermore, when σ(x≤ck)=1 we will write x≤ck and say that “x is in(side) the class
ck”.

Definition 4
A family c={wi} of lattice intervals is called connected if and only if, for any two intervals p,q inside
c= wi

i

 there exists a sequence of intervals t0,…,tN-1 solely containing points of {wi} from p to q,

that is t0∧p=p, tN-1∧q=q, and ti∧ti+1≠O, i=0,…,N-2.  In other words, a family {wi} is connected if
and only if there exists a path of intervals between any two intervals of {wi} where the path lies
exclusively in {wi}.
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The decision making in the fuzzy lattice neurocomputing (FLN) scheme is driven by the
degree of true of the proposition x≤ck, where x is a lattice interval that excites the system and the
ck's are learned classes stored in the system’s memory.  Note that any such a family {wk,i} is
simplified in the sense that there are no two constituent intervals wk,m, wk,n in {wk,i} such that
wk,m≤wk,n.

Let F be the collection of all families that can represent a class c in lattice .  Note that the
cardinality of a family {wi} of intervals used to represent class c need not to be a constant.  We say
that a family {pm} in F is “smaller than or equal to” another family {qn} in F (symbolically
{pm}≤{qn}), if and only if ∀p in {pm} there exists a q in {qn} such that p≤q.  Moreover, a simplified
family {pm} is “strictly smaller” than another simplified family {qn} and we write {pm}<{qn} if and
only if it is {pm}≤{qn} and either there is a p in {pm} and a q in {qn} such that p<q or the cardinality
of family {pm} is strictly smaller than the cardinality of family {qn}.  Note that F is a partially
ordered set.  The following lemma holds,

Lemma 2
A collection F of families that can represent a class c has a maximum element, namely quotient
denoted by Q(F) = Q({wi}).

The proof of lemma 2 is given in the Appendix.

A quotient Q(F) is the maximum element in the set F.  In fact, it is easy to show that the set F
is a lattice, and it constitutes another “pinnacle” in the hierarchy of lattices.

The technique of maximal expansions calculates the maximum of the set F, that is the
quotient Q(F).  A computational method towards this end is algorithm-Q shown in the proof of
Lemma 2.  There is a benefit in the context of fuzzy lattice neurocomputing (FLN) for replacing a
family {wi} which represents a class c by the quotient Q({wi})=Q(F).  The benefit stems from the
fact that a lattice inclusion measure σ(x≤c) is used by the FLN scheme as an activation function of
its upper layer neurons.  Because Q(F) is the maximum family in F, it may be inferred that, for any
constituent interval w in a family {wi}, there exists an interval W in Q(F) such that w≤W.  Hence,
for any input interval x, it is  σ(x≤Q(F)) = max σ(x≤{wj}), where {wj}∈F.  In other words, the
quotient Q(F) maximizes the degree σ(x≤c) of inclusion of x in the class c= wi

i

.

The Fuzzy Lattice Neurocomputing (FLN) Scheme

Figure 1 shows the two layer FLN architecture which can be employed for learning and
decision making in the FL-framework which includes the set RN.  Notice the resemblance with the
ART [2] neural network architecture.  A key difference with the ART, besides FLN’s own
activation function σ(x≤w), is its applicability to fuzzy lattices. This could imply significant
technological benefits as explained in section 4.  Another advantage of the FLN compared to the
ART is that an input to the FLN might be an interval, that is, a hyperbox in the set RN.
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Figure 2 shows a flow-chart of the processing cycle of the fuzzy lattice neurocomputing
(FLN) for learning and decision making.  The processing cycle of Figure 2 can be implemented by
the FLN architecture of Figure 1.  The flow-chart blocks in Figure 2 are explained below.

0. The first input is memorized.  From then on learning and decision making proceeds as follows
(assume that at any instant, there are M known and learned classes - that is M families of
intervals ck, k=1,…,M stored in the memory).

1. Present an input interval x to the initially “set” database of classes c1,…,cM.
2. Calculate σ(x≤ck) for all ck, k=1,…M that have not yet been “reset”, where ck= w k,i

i

 and

σ(x≤ck) = σ(x≤ w k,i
i

) := max
i

σ(x≤wk,i)

3. Competition among the classes ck : select cJ such that σ(x≤cJ) = max
k

 σ(x≤ck), where J is the

index of the corresponding winner and cJ= wJ,i
i

.

4. The maximum-size-test (assimilation condition or matching test) :  Test to see whether the size
x∨w is less than a critical threshold Z, where w corresponds to the max

i
σ(v≤wJ,i).

5. If the maximum-size-test is successful, then incorporate x into cJ by replacing w by x∨w and
calculate the new quotient Q({wk,i}).

6. If the maximum-size-test fails, then “reset” cJ.
7. Completion-test :  Test whether all the classes c1,…,cM have been “reset”.  If the completion-test

fails go to step 2 to look for another winner.
8. If the completion-test is successful, then store x : cM+1=x.

Note that step 8 assumes that there exists sufficient system memory available.  If no more memory
is available, then the accommodation of the input x is turned down.  In all, the FLN can be regarded
as a competitive scheme that handles and manipulates fuzzy sets.

The specific distinction between the FLN and an ART-based neural network which (distinction)
contributes to an overwhelming utility of the FLN emanates from its applicability to lattices other
than the Euclidean space.  Finally note that the FLN is inherently hierarchical due to a mathematical
property which states that the product of lattices is lattice [1], therefore the FLN promotes data
fusion.

4   Experiments

In most of the experiments, conventional N-dimensional vectors were used because the
employment of such data for learning and decision making is widespread in the pattern recognition
community.  Hence the corresponding performance of the FLN can be compared with the
performance of other clustering algorithms.  One simple example is also cited beyond the Euclidean
space.

The set RN is a lattice and it may be regarded as the product of N lattices (continuous chains).
An element of the lattice RN is an N-dimensional point, whereas an interval in lattice RN is an N-
dimensional hyperrectangle also called a hyperbox herein.  More specifically, the complete lattice
employed was the unit hypercube in RN with least element O=(0,…,0) and greatest element
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I=(1,…,1).  The corresponding N complete lattice chains are simply the unit intervals [0,1].
Furthermore for each one of the N lattice chains, the positive valuation used was the value x of the
corresponding vector entry; that is vi(x)=x, i=1,…,N.  Recall that by Lemma 1 a positive valuation
in the product N-dimensional lattice RN can be defined by the sum of the positive valuations of its N
constituent lattice chains.  Note also that for each complete lattice chain [0,1] there exists a dual-
automorphic function θ(.) given by θ(x)=1-x.  Hence in line with the theoretical analysis of section
2, an inclusion measure is induced in the lattice L of hyperboxes inside the unit hypercube in RN.

A hyperbox specified by its N edges [x2i,x2i+1], i=0,…,N-1,  is represented conventionally in
the 2N-dimensional space by the vector x=(1-x0, x1, …, 1-x2N-2,x2N-1) with a positive valuation
v(x)= 1-x0 + x1 + … + 1-x2N-2 + x2N-1.  In all of the following examples, the learning was always
stable and required only a few passes through the data.

4.1   Example-1

The two dimensional data set shown in Figure 3(a) consisting of 112 points was synthesized
to test the ability of the FLN to separate non-linearly separable data sets.  The order of data
presentation was from left to right and from bottom up starting with the cluster above and
proceeding to the one below.  The product 2-D lattice size Z was 0.0202.  The FLN placed the data
into the clusters shown in Figure 3(b) using 78 nodes, assigning 39 nodes to each cluster.  Note that
a node on the plane in Figure 3(b) is a rectangle and often a trivial one, that is a line segment.

4.2   Example 2

The two-dimensional data set shown in Figure 4(a) and consisting of 84 points was
constructed to test the ability of the FLN to identify a non-convex data set.  Starting from the top-
left corner, the order of the data presentation was to the right and downwards.  The product 2-D
lattice size Z was set to 0.0408.  The neural network placed all the data into one cluster consisting
of 10 overlapping nodes as shown in Figure 4(b).  The boxes marked by an × are not inside any
node (rectangle).  Note that the interior of the identified 2-D cluster shown in Figure 4(b) does not
belong to the cluster itself.

4.3   Example 3

This time a benchmark data set was processed.  The Fisher IRIS data set [4] was chosen
because its familiarity to the scientific community may allow an assessment of the relative
performance.

The data were presented in their original order, that is, as cited in [4] and with a product 4-D
lattice size of 1.71.  As a result, 15 classes were formed; each class is defined by the set-union of 4-
D hyperrectangles (codes or nodes).  In the sequel, a second level clustering was performed by
determining the degree of inclusion of each class within all the others.  Such a degree of inclusion of
a class into another one was determined by finding the maximum value for the inclusion measure of
a first class’ node to a second class’ node.  Hence, the square matrix shown in Table 1 resulted
where only the two most significant decimals are shown.  The second level clustering is as follows :
each first level class may be associated with at most one other class, that class with the largest
inclusion measure, suffices this maximum inclusion measure is over a threshold.  In our case, the



13

threshold was set to 0.60.  Table 1 shows that there is indeed a maximum inclusion value above the
threshold for every first level class which is not on the main diagonal.  The main diagonal is of no
practical interest because the values along it are always equal to 1 demonstrating the trivial fact that
any class contains itself.

Figure 5 shows how the association of first level classes implies a partition into three classes.
Raising the threshold value above 0.64 causes more than three classes to appear in the second level
of clustering, while lowering the threshold to less than 0.57 causes fewer than three classes to
appear.  In conclusion, without the presence of a teacher and using only FLN clustering, the
Fisher’s IRIS data were clustered in three classes with only three data misclassifactions, as
summarized in Table 2.

Table 3 shows the best results obtained using the min-max neural network [12].  Besides
FLN’s superior classification results shown in Table 2, it is also important to note that the FLN
tracks down three classes after two consecutive stages of clustering, whereas the min-max neural
network identifies a total of 14 clusters in one stage of clustering which are then assigned to the 3
IRIS classes by an external teacher.  In conclusion, the FLN outperforms the min-max neural
network in this clustering example.

More recent classification results of the IRIS benchmark are reported in [7] by different
supervising neural networks including backpropagation and structural learning with forgetting
(SLF).  A statistical overall optimum of 5.0 errors is reported for the SLF, occurring when the
training set contains either 30 or 90 randomly selected data; the rest of the data constitute the
testing set.  The corresponding optimal performance for the backpropagation results in an average
of 4.8 errors.  Note again that the superior discriminatory capacity of the FLN compared with both
the backpropagation and the SLF, is further accentuated by the fact that the FLN identified the
three underlying IRIS classes without the help of an external teacher.

It should also be mentioned that additional benchmark data sets have been processed by the
FLN.  For example the SONAR and the VOWEL data sets, obtained from the Carnegie Mellon
University’s collection of neural net benchmarks have been processed.  And in both cases the
classification results by the FLN were better than those reported in the aforementioned collection of
benchmarks.  However, due to the lack of space here, these results will be reported elsewhere.

4.4   Example-4

A simple example is cited below to illustrate the applicability of the FLN beyond the
Euclidean space.  We will consider the collection of all fuzzy sets specified by (1) trapezoidal
membership functions of height = 1, and (2) non-zero area, over an inteval [a,b].  This collection of
trapezoids is a lattice denoted by .  Specifically if t1,t2∈  then the lattice-join t1∨t2 is the smallest
trapezoid that includes both t1 and t2, whereas the lattice-meet t1∧t2 is the largest trapezoid included
in both t1 and t2, that is, the intersection of t1 and t2. When the intersection of t1 and t2 is either the
empty set or it is not a trapezoid with the given specifications, then t1∧ t2 is defined to be the least
element O of the lattice in question.  On the other hand the membership function of the largest
trapezoid I equals 1 everywhere on [a,b].  A function τ(.) was defined on the lattice  that maps a
trapezoid to its area.  The function τ(.) satisfies the conditions (R1)-(R3) of the “Remark” in the

proof of Theorem 2, therefore k(x≤u)= τ
τ

( )
( )

u
x u∨

 is an inclusion measure in T.  Another feature of

lattice  is that a dual-automorphism θ(.) was not required to apply the FLN in ,  because a t∈
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with non-zero area implies all the fuzzy sets x∈ : x≤t. That is a fuzzy set t implicitly implies the
interval [O,t].  Therefore the technique of maximal expansions is still applicable.  Due to both the
absence of a positive valuation in T and to the consideration of a t∈  as the interval [O,t], the
“size” of a fuzzy set t, required in step-4 of the FLN scheme, was specified by the value τ(t).

As a concrete numerical example consider the fuzzy “lattice of weights”, denoted by W,
which was defined over the interval [0, 22 N] (Fig.6).  Assume the linguistic variables “light
(weight)” and “heavy (weight)” defined by two different experts as shown in Figure 6(a).  The
problem is to assign sensibly an object x with a triangular membership function (Fig.6(b)) to one of
the classes “light”  or “heavy”.

The FLN addressed this problem.  In particular, learning occurred by combining the
definitions given by the two experts and hence the FLN formed one “light” class and one “heavy”
class as shown in Figure 6(b).  For the data values of Figure 6(b) the degrees of inclusion of x in the

classes “light” and “heavy” were calculated to be σ(x≤“light”)= τ
τ

("light")
(x light")∨"

= 4
7

≅ 0.57, and

σ(x≤“heavy”)= τ
τ

("heavy")
(x "heavy")∨

= 4
12

≅ 0.33.  Therefore according to the FLN, the belief that the

object x is “light” is approximately twice as large as the belief of being “heavy”.
It is important to note that additional lattices could have been considered jointly, for example

the “lattice of lengths”, or the “lattice of colors”.  In such as case instead of specifying an object by
the 3-D Euclidean vector (weight, length, color) we could specify it by a triple of fuzzy sets.
Consequently the FLN can be applied in principle.

5   Discussion

Regarding the examples presented in Subsections 4.1 through 4.3 it should be noted that
those examples only demonstrate the capacity of the FLN for pattern discrimination and recognition
in the set RN and when the inputs to the FLN are simply points.  The previous examples do not
demonstrate FLN’s unique ability to handle N-dimensional hyperboxes, or intervals of lattice
elements in general.  From a practical standpoint such a feature could be quite advantageous in
cases where need to compensate for the uncertainty of the measurements by feeding to the learning
and decision making system a neighborhood of values as defined by an N-dimensional interval
rather than as defined by a precise single point value.  Moreover the previous examples do not
demonstrate the one quality which is fundamentally unique to the FLN, that is, its capacity to
handle elements in a lattice.  Note that an input to the FLN can be a lattice element, for instance an
image or its Fourier transform, a waveform or its spectrum, a fuzzy set, a real number, or an
element of another lattice as well as any combination of these inputs.  The later implies the FLN’s
capacity for fusing disparate sensory data.

In subsection 4.4 a simple example demonstrated the applicability of the FLN beyond the
Euclidean space in one lattice of fuzzy sets.  Certain sufficient conditions had to be relaxed, such as
the existence of a positive valuation.  Nevertheless the FLN was still applicable in principle as well
as the technique of maximal expansions.

It should be noted that an efficient hardware implementation of the FLN, as shown in Figure
1, in order to live up to its theoretical expectations it should address efficiently the “representation
problem”.  That is the question of how a lattice element is stored and processed by the FLN’s
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architecture.  Selecting a digital computer implementation implies the employment of the set RN for
the representation of a lattice element.  The amount of computation required for the calculation of
the lattice join (∨) and meet (∧) operations depends on N.  Such a way of processing may be quite
time-demanding especially in cases of a large N value (e.g. images).  On the other hand, the
representation problem could be relieved if there exists a way to represent one lattice element, for
example, an image or a fuzzy set, as a whole object in an analog form.  Then assuming the capacity
for an analog calculation of the lattice join (∨) and meet (∧) operations between whole lattice
elements, we could achieve a real efficient hardware implementation of the FLN scheme.

6   Conclusion

The fuzzy lattice neurocomputing (FLN), a novel knowledge acquisition and decision
making connectionist scheme, was introduced.  Moreover a novel theoretical perspective to
machine learning and decision making was introduced and new theoretical results were shown in
this paper.  The wide domain of the FLN is due to its applicability to lattices.  Neurocomputing
paradigms like the fuzzy adaptive resonance theory (fuzzy ART) and the min-max neural networks
may be described as domain-specific variations of the more general FLN scheme.  In addition, the
fuzzy degree of inclusion of a lattice interval into another one may be calculated by a novel tool-
concept, namely “inclusion measure”.  However, for the FLN, the order of data presentation is
again significant as it is the case in an ART model (fuzzy or not) and in the min-max neural
networks.

In this paper the FLN was employed for clustering in pattern recognition problems primarily
in the conventional set RN on synthetic data sets and the Fisher IRIS benchmark.  Its outstanding
capacity for learning and recognition was illustrated.  An additional example demonstrated the
applicability of the FLN beyond the Euclidean space in one lattice of fuzzy sets.  The true potential
of FLN lies, we believe, in its ability to be applied in different lattices, to consolidate hierarchically
lattices of disparate objects, and to treat them with mathematical consistency in order to attain a
sophisticated decision making capacity.
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Appendix

Proof of Theorem 1

L1. [a,b]∧[a,b] = [a∨a,b∧b] = [a,b]
L2. [a,b]∧[c,d] = [a∨c,b∧d] = [c∨a,d∧b] = [c,d]∧[a,b]
L3. [a,b]∧([c,d]∧[e,f]) = [a,b]∧[c∨e,d∧f]  = [a∨(c∨e),b∧(d∧f)] =
      = [(a∨c)∨e,(b∧d)∧f]  = [a∨c,b∧d]∧[e,f] = ([a,b]∧[c,d])∧[e,f].
       In cases L1-L3 the truth for the joint operation ∨ may be shown dually.
L4. [a,b]∧([a,b]∨[c,d]) = [a,b]∧[a∧c,b∨d] = [a∨(a∧c),b∧(b∨d)] = [a,b]

[a,b]∨([a,b]∧[c,d]) = [a,b]∨[a∨c,b∧d] = [a∧(a∨c),b∨(b∧d)] = [a,b].

Moreover, note that 2 is a complete lattice because  is a complete lattice.

Proof of Theorem 2

1. k(x≤O) = v O
v x O

( )
( )∨

 = v O
v x
( )
( )

 = 0, assuming x≠O

Note that this condition is true if v(.) is a positive, and not only an isotone, valuation with
v(O)=0.

2. k(x≤I) = v I
v x I

( )
( )∨

 = v I
v I

( )
( )

 = 1

3. In any lattice the operation of join is isotone [1], that is,  u≤w ⇒ x∨u ≤ x∨w.
Provided a positive valuation v(.) in a lattice . A distance function is defined in  by d(u,w)
= v(u∨w) - v(u∧w) [1].  Noting the isotone relation above, implies both d(x∨u,x∨w) =
v(x∨w) - v(x∨u) ≥ 0  and d(u,w) = v(w) - v(u) ≥ 0.
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It is further known [1] that if v(.) is an isotone valuation in  then d(x∨u,x∨w) + d(x∧u,x∧w)
≤ d(u,w).  Recall that a positive valuation is an isotone valuation.  Hence,
d(x∨u,x∨w) ≤ d(x∨u,x∨w)+d(x∧u,x∧w) ≤ d(u,w) ⇒ v(x∨w)-v(x∨u) ≤ v(w)-v(u) ⇒ v(x∨w)
≤ v(w) - v(u) + v(x∨u).  Assuming w ≠ O it follows that
v u
v w

( )
( )

v(x∨w) ≤ v u
v w

( )
( )

[v(w) - v(u) + v(x∨u)] =  v w v u
v w

( ) ( )
( )
− v(u) + v u

v w
( )
( )

v(x∨u) ≤

v w v u
v w

( ) ( )
( )
− v(x∨u) + v u

v w
( )
( )

v(x∨u) = v(x∨u) ⇒ v u
v x u

( )
( )∨

 ≤ v w
v x w

( )
( )∨

 ⇒

k(x≤u) ≤ k(x≤w).

Remark.  The existence of a positive valuation v(.) is far too restrictive a necessary condition for

the function k(x≤u)= v u
v x u

( )
( )∨

 to be an inclusion measure in a complete lattice .  In effect, a

positive valuation can be replaced by another real-valued function τ(.) that satisfies the following
three more relaxed conditions,

(R1) τ(O)= 0,
(R2) x<y ⇒ τ(x)<τ(y), x,y∈ , and
(R3) u≤w ⇒ τ(x∨w)-τ(x∨u)≤τ(w)-τ(u)

It can be easily shown by following the previous three steps in the proof of Theorem 2 that when

τ(.) satisfies (R1) through (R3), then the function k(x≤u)= τ
τ

( )
( )

u
x u∨

 satisfies all the conditions

(C1)-(C3) of definition 3, therefore k(x≤u) is an inclusion measure and the FLN is applicable.  We
make use of an inclusion measure of the latter form in the last example of section 4.

Regarding a positive valuation in a lattice , note that a significant implication of its existence
is the existence of a metric d(.,.) in  which could be used for learning and decision making.
Because no metric is required by the FLN, a positive valuation in a lattice is too restrictive a
necessary condition for the existence of an inclusion measure in the lattice in question.

Proof of Lemma 2

Let {wi} be a connected family of lattice intervals.  A maximal expansion of {wi} is defined
to be another family {qi} in the set F of families such that {wi}<{qi}.  We will delineate a method
for constructing an ever (strictly) larger maximal expansion of a family.  This construction is shown
to terminate in a finite number of steps and a global maximum will have been reached, that is the
quotient Q(F) = Q({wi}).

The truth of Lemma 2 will be shown in case the family {wi} contains exactly two connected
constituent intervals, say w1 and w2.  To construct maximal expansions of {w1,w2}, assume it is
w1=[w11,…,w1L] and w2=[w21,…,w2L], where w1i and w2i, i=1,…,L are intervals along each
constituent lattice and L is the total number of constituent lattices.  The maximal expansion “along”
the first constituent lattice is determined by specifying the maximum interval “max(w11∧w21)” which
contains w11∧w21 and consists of elements of w11 or w21.  Note that the latter is a trivial problem
framed within the first constituent lattice.  Hence, the corresponding maximal expansion implies the
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interval [max(w11∧w21),w12∧w22, …,w1L∧w2L].  In the following consider the maximal expansions
“along” the rest of the constituent lattices.  These are at the most another L-1 maximal expansions.
The set-union me(w1,w2) of all the maximal expansions “along” all the constituent lattices has to be
the maximum element in the set F, that is, the quotient Q(F) or me(w1,w2)= Q(F).

To show the truth of the latter statement, consider any interval u which contains only
elements of w1∪w2.  If u contains exclusively elements of w1 or exclusively elements of w2 then it
will be u≤w1 or u≤w2, respectively.  Hence u≤me(w1,w2).  On the other hand, suppose that
u=[u1,…,uL] contains exclusive elements of w1=[w11,…,w1L] AND exclusive elements of
w2=[w21,…,w2L].  This implies that at least for one constituent lattice interval ui, i=1,…,L
w1i∧w2i<ui.  But such a strict inequality can be true for at most one constituent lattice interval.
Otherwise u would contain elements that do not belong to either w1 or w2.  Because of the way the
set me(w1,w2) was constructed, it can be inferred that u≤me(w1,w2).  In conclusion, me(w1,w2) is
the maximum family in {wi}, i∈{1,2}, that is, the quotient Q({w1,w2})=me(w1,w2).

Now consider a third interval w3 such that {w3}∪Q({w1,w2}) is connected.  Assume the
maximal expansions me(w1,w3) and me(w2,w3).  Then any interval u containing only elements of
one of w1, w2, w3, w1 and w2, w2 and w3, w3 and w1 will be included in {w1,w2,w3}∪me(w1,w2)∪
me(w2,w3)∪me(w3, w1).  In addition to that and in order to consider intervals containing exclusive
elements of w1 AND w2 AND w3, if any, the following maximal expansions will have to be
considered : me(w3, me(w1,w2)), me(w1, me(w2,w3)), and me(w2, me(w3,w1)).  Simplifications
result in the quotient Q({w1,w2,w3}).  Apparently the problem becomes a combinatorial one and the
truth of Lemma 2 follows, in general, by mathematical induction.

The aforementioned algorithm which calculates the quotient Q({wi}) of a connected family
{wi} of intervals, where i belongs to a finite index set, is called algorithm-Q.  Note that the order in
which the intervals of {wi} are selected to calculate the maximal expansions is not important.  Note
that algorithm-Q is not computationally efficient due to the exponential explosion of the required
operations as a family’s cardinality increases.  Nevertheless, it does find the quotient Q({wi}) in
finite time and it was proven helpful in the classification examples presented in this paper, where
families of relatively small cardinality (a few tens of intervals) were identified.

Finally note that any interval not connected to the rest intervals in a family does not have to
be considered in any maximal expansion because such an interval is by itself a maximal interval.
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TABLE 1 The second level clustering is accomplished by determining, as shown in the non-
symmetric square matrix below, the value of the inclusion measure of each class into all the others.  The
largest such number(s) for each class, which is not on the main diagonal, is underlined in each row and
may associate one class with another class.

   cluster  0  1  2  3  4  5 6  7  8  9 10  11 12 13 14

0 1.0 .67 .42 .64 .66 .38 .59 .54 .45 .36 .30 .43 .25 .27 .29
1 .67 1.0 .52 .61 .61 .45 .65 .68 .57 .43 .35 .54 .28 .29 .32
2 .54 .68 1.0 .58 .51 .71 .57 .82 .72 .66 .58 .81 .45 .40 .44
3 .64 .61 .44 1.0 .58 .40 .65 .56 .43 .36 .31 .42 .26 .24 .26
4 .93 .86 .55 .82 1.0 .50 .82 .74 .60 .48 .40 .57 .34 .36 .39
5 .53 .63 .76 .56 .50 1.0 .55 .83 .74 .74 .67 .80 .51 .46 .49
6 .85 .93 .62 .93 .83 .56 1.0 .81 .65 .53 .44 .63 .37 .36 .39
7 .76 .93 .89 .75 .76 .81 .78 1.0 .85 .72 .58 .83 .46 .44 .48
8 .65 .81 .79 .62 .61 .76 .65 .90 1.0 .71 .55 .83 .44 .44 .49
9 .50 .61 .71 .50 .48 .74 .52 .74 .70 1.0 .71 .90 .54 .52 .59

10 .40 .46 .59 .42 .38 .63 .41 .56 .51 .67 1.0 .74 .65 .55 .60
11 .61 .78 .87 .60 .58 .80 .63 .87 .85 .92 .80 1.0 .59 .53 .60
12 .25 .28 .34 .26 .24 .37 .26 .33 .31 .38 .49 .41 1.0 .68 .64
13 .27 .29 .31 .24 .26 .33 .25 .32 .31 .37 .42 .37 .68 1.0 .72
14 .41 .44 .47 .37 .39 .49 .38 .48 .47 .56 .61 .56 .90 .95 1.0

TABLE 2 FLN Processing of the IRIS benchmark.

         Number of Clustering Stages = 2
         Number of Classes = 3

class 1 2 3
1 100 %
2 94 %     6 %
3 100 %

TABLE 3 Min-max neural processing of the IRIS benchm ark

         Number of Clustering Stages = 1
         Number of Classes = 14

class 1 2 3
1 100 %
2 88 % 12 %
3 10 % 90 %
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Figure 1 The two layer FLN architecture for clustering in the lattice L.  M is the number of learned
classes.  L is the number of upper layer neurons which coincides with the total number of
intervals used to define the M classes.  N is the number of lower layer neurons which
coincides with the total number of intervals that input the FLN, where the ith interval is
specified by [x 2i-2,x2i-1], i=1, …,N.
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Figure 2 The fuzzy lattice neurocomputing (FLN) scheme’s processing cycle.
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(a)

(b)

Figure 3 (a) Non-linearly separable two-dimensional categories.
(b)  Separation was possible by FLN clustering.  39 overlapping boxes were used to identify

each one of the two shown categories.
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(a)

(b)

Figure 4 (a) A non-convex (hollow) two-dimensional category.
(b) The identification of this non-convex category was made possible by the FLN using 10

overlapping boxes.  Boxes marked by an × are not inside any of the above “10 boxes”.
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Figure 5 The second level of FLN clustering, partitions the first level’s classes.
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(a) (c)

(b) (d)

Figure 6 (a) Fuzzy definitions for “light” and “heavy” by two experts in the fuzzy “lattice of weights”.
The definitions of expert #1 are by the solid lines, whereas those of expert #2 are by the
dashed lines.

(b) The FLN combined the definitions of the two experts by the lattice-join (∨) operation to
form a single “light” and a single “heavy” class.  An object x, characterized by the shown
triangular membership function, is to be assigned to one of the classes “light” or “heavy”.

(c) The degree of inclusion of x in the class “light” was calculated, via the lattice-join
x∨“light”, to be σ(x≤“light”) ≅ 0.57.

(d) The degree of inclusion of x in the class “heavy” was calculated, via the lattice-join
x∨“heavy”, to be σ(x≤“heavy”) ≅ 0.33.
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