
TWO FUZZY LATTICE REASONING (FLR)
CLASSIFIERS AND THEIR APPLICATION

FOR HUMAN FACIAL EXPRESSION
RECOGNITION

S. E. PAPADAKIS1,2?, V. G. KABURLASOS2†, G. A. PAPAKOSTAS2‡

1 Department of Business Planning and Information Systems, TEI of Crete
P.O. Box 128, GR-72100, Agios Nikolaos, Greece

2 Human-Machines Interaction (HMI) Laboratory
Department of Industrial Informatics, TEI of Kavala

GR-65404 Agios Loukas, Kavala, Greece

Received 30 November 2012; In final form 1 April 2013

We deal with the problem of human facial expression recognition
from digital images. A digital image is preprocessed for feature
extraction using moment descriptors; then, it is represented in the
product lattice (F100,≤) of Intervals’ Numbers (INs). Learning
as well as generalization are carried out in space (F100,≤) by two
different Fuzzy Lattice Reasoning (FLR) classifiers based on an
inclusion measure function σ : F100×F100 → [0,1]. We pursue
both a stochastic optimization and a parallel implementation of
the proposed techniques. Comparative experimental results on
three benchmark data sets demonstrate a superior performance
of the proposed FLR classification schemes.

Key words: Parallel processing; GPU Computing; Stochastic Optimiza-
tion; Particle swarm; PSO; Fuzzy Lattice Reasoning; Intervals’ Number;
Inclusion measure; Facial expression recognition.

? email: spap@staff.teicrete.gr
† email: vgkabs@teikav.edu.gr
‡ email: gpapak@teikav.edu.gr

1

1 INTRODUCTION

Pattern recognition is an important application domain, which is, typically,
preceded by data preprocessing for feature extraction and pattern representa-
tion. Dealing with uncertainty and/or ambiguity is of high interest in pattern
recognition applications. This work deals with uncertainty based on Intervals’
Numbers (INs) as explained below.

Intervals’ Numbers, or IN s for short, have been studied lately. More
specifically, it has been shown that the set F of INs is a metric lattice with
cardinality ℵ1, where “ℵ1” is the cardinality of the set R of real numbers;
moreover, the space F is a cone in a linear space. In all, an IN is a mathemat-
ical object, which may be interpreted as either a possibility distribution or a
probability distribution thus accommodating uncertainty [17].

Our approach is to represent human facial expressions [1], [14], by INs
induced from image-moments-based preprocessing techniques [20, 23]. In
conclusion, decision-making is carried out by Fuzzy Lattice Reasoning (FLR)
techniques in the space (F100,≤) of INs based on an inclusion measure func-
tion.

An FLR scheme can be regarded as a specific methodology of the Lat-
tice Computing (LC) paradigm. We remark that the term lattice computing
was originally defined as “the collection of Computational Intelligence tools
and techniques that either make use of lattice operators inf and sup for the
construction of the computational algorithms or exploit Lattice Theory for
language representation and reasoning” [2]. Later work extended the mean-
ing of LC to denote “an evolving collection of tools and methodologies that
process lattice ordered data including logic values, numbers, sets, symbols,
graphs, etc” [7, 26]. Current trends in LC appear in [3, 6].

This work is a extension of a preliminary work presented lately [18]. Sub-
stantial differences include: First, the work in [18] delineates an agglomera-
tive FLR learning scheme only for structure identification such that one IN is
induced (unconditionally) per class; whereas, this work details two different
FLR classification schemes including also parameter optimization as well as
a parallel classifier implementation. Second, the work in [18] assumes one
100-dimensional features (moments) vector represented by one (non-trivial)
IN, furthermore it employs seven random data partitions for training/testing;
whereas, this work assumes higher dimensional INs vectors, furthermore it
employs a 10-fold data partition for training/testing. Third, the work in [18]
engages only two classifiers, namely (agglomerative) FLR and kNN; whereas,
this work engages two different FLR classifiers as well as four more classi-

2

fiers, namely kNN, Naive Bayes, Classification Tree and a neural network;
furthermore, all classifiers here are applied, in addition, on the RADBOUD as
well as the PAIN benchmark data sets.

This paper is organized as follows. Section 2 presents the mathematical
background. Section 3 describes two FLR classification schemes. Section 4
describes stochastic (PSO) optimization techniques. Section 5 shows a par-
allel (GPU) implementation of the proposed techniques. Section 6 demon-
strates, comparatively, human facial expression classification experiments.
Finally, section 7 concludes by summarizing our contribution.

2 MATHEMATICAL BACKGROUND

This section summarizes notions and notation presented elsewhere [7, 8, 9].

2.1 General Lattice Theory Preliminaries
Consider the following definition.

Definition 1 An inclusion measure in a lattice (L,≤) is a function σ : L×
L→ [0,1], which satisfies the following conditions:

C1. σ(x,x) = 1.

C2. x∧ y < x⇒ σ(x,y)< 1.

C3. u≤ w⇒ σ(x,u)≤ σ(x,w).

Any employment of an inclusion measure for decision-making is called
Fuzzy Lattice Reasoning (FLR) [8]. Next, we focus on a complete lattice
with least and greatest elements O and I, respectively. Consider the following
theorem [7].

Theorem 1 Let function v : L → [0,+∞) be a positive valuation ? on a
complete lattice (L,≤) with least and greatest elements O and I, respec-
tively, such that both v(O) = 0 and v(I) < +∞. Let functions sigma-meet
σ∧ : L×L→ [0,1] and sigma-join σ∨ : L×L→ [0,1] be defined as fol-
lows; first, σ∧(O,y) = 1, σ∧(x,y) =

v(x∧y)
v(x) for x > O; second, σ∨(x,y) = 1 for

x∨ y = O, σ∨(x,y) =
v(y)

v(x∨y) for x∨ y > O. Then, both functions σ∧(., .) and
σ∨(., .) are inclusion measures.

? Positive valuation in a lattice (L,≤) is a real function v : L→ R that satisfies both v(x)+
v(y) = v(x∧ y)+ v(x∨ y) and x < y⇒ v(x)< v(y).

3

2.2 Intervals’ Numbers (INs)
Take the set of real numbers R and the usual order≤. Then (R,≤) is a totally
ordered, non-complete lattice. Lattice (R,≤) can be extended to a complete
lattice by including both “−∞” and “+∞”. Any strictly increasing function
v : R→ [0,+∞) is a positive valuation on (R,≤).

Consider the lattice (I,≤) of intervals, including the empty set, ordered
by set inclusion (⊆), where I .

= {[a,b] : −∞ ≤ a ≤ b ≤ ∞} ∪ { /0} and “/0”
is the empty set. The corresponding supremum operation (

.
∪) is defined as

[a,b]
.
∪ [c,d] = [a∧ c,b∨d]. Consider a length function definition next.

Definition 2 A length function v1 : I→ [0,+∞) is defined as

v1([a,b]) = v(θ(a))+ v(b), (1)

where v : R→ [0,+∞) is a strictly increasing function and θ : R→ R is a
strictly decreasing function.

For example, consider the parametric functions

v(x;λ ,µ) =
1

1+ eλ ·(µ−x)
and θ(x; µ) = 2µ− x, (2)

where λ > 0. Note that the sigmoid function v(a;−λ ,µ) is strictly increas-
ing, whereas its anti-symmetric function v(b;λ ,µ) is strictly decreasing; the
two sigmoid functions intersect at µ. By substituting (2) into (1) it follows
the length function

v1([a,b]) =
1

1+ e−λ (µ−a)
+

1
1+ eλ (µ−b)

= v(a;−λ ,µ)+ v(b;λ ,µ) (3)

Another lattice of interest is the lattice of Intervals’ Numbers, or INs for
short, defined next.

Definition 3 An Intervals’ Number (IN) is a function F : [0,1]→ I which
satisfies

h1 ≥ h2⇒ Fh1 ⊆ Fh2 ,

∀X ⊆ [0,1] : ∩
h∈X

Fh = F∨X .

We denote the class of all INs by F and we equip it with an order (≤) such
that for every pair F,G ∈ F we define F ≤ G⇔ (∀h ∈ [0,1] : F(h) ⊆ G(h)).
It turns out that (F,≤) is a complete lattice, namely lattice of INs, which
(lattice) is isomorphic to the lattice of fuzzy intervals [7, 10].

4

2.3 Inclusion Measures
We present two inclusion measures on (I,⊆).

Proposition 1 Let v1 : I→ [0,+∞) be a length function on (I,⊆) satisfying
both v1(O) = 0 and v1(I) < +∞. Then, functions σ∩ : I× I → [0,1] and
σ .
∪ : I× I→ [0,1] defined, respectively, by

σ∩([a,b], [c,d]) =


1, if [a,b] = O

v1([a,b]∩ c,d])
v1([a,b])

, if [a,b]⊃ O
, and (4)

σ .
∪([a,b], [c,d]) =


1, if [a,b]

.
∪ [c,d] = O

v1([c,d])

v1([a,b]
.
∪ [c,d])

, if [a,b]
.
∪ [c,d]⊃ O

, (5)

are inclusion measures on (I,⊆).

Next, we extend the aforementioned two inclusion measures to (F,≤).

Proposition 2 Let a length function v1 : I→ [0,+∞) satisfy both v1(O) = 0
and v1(I) < +∞. Moreover, let the functions σ∩ and σ .

∪ be as in Proposi-
tion 1. Then functions σf : F×F→ [0,1] and σg : F×F→ [0,1] defined,

respectively, by σf(F,G) =
1∫
0

σ∩(Fh,Gh)dh and σg(F,G) =
1∫
0

σ .
∪(Fh,Gh)dh

are inclusion measures.

By “convex combination” in the following we mean a linear combination
with positive coefficients λ1, . . .λN , such that λ1 + · · ·+λN = 1.

Theorem 2 Let function σi : Li×Li→ [0,1] be an inclusion measure in lat-
tice (Li,≤i) for i ∈ {1, . . . ,N}. Let (L,≤) be the Cartesian product lattice
(L,≤) = (L1×·· ·×LN ,≤1 ×·· ·× ≤N). Then, function σ : L×L→ [0,1]
given by the convex combination σ(x,y)= λ1σ1(x1,y1)+ · · ·+λNσN(xN ,yN),
where x = (x1, . . . ,xN) and y = (y1, . . . ,yN), is an inclusion measure.

Proof 1 We will prove conditions C1 - C3 of Definition 1. Let x,y,z ∈ L,
where x = (x1, . . . ,xN),y = (y1, . . . ,yN) and z = (z1, . . . ,zN).

C1: σ(x,x) = λ1σ1(x1,x1)+ · · ·+λNσN(xN ,xN) = λ1 + · · ·+λN = 1.

C2: x 6≤ y⇒ (x1, . . . ,xN) 6≤ (y1, . . . ,yN)⇒∃i ∈ {1, . . . ,N} : xi 6≤ yi⇒
σi(xi,yi) < 1. Therefore, σ(x,y) = λ1σ1(x1,y1) + · · ·+ λiσi(xi,yi) +

· · ·+λNσN(xN ,yN)< λ1 + · · ·+λi + · · ·+λN = 1.

5

C3: y≤ z⇒ (y1, . . . ,yN)≤ (z1, . . . ,zN)⇒ y1≤ z1, . . . ,yN ≤ zN⇒σ1 (x1,y1)≤
σ1 (x1,z1) , . . . ,σN (xN ,yN)≤ σN (xN ,zN)⇒
λ1σ1(x1,y1)+ · · ·+λNσN(xN ,yN)≤ λ1σ1(x1,z1)+ · · ·+λNσN(xN ,zN)

⇒σ (x,y)≤ σ (x,z).

In view of Theorem 2, the extension of an inclusion measure from one
to many dimensions is straightforward. More specifically, consider a “D-
dimensional” IN F=(F1,, . . . ,FD) including D “1-dimensional” INs F1, . . . ,FD.
Based on Theorem 2, an inclusion measure σ∪̇(F,G) : FD×FD → [0,1] is
given by

σ∪̇(F,G) =
1
D

D

∑
i=1

σ∪̇(Fi,Gi) (6)

3 TWO FUZZY LATTICE REASONING (FLR) CLASSIFIERS

We employ the inclusion measure, given above, to the challenging problem
of human facial expressions recognition [1], [14].

Given a vector of features, induced from an image, an IN meta repre-
sentation is computed. In the context of this work, two different meta rep-
resentations, namely ”A” and ”B”, were employed exclusively by two FLR
classifiers, namely FLR-A and FLR-B, respectively. In both cases the input to
an FLR classifier is a set of M gray scale images, representing various facial
expressions. A row vector fm ∈RD, namely feature vector, is extracted by
preprocessing image Im, m = 1,2, ...,M. Moreover Im express a particular fa-
cial expression, labeled Lm. Image Im can be represented as Im = [fm,Lm], and
the set of M images as IM ∈RM×(D+1). In this work a feature vector includes
moments of one of six different families, namely, Zernike, Pseudo-Zernike,
Fourier-Mellin, Legendre, Tchebichef, and Krawtchouk. For each image, a
feature vector regarding a specific moment family was extracted.

3.1 The FLR-A Classifier
Let (labeled) data in FN

1 be partitioned, first, in nc classes and, second, in
2 disjoint data sets for training and testing, respectively. Classifier FLR-A
learning is carried out by Algorithm 1 (for structure identification); whereas,
classifier FLR-A generalization is carried out by Algorithm 2. We remark that
the function ` : FN → L assigns a class label to an IN. Assuming that class c
includes Mc images, for each specific feature fm,d , m = 1,2, ...,Mc an interval
number Fm ∈ F is build from {x1,d ,x2,d , ...,xMc,d} values over all Mc images.
Note that the set of images for learning is partitioned into nc groups each

6

including images of the same class. Next, for each class and each feature
d, d = 1, ...,100, an IN is computed. Finally, a class is represented as a
D = 100 dimensional IN and its label.

3.2 The FLR-B Classifier
Each feature xm,d ∈ R is represented by a “trivial” (singleton) IN, Fm,d ∈ F,
thus creating an 100 dimensional vector Fm of trivial INs per image. Image Im

is represented by the row vector [Fm,Lm] = [Fm,1, ...,Fm,d , ...,Fm,D,Lm],Fm,d ∈
F. A set of N images, can be represented as IN = [F j,L j], where the j− th
row represents the j− th image as a row vector of D columns of INs. The
last D+1 column is the label of the image. According to that representation
an FLR model is created by Algorithm 3. The output of which, is a set R
with cardinality Nr. Each element of R is a class of images encoded as a D
dimensional IN and a label which denotes a particular facial expression. The
elements of R are named “classes”, “rules”, “granules” , “hyper-boxes” etc.
The input to Algorithm 3, is a subset IN`

of N` < N images considered for
learning. Algorithm 2 describes the generalization phase of classifier FLR-B.

4 PARTICLE SWARM OPTIMIZATION

The structure of both classifiers FLR-A and FLR-B depends on the values of
parameters µ,λ ,Ts. Optimal values, in terms of generalization performance
(pursued here by cross-validation) is necessary, to ensure a high quality classi-
fier. The optimization task is carried out using a Particle Swarm Optimization,
or PSO for short, which is a stochastic, derivative free, non-linear optimiza-
tion technique [11]. A PSO includes a population of “particles”, each consist-
ing of a position vector p ∈ Rq that encodes the parameters of the objective
function Q(p) : Rq→ R being optimized. At the first time of the evolution,
i.e t0 = 0, the position of each particle is randomly initialized, while its qual-
ity is computed as the value of the objective function for the given position.
Next, particle’s are moved to a new promising direction, by updating their
positions using both local (particle’s best) and global (population best) infor-
mation. The adaptation low is one of the main criteria that differentiates a
PSO implementation from another one. The basic adaptation low is given by
Equation (7):

Vp,t+1 = α(t) ·Vp,t + c1 ·u(0,1) · (pbest,t −pt)

+ c2 ·u(0,1) · (gbest,t −pt)

pt+1 = pt + β (t) ·Vp,t+1

(7)

7

λp,0 µp,0 ... λp,D−1 µp,D−1 Tp,s −→ FLRp→ Qp ∈ R︸︷︷︸
input−0

︸ ︷︷ ︸
input−(D−1)

FIGURE 1
FLR parameter encoding. The position vector of particle p = 1,2, ...,P encodes pa-
rameters λi,µi, i= 0,1, ...,D−1 for each dimension and a threshold size Ts. Decoding
parameter values of particle p, an FLRp model can be built by Algorithm 3. The cal-
culation of quality Qp of FLRp is accelerated by GPU.

where real numbers α(t),β (t), namely inertia and restriction parameter,
respectively, may be either constant or time decreasing; c1,c2 ∈ (0,1] are
constant; Pt and pbest,t are the current and the best attained position of particle
p; gbest,t is the best position achieved by the population until time t; u(0,1)
is a random number generated uniformly in the interval (0,1). At the end of
evolution, i.e. at time step te, the gbest,te encodes the final solution, succeeded.

The position vector and the quality function are dealt with as follows.
Since an FLR scheme includes two parameters (µ,λ) per input, and one pa-
rameter Ts, representing the maximum allowed hyper-box size, the FLR pa-
rameters can be encoded as particle’s position vector as illustrated in Figure 1.
The swarm evolution process is summarized in Algorithm 4.

Given a subset IN`
of N` < N images considered for learning, the cre-

ation of FLR structure for a specific particle is given by Algorithm 3. For
cross-validation, the learning set is subdivided into two disjoint subsets INT

and INv , namely training and validation set, respectively. The FLR struc-
ture is created on the images of training set. Then the success classifica-
tion rates Qp,T , Qp,V on the training set and the validation set, respectively,
are calculated. The quality of particle is computed as the weighted sum:
Qp = w ·Qp,T +(1−w) ·Qp,V . The predefined parameter w∈ (0,1) is a relax-
ation factor that balances the fitting and generalization performance of FLR.
It has to be stressed that without cross validation, the generalization perfor-
mance of FLR is remarkably poor.

Both FLR training and generalization process is based on the calculation
of inclusion measure between multi-dimensional INs. Computationally, a
D−dimensional IN, F could be stored in computer memory as a three dimen-
sional matrix F[D×H× 2], where a specific interval [a,b]i,h in the input i at
level h, is stored as [a,b]i,h = [Fi,h,0,Fi,h,1], i ∈ [0,D), ,h ∈ [0,H), k = 0,1.
Then the inclusion measure between two D - dimensional INs F,G is com-

8

puted by:

σ
D
∪ (F,G) =

1
D ·H

D−1

∑
i=0

H−1

∑
h=0

Ki,h(F,G), (8)

where

Ki,h(F,G) =
v(Gi,h,0;−λi,µi)+ v(Gi,h,1;λi,µi)

v(min(Fi,h,0,Gi,h,0);−λi,µi)+ v(max(Fi,h,1,Gi,h,1);λi,µi)
(9)

In Eq.(9) v(x;λ ,µ) is the length function given by Equation (3) where two,
per dimension, adjustable parameters λi,µi ∈ (0,1] i ∈ [0,D), are assigned.
Moreover, the operators join (∨) and meet (∧) are implemented as x∨ y =

max(x,y) ∈ R and x∧ y = min(x,y) ∈ R for any x,y ∈ R, respectively.
The computation of Ki,h terms are independent from one another, since

the values involved in calculations are stored in different memory locations.
Even for parameters λi,µi, which are jointly used in calculations for a specific
input, no data dependencies/anti-dependencies exist since they are accessed
only for reading. Typically, read access conflicts are transparently resolved
by hardware, although some performance issues might be raised. However,
the parallel computation of inclusion measure in Equation (9) is straightfor-
ward. We accelerated the calculation by Graphics Processing Units (GPUs)
as detailed in the following section.

5 PARALLEL COMPUTING IMPLEMENTATION

A graphics card includes one or more Graphics Processing Units (GPUs).
Each GPU is a tightly connected parallel machine, that consists of a number
of physical multicore processors and has its own memory, accessible by the
cores (the basic physical processing units). For example, Geforce GTX 260,
includes one GPU of 24 eight-core processors, yielding 24×8= 192 physical
processing units with 1 GB of own memory, whereas Geforce GTX 660 Ti has
2GB of memory and includes 7 multi processors of 192 cores each, yielding
7×192 = 1344 computing cores.

The cores are transparent to the end-user (i.e. the programmer). That
is, the end-user can not directly access them. Instead, he is able, through
suitable Programming Interface (API), to dynamically create and handle a
practically large number (≈ 1011) of logical processing units, named threads.
All threads concurrently execute the same piece of code written in a specific

9

programming function, named kernel function, following the Single Instruc-
tion Multiple Thread (S.I.M.T.) parallel execution model [4, 16, 24]. The
embedded GPU software transparently assigns threads to cores, carrying out
the execution. The end-user can virtually layout the threads into up to three-
dimensional blocks. The blocks, in turn, can also be organized into up to a
three-dimensional grid. GPU, at runtime, assigns a unique triplet of integers,
to each group identifying it in the grid, as well as a unique triplet of inte-
gers to each thread, identifying it in its group. Therefore, every thread has
both a local (within group) and a global (within grid) identity that separates it
from the other threads, permitting the kernel function, properly designed, to
access/process different data, thus implementing the S.I.M.T. model.

Another concept of interest is the synchronization barriers. A synchro-
nization barrier is an execution point of “appointment” among threads. Given
a pool of threads, associated with a synchronization barrier, the early arrived
to the barrier threads are blocked until all threads reach that point of execu-
tion. Then, all threads are simultaneously dismissed, continuing their execu-
tion. Two kinds of synchronization are supported: Internal synchronization,
invoked by GPU to the threads of a block and external synchronization, in-
voked by host process, to all threads. Furthermore, a synchronization barrier
is a tool which allows the resolution of memory write access conflicts, when
several threads request to access same memory location, simultaneously.

Although there are several technical issues that significantly affect the per-
formance of GPU, we will not refer to, since they are out of the scope of this
paper. However, it has to be mentioned that host process, which leads the
execution, has not direct access to GPU memory when the threads execute.
Also GPU threads have no direct access to host memory. As a consequent the
data being processed by threads must be prior transferred to GPU memory.
Respectively, the results produced by GPU threads must be transferred back
to host memory to be accessible to the end user. Also, the resolution of po-
tential memory access conflicts is programmer’s responsibility. The activity
diagram of a “typical GPU work-flow” is illustrated in Figure 2.

5.1 Thread layout
To implement the GPU calculation of inclusion measure in the form of equa-
tion (9), the layout of GPU threads must be decided. It should be noted that
no unique layout for a given problem exist. The layout is usually decided
such that (a) to satisfy technical constrains imposed by the hardware, (b) to
meet performance issues, and (c) to facilitate the programming effort. For
the problem in hand H ·D = 32× 100 = 3200 independent instances must

10

Data preparation

Host memory

allocation

GPU Memory

allocation

Store data on host

memory

Transfer data to GPU Memory

Define thread layout and

instruct GPU execution

Thread-1 Thread-2 Thread-N

Internal

barrier

External

barrier

Transfer results from

GPU memory to Host

memory

Release allocated

memory

Processing

the results

Host Process swimlane GPU swimlane

Thread-1 Thread-2 Thread-N

FIGURE 2
A typical work-flow of GPU execution

11

h
H
31 • • • •

h→
...

... · · · (i,h) · · ·
...

1 • • • •
0 • • • •

i
↑

0 1 i 99 D

FIGURE 3
Thread layout consisting of 100 one dimensional blocks of 32 threads. The space of
instances is tiled with 100 tiles of size 1×32. Each tile is assigned to a block.

be concurrently calculated. The graphics card we use, supports up to 1024
threads per block. As a result, a layout of one block including 3200 threads,
for example, is not feasible. A common performance issue relates to the warp
size, which is hardware depended and relates to the number of threads a phys-
ical processor concurrently executes. It is a preferable practice to design the
layout such that the number of threads per block be a multiple of warp size,
since all memory access are coalesced into multiples of the warp size. Since
the warp size of the card we used is 32 and considering that the number of
intervals equals H = 32, we selected blocks of 32 threads, keeping in mind
that each thread of a block computes a specific level h = [0,H). Regard-
ing the number of blocks, we selected one block per dimension. Thus, the
selected thread layout is 100 one dimensional blocks of 32 threads. This lay-
out is programatically convenient since, at run time, the global identity of a
block directly corresponds to dimension index i, while the local identity of a
thread within its block corresponds to index h. The selected layout is illus-
trated in Figure 3. Note that an alternative thread layout could be four blocks
of 32× 25 threads instead of 100 blocks of 1× 32 threads. The last layout
produced slightly better results possibly due to better processor occupancy.

5.2 Kernel function
Having determined an appropriate thread layout, the “kernel function” (the
piece of code the threads concurrently executes) has to be designed. We

12

designed the kernel function assuming the S.I.M.T. execution model. On
Instruction of the execution, all the threads of the layout concurrently exe-
cuted the same code. The attached unique identity (both local and global)
stated thread’s ability to process different data and/or follow different execu-
tion paths. A potential design of kernel function, given that the required data
are stored in GPU memory, is given by Algorithm 5. Following the work
flow in Figure 2, the data are transferred to GPU memory and then the host
process invokes the execution of threads according to Figure 3. All threads
concurrently execute the code of the function, according to the S.I.M.T. ex-
ecution model, producing partial results. Next, reduction of partial results,
that is the calculation of final sum from the partial terms, was applied as in
[5, 22] to produce the final sum. Reduction was applied in block level since
internal synchronization barriers are by design effective to the threads of the
same blocks. The final sum was calculated by the host process after external
synchronization, by summing up the internally reduced sums of blocks.

6 COMPUTATIONAL EXPERIMENTS

We considered the problem of human facial expression recognition using
three benchmark data sets: JAFFE [13], RADBOUD [12] and PAIN. For ex-
ample, the JAFFE benchmark data set (Figure 4) includes images of facial
expressions such Angry (30), Disgust (29), Fear (32), Happy (31), Neutral
(30), Sadness (31), Surprise (30), where a number within parentheses, indi-
cates the number of available images per facial expression.

6.1 Data Preprocessing and Feature Extraction
Irrelevant facial expression content was removed using the Viola-Jones face
detector [25] followed by an ellipse-based face masking. Next, feature extrac-
tion was carried out using orthogonal moments. In particular, from each im-
age, we induced 100 moments regarding Zernike, Pseudo-Zernike, Fourier-
Mellin, Legendre, Tchebichef and Krawtchouk moments [15, 21], respec-
tively. However, we based our experimentation to Zernike family only, since
we obtained slightly better results compared to other ones.

6.2 Computational Experiments
We partitioned, the data in every class in two mutually disjoint sets: One
set for learning (including around 90% of the data) and another one for test-
ing (including the remaining 10% data). Then we clockwise rotated the data,
making ten shuffles according to the 10-fold-out cross validation method. For

13

(a) (b) (c) (d)

(e) (f) (g)

FIGURE 4
Seven different facial expressions from the JAFFE benchmark including (a) “neutral”,
(b) “angry”, (c) “disgust”, (d) “fear”, (e) “happy”, (f) “sadness”, (g) “surprise”.

each shuffle the learning set itself was further split into two disjoint subsets,
namely training subset and validation subset. Learning set was used to built
the FLR-A classifiers while “unseen” testing set was used after learning pro-
cess to evaluate the generalization performance of the classifier. The same
learning set was also used to train/built the alternative classifiers for a fair
comparison. The comparison placed by testing success classification rate.
All the alternative classifiers were built by feature representation of the im-
ages, whereas both the FLR-A and FLR-B classifiers used the INs meta rep-
resentation as described above. Moreover, some empirical experimentation
on the structural parameters of alternative classifiers was carried out, towards
acquired relatively admissible results. The recorded success rates on three
data sets, namely JAFEE, RADBOUD and PAIN, are reported in Table 6.2,
while an illustrative rule base part for the zernike moment family of JAFFEE
data set is given in Figure 5. We point out that the complete rule base cannot
be included, for lack of space, since we have 100 inputs for seven classes.
From Table 6.2 it is clear that the FLR-B, compared to six alternative classi-
fiers, achieves the best testing classification rates in all the three benchmark
classification problems.

6.3 Some Implementation Details
The speed up s = ts

tp
, where ts is the time required for the serial execution

on CPU (single core) and tp the time required for parallel implementation,

14

.

.

.

100.0 100.050.00.0

1.0

0.5

0.0

1.00.50.0

1.0

0.5

0.0

100.050.00.0

1.0

0.5

0.0

50.00.0

1.0

0.5

0.0

100.050.00.0

1.0

0.5

0.0

1.00.50.0

1.0

0.5

0.0

100.050.00.0

1.0

0.5

0.0

100.050.00.0

1.0

0.5

0.0

1.00.50.0

1.0

0.5

0.0

ANGER

DISQUST

SURPRISE

x1 is x2 is x100 is CLASS

 IS

IF AND AND... THEN

.

.

.

.

.

.

.

.

.

FIGURE 5
An illustrative rule base example of the FLR-A model for the JAFEE benchmark and
Zernike moment family. Each rule represents a particular facial expression in the form
Rc : IF x1 is Fc,1 and x2 is Fc,2 and · · · and xc,100 is Fc,100 THEN
CLASS (facial expression) is Lc. xi denotes a specific feature (moment), Fc,i
denotes the Interval number of rule c, c = 1, ...,7 in dimension i and Lc de-
notes the label of rule c. For the specific example i = 1, ...,100 and Lc ∈ {
ANGER,DISQUST,FEAR,HAPPINESS,NEUTRAL,SADNESS,SURPRISE }

15

Collect a set of Human facial expression Images

Preprocess each image to remove any irrelevant facial expression content

and then extract a feature vector of orthogonal moments

 (i.e. Zernike familly).

Divide the set of images into a learning set and a testing set

Using the learning set of images, build an FLR-A/B by Algorithm 1,3

and stochastically optimize its parameters by PSO (Algorithm 4).

(The calculation of inclusion measure can be GPU accelerated)

After the optimization present the "unseen" images of testing set

to the optimized FLR model and induce their labels

Induce the unknown label of any image in the testing set

(Algorithm 2)

FIGURE 6
The workflow of the proposed approach for facial expression classifier

16

TABLE 1
Classification rate on JAFEE, RADBOUD and PAIN face recognition Benchmarks
using the Zernike family of moments and two meta representations by INs.

JAFEE Benchmark
Classifier min max ave std

FLR-A 74.07 83.33 79.62 3.20
FLR-B 77.27 95.45 85.92 6.52
kNN (k=1) 68.18 86.36 76.45 7.12
Naive Bayes 22.73 54.54 34.39 12.12
Classification Tree 27.27 54.55 41.57 9.54
Neural Network 13.63 63.63 30.12 14.54

RADBOUD Benchmark
Classifier min max ave std

FLR-A 37.03 51.85 43.12 5.70
FLR-B 51.85 59.25 56.16 3.44
kNN (k=1) 37.03 51.85 42.12 5.40
Naive Bayes 37.03 59.25 45.37 7.72
Classification Tree 24.07 38.88 29.54 5.84
Neural Network 18.51 51.85 29.26 11.41

PAIN Benchmark
Classifier min max ave std

FLR-A 11.11 33.33 24.68 7.40
FLR-B 22.22 77.77 54.42 21.84
kNN (k=1) 0.00 44.44 16.67 12.00
Naive Bayes 22.22 44.44 28.89 7.77
Classification Tree 11.11 44.44 31.11 11.48
Neural Network 11.11 55.56 24.44 13.66

17

is calculated with respect to the number of Dimensions (inputs) D, for the
RADBOUD benchmark. In order to evaluate the performance of the parallel
implementation, we artificially altered the number of inputs from ten to one
thousand either by removing inputs (if less than 100) or by adding inputs (if
more than 100). The results are graphically presented in Figure 7. In Fig-
ure 7(a) we monitor both GPU and CPU time in the number of dimensions.
As it is observed, the serial (CPU) execution time linearly increases in the
number of dimensions, while the GPU time is constant (about 0.31 sec). The
constant GPU time is attributed as it is startup time, that is the time required
for data transfers, threads creation etc while the time spent for the execution
is practically negligible. The speedup of paralellization, is depicted in Fig-
ure 7(b). It is also linear in the number of dimensions. That is even for one
thousand dimensions the performance gain in the “size” of problem increases
constantly. Moreover, Figure 7(a) shows that when the number of inputs is
around 50 then the speedup is s ≈ 1. That is, ts ≈ tp. For number of inputs
less that 50 the serial time was less than the parallel one and hence there is not
speedup gain. For around 100 inputs, which was our real case, the speedup
was s = 2.74.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000

T
im

e
(s

ec
)

Dimensions (D)
 (a)

GPU vs CPU Time

CPU Time (ts)
GPU Time (tp)

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

S
p

ee
d

u
p

 (
s=

t s
/t

p
)

Dimensions (D)
 (b)

Speedup

Speedup

FIGURE 7
(a) The CPU (dashed line) and GPU (solid line) respectively, in the number of dimen-
sions exetution Time (solid line) in the number of dimensions. (b) The speedup as a
measure of the parallelization performance. The diagrams show that for “small size”
problems no gain is monitored by GPU, while for “large scale” ones the speedup is
substantial.

18

6.4 Discussion
The classification results presented in Table 6.2 demonstrate a superior av-
erage performance for the FLR-B classifier compared with alternative clas-
sifiers. Given the standard deviation values in Table 6.2, we can claim that
the better average performance of the FLR-B classifier is statistically signif-
icant. In other words, the FLR-B classifier consistently results in a better
classification performance in all the three benchmark human facial expres-
sion recognition problems considered above. The workflow of the proposed
facial expression classifier is illustrated in Figure 6.

7 CONCLUSION

In this study We have employed the emerging framework of Fuzzy Lattice
Reasoning FLR, to build classifiers able to process information granules rep-
resented as interval numbers in the form of rules instead of simple points
defined in RN . FLR classifiers are built by using a novel inclusion measure
defined in the set of lattice ordered interval numbers, thus providing the ad-
vantage of unified data representation of disparate data types. Critical points
of our study are summarized in the following

• The optimization of FLR parameters is carried out by stochastic particle
swarm (PSO) optimization technique.

• A parallel computation of the inclusion measure in graphics cards (GPU)
is given, showing that solving classification problems of hight compu-
tational complexity with FLR can be significantly accelerated.

• The proposed classification FLR schemes FLR-A and FLR-B, were
successfully applied on three benchmark human facial expression recog-
nition problems demonstrating a superior generalization performance
compared to four other established classifiers.

Future work includes a full scale parallel implementation of an FLR clas-
sifier including GPU implementation of PSO, as in [19].

8 ACKNOWLEDGEMENT

This research has been co-funded by the European Union (Social Fund) and
Greek national resources under the framework of the “Archimedes III: Fund-
ing of Research Groups in TEI of Athens” project of the “Education & Life-
long Learning” Operational Programme.

19

APPENDIX

Algorithm 1 : Classifier FLR-A learning (for structure identification)
Let nc be the total number of classes.
for j = 1 to j = nc do
Induce labeled INs

−→
W j ∈ FN

1 from the training data in class c j.

Algorithm 2 : Classifier FLR-A/B generalization

Assume a set
⋃

j∈{1,...L}
{c j} of labelled classes c j = {

−→
W j}.

for i = 1 to i = ntst do
Consider the next testing datum (

−→
S i, `(

−→
S i)) ∈ FN

1 ×L.
end for
Let J = argmax

j∈{1,...,L}
{σ∪(

−→
S i,
−→
W j)}.

If J = `(
−→
S i) add on to the number of correct classifications.

20

Algorithm 3 : FLR-B learning algorithm for a given parameter set µ,λ ,Ts

and a learning set I` = INT ∪ INV of images regarded as the union of two
disjoint subsets INT (training set) and INV (validation set).
:BEGIN

1. For given µ,λ ,Ts values: set j ∈ [1,NT) with j = 0 and the cardinality
Nr of R with Nr = 0.

2. Insert datum [F j,L j] ∈ INT into set R and set j = j+1, Nr = Nr +1.

3. IF j = NT THEN go to step 8.

4. Compute rmax = argmax{σr, j(Hr,F j)}
Lr=L j

, where Hr ∈ R, r = 1,2, ...,Nr.

5. Calculate the size S(H∗r), where H∗r = Hr ∪F j.

6. IF S(H∗r)≤ Ts THEN replace Hr with H∗r , set j = j+1 and go to step
3.

7. ELSE IF S(H∗r)> Ts THEN insert F j into R, set j = j+1, Nr = Nr +1
and go to step 3.

8. set j = 0, QT = 0.

9. IF j = NT THEN go to step 13.

10. Calculate rmax = {σr, j(Hr,F j)}. r = 0, ...,Nr.

11. IF Lrmax = L j THEN QT = QT +1, j = j+1, go to step 9.

12. ELSE IF Lrmax 6= L j THEN set j = j+1 and go to step 9.

13. set j = 0, QV = 0

14. IF j = Nv THEN go to step 18.

15. Calculate rmax = argmax{σr, j(Hr,F j)}. r = 0, ...,Nr, F j ∈ INv

16. IF Lrmax = L j THEN QV = QV +1, j = j+1, go to step 14.

17. ELSE IF Lrmax 6= L j THEN set j = j+1 and go to step 14.

18. set w = 0.4, Q = w ·QT +(1−w) ·QV

:END

21

Algorithm 4 : Particle swarm optimization algorithm
:BEGIN

1. Define the number P of particles and the number T of time steps for
the evolution.

2. Set the time t = 0, t ∈ [0,T] and initialize the positions of each parti-
cle with uniformly distributed values; within (0,5] for µ,λ and within
(0,1] for Threshold of rule size. Moreover, evaluate the particles by
computing the objective function according to their positions.

3. Update positions

4. Evaluate the particles by computing the objective function according to
their new positions.

5. IF Termination criterion, i.e t = T , is satisfied then go to :END

6. go to step 3

:END

Algorithm 5 : Kernel function that calculates the inclusion measure in the
form of Equation (9).
:BEGIN

1. i = Get MyBlock Identity; h = Get MyLocal Identity;

2. R[i,h] = K(F,G; i,h)

3. barrier()

4. Reduction on R

:END

22

REFERENCES

[1] V Gomathi, K Ramar, and AS Jeeyakumar. (2009). Human facial expression recognition
using manfis model. World Academy of Science, Engineering and Technology, 50:338–342.

[2] M. Grana. (2009). Lattice computing and natural computing. Neurocomputing, 72(10-
12):2065–2066.

[3] M. Grana and A.I. Gonzalez-Acuna. (2013). Learning parsimonious dendritic classifiers.
Neurocomputing, 109:3–8.

[4] A. Habermaier and A. Knapp. (2012). On the correctness of the simt execution model of
gpus. Programming Languages and Systems, pages 316–335.

[5] D. Horn. (2005). Stream reduction operations for GPGPU applications. Gpu gems,
2:573–589.

[6] V. G. Kaburlasos. (2011). Information engineering applications based on lattices. Infor-
mation Sciences, 181(10):1771–1773.

[7] V. G. Kaburlasos and A. Kehagias. (in press). Fuzzy inference system (FIS) extensions
based on lattice theory. IEEE Transactions on Fuzzy Systems.

[8] V. G. Kaburlasos and T. Pachidis. (in press). A lattice-computing ensemble for reasoning
based on formal fusion of disparate data types, and an industrial dispensing application.
Information Fusion.

[9] V. G. Kaburlasos, S. E. Papadakis, and A. Amanatiadis. (2012). Binary image 2d shape
learning and recognition based on lattice computing (lc) techniques. Journal of Mathemat-
ical Imaging and Vision, 42(2-3):118–133.

[10] A. Kehagias. (2011). Some remarks on the lattice of fuzzy intervals. Information Sciences,
181(10):1863–1873.

[11] J. Kennedy and R. Eberhart. (1995). Particle swarm optimization. In Neural Networks,
1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–1948.

[12] O. Langner, R. Dotsch, G. Bijlstra, D.H.J. Wigboldus, S.T. Hawk, and A. van Knippenberg.
(2010). Presentation and validation of the radboud faces database. Cognition & Emotion,
24:1377–1388.

[13] M. J. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. (1998). Coding facial expressions
with gabor wavelets. In Proc. IEEE Intl. Conference on Automatic Face and Gesture
Recognition, pages 200–205, Nara, Japan.

[14] B.W. Miners and O.A. Basir. (2005). Dynamic facial expression recognition using fuzzy
hidden markov models. In Systems, Man and Cybernetics, 2005 IEEE International Con-
ference on, volume 2, pages 1417–1422.

[15] R. Mukundan and K.R. Ramakrishnan. (1998). Moment functions in image analysis.
World Scientific, Singapore.

[16] J. Nickolls, I. Buck, M. Garland, and K. Skadron. (2008). Scalable parallel programming
with cuda. Queue- GPU Computing, 6(2):40–53.

[17] S. E. Papadakis and V. G. Kaburlasos. (2010). Piecewise-linear approximation of
non-linear models based on probabilistically/possibilistically interpreted intervals’ num-
bers (ins). Information Sciences, 180(24):5060–5076.

[18] S. E. Papadakis, V. G. Kaburlasos, and G. A. Papakostas. (2012). Human facial expression
recognition by fuzzy lattice reasoning (flr). In Proc. 10th Intl. FLINS Conf. on Uncertainty
Modeling in Knowledge Engineering and Decision Making (FLINS’12), pages 633–638,
Istanbul, Turkey.

23

[19] S.E. Papadakis and A.G. Bakrtzis. (2011). A GPU accelerated PSO with application to
Economic Dispatch problem. In Intelligent System Application to Power Systems (ISAP),
2011 16th International Conference on, pages 1–6.

[20] G. A. Papakostas, E. G. Karakasis, and D. E. Koulouriotis. (2010). Novel moment
invariants for improved classification performance in computer vision applications. Pattern
Recognition, 43(1):58–68.

[21] G. A. Papakostas, D. E. Koulouriotis, and E. G. Karakasis. (2009). A unified methodology
for efficient computation of discrete orthogonal image moments. Information Sciences,
179(20):3619–3633.

[22] D. Roger, U. Assarsson, N. Holzschuch, et al. (2007). Efficient stream reduction on the
GPU. In Workshop on General Purpose Processing on Graphics Processing Units.

[23] D. G. Sim, H. K. Kim, and R. H. Park. (2004). Invariant texture retrieval using modified
zernike moments. Image & Vis. Comput., 22(4):331–342.

[24] Talia D. Skillicorn D. B. (1998). Models and languages for parallel computation. ACM
Computing Surveys (CSUR), 30:123–169.

[25] P. Viola and M. J. Jones. (2004). Robust real-time face detection. Intl. Journal of
Computer Vision, 57(2):137–154.

[26] Y. Xu, D. Ruan, K. Qin, and J. Liu. (2003). Lattice-Valued Logic. Springer, Heidelberg,
Germany.

24

