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Abstract—A Fuzzy Inference System (FIS) typically imple-
ments a function f : RV — T, where the domain set R denotes
the totally-ordered set of real numbers, whereas the range set T
may be either T = R (i.e. FIS regressor) or ¥ may be a set of
labels (i.e. FIS classifier), etc. This work considers the complete
lattice (F, <) of Type-1 Intervals’ Numbers, or INs for short, where
an IN F' can be interpreted as either a possibility distribution or
a probability distribution. In particular, this work concerns the
matching degree (or satisfaction degree, or firing degree) part of a
FIS. Based on an inclusion measure function o : FxF — [0, 1] we
extend traditional FIS design towards implementing a function
f :FN — % with the following advantages: (1) accommodation
of granular inputs, (2) employment of sparse rules and (3) intro-
duction of tunable (global, rather than solely local) nonlinearities
as explained in the manuscript. New theorems establish that
an inclusion measure o is widely (though implicitly) used by
traditional FISs typically with trivial (i.e., point) input vectors. A
preliminary industrial application demonstrates the advantages
of our proposed schemes. Far-reaching extensions of FISs are
also discussed.

Index Terms — Fuzzy inference system (FIS), fuzzy lattice
reasoning (FLR), granular computing, inclusion measure, fuzzy
interval, industrial dispensing, intervals’ number (IN), lattice
computing (LC)

I. INTRODUCTION

Fuzzy inference systems, or FISs for short, is a long-
established technology [24], [53], [72]. A FIS can be in-
terpreted as a fuzzy-logic-based device that implements a
function f : RN — %, where the domain set R denotes the
totally-ordered set of real numbers, whereas the range set ¥
may be either T = RM (i.e. FIS regressor) or T may be a set
of labels (i.e. FIS classifier), etc. [34]. Inherent restrictions
of a typical FIS include, first, crisp vector inputs that can
not accommodate vagueness, second, a sparse rule base that
may not be activated for some system inputs and, third, local
(instead of global, as explained below) rule activation that may
result in a costly rule proliferation especially when the number
of input/output variables increases.

A number of different schemes have been proposed, in
various contexts, to overcome aforementioned FIS restrictions.
For instance, Zadeh’s Compositional Rule of Inference (CRI)
[82], applicable to a Mamdani type FIS [53], can deal with
fuzzy data. Moreover, granular computing schemes [59] have
been proposed for processing non-crisp data as well as for
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dealing with uncertainty in modeling applications [5], [16].
Type-2 fuzzy sets have been proposed for accommodating
vagueness in FISs [54], [77]. Other schemes, such as in-
terpolative reasoning [26], [48], [49] have been proposed
for dealing with sparse rule bases. Furthermore, evolving as
well as interpretable rule structures have been proposed to
encounter rule proliferation [9].

This work concerns the matching degree (or satisfaction
degree, or firing degree) part of a FIS. In particular, this
work proposes a single instrument, namely an inclusion mea-
sure function o(.,.), towards overcoming all aforementioned
“inherent restrictions” of FISs by extending the applicability
domain of a typical FIS to the space of Intervals’ Numbers,
or INs for short, as explained below. Recall that previous
work has employed the term Fuzzy Interval Number (FIN)
instead of the term IN because it stressed a fuzzy interpretation
[58]. Moreover, the work in [58] explains that an IN is
a mathematical object which may be interpreted as either
a probability/possibility distribution or an interval or a real
number.

Regarding fuzzy set theory in particular note that even
though a fuzzy membership function can be defined on any
universe of discourse, it is fuzzy numbers (i.e., convex normal
fuzzy sets defined on the real numbers R universe of discourse)
which are of special interest due to the widespread use
of real numbers [34]. Furthermore, the “resolution identity
theorem” [83] has shown that a fuzzy set can, equivalently, be
represented either by its membership function or by its a-cuts
[47], [57]; obviously, a fuzzy number’s a-cut is an interval.
This work builds explicitly on the a-cuts representation of
fuzzy numbers.

In our previous work we have studied the notion of gen-
eralized intervals (and generalized intervals numbers); these
are mathematical objects [a, b] with a,b € R where it is not
necessary that a < b. The interested reader can consult [31]
and the references included therein. Recently we have turned
to “classical intervals” (on which the restriction a < b is
enforced) and INs!. In particular, we have shown that the set
IF of INs is a metric lattice [30], [45] with cardinality Ny [33],
[34], where “R;” is the cardinality of the set R of real numbers;
moreover, the space F is a cone in a linear space [36], [58].

In a previous publication, INs have been proposed for
extending FISs based on a metric (distance) function [34].
More specifically, a fuzzy membership function was defined
in [34] as a function of a metric between INs with the

'INs, on the one hand, are better suited to certain applications but, on the
other hand, require somewhat different methods of analysis.



objective of alleviating the curse of dimensionality problem.
The same objective can be pursued here by the employment
of an inclusion measure function. However, only an inclusion
measure function extends, in a “principled way” as explained
below, the semantics of established FIS practices. In addition,
an inclusion measure can extend the applicability of FISs to
nonnumeric data domains as discussed below.

Since inclusion measures are central to our approach, let us
present some related bibliographic remarks. The literature on
inclusion measures is extensive. Hence, we only give a very
brief introduction (because of space limitations); the interested
reader can use our references as a starting point for further
study. Fuzzy set inclusion was first defined by Zadeh [81] as
a crisp relation: a fuzzy set A is either included or not included
in another fuzzy set B. Kosko reacted to this by defining set
inclusion as a fuzzy relation [50]. This was further enhanced
by the axiomatic approach; for example Sinha and Dougherty
[66] list nine properties that a “reasonable” inclusion measure
should have and then derive inclusion measures which have
these properties. Other authors [1] obtain inclusion measures
from fuzzy implication operators. These two approaches (ax-
iomatization and use of fuzzy implications) are combined in
several papers [6], [11], [15], [80]; e.g., Burillo et al. [6]
introduce a family of implication operators, obtain inclusion
measures from these and show that these satisfy Sinha and
Dougherty’s axioms. A short but very enlightening discussion
of the various ways in which “classical subsethood” can be
generalized in the fuzzy context appears in [10, pp. 347 and
351-353] where various generalizations of fuzzy subsethood /
inclusion measures are categorized into two separate tracks
“one logic-based, the other frequency-based”. In [7], [46]
lattice-valued inclusion measures are introduced, i.e., inclusion
grades are partially ordered. A more common generalization
involves real valued inclusion measures which can be applied
to L-fuzzy sets [18]; specific examples involve intuitionistic
Sfuzzy sets [10], [23], [84], [85], interval-valued fuzzy sets
[84] and Type-2 fuzzy sets [27], [54]. A quite general class
of inclusion measures appropriate for L-fuzzy sets has been
recently introduced in [71]. A detailed discussion on the
relation between INs and Type-2 fuzzy sets is presented
in [42]. The relationship between interval-valued fuzzy sets,
intuitionistic fuzzy sets and other extensions of fuzzy sets is
discussed in [12], [13]. For some applications of set inclusion
see [14], [44], [56] (and the references included therein) as
well as the papers discussed in the next paragraph.

In our own early work [29], concentrating on hyperboxes,
we have started with a fuzzy measure o (A, B) of the inclusion
of a crisp set (hyperbox) A into another crisp set (hyperbox)
B and developed a methodology which uses their inclusion
measure for clustering and classification applications [37],
[38], [39], [60]. After realizing that the set of hyperboxes in
R¥ is lattice-ordered we extended the hyperbox approach to
a general lattice data domain as described in the book [31]. In
particular, we have used inclusion measures to fuzzify the crisp
inclusion relation for (fuzzy) intervals numbers. It turns out
that in the lattice of (fuzzy) intervals numbers some technical
difficulties arise in the definition of inclusion measures; we ad-
dress these difficulties in Section III. Let us note in passing that

the term “inclusion measure” is probably not general enough;
our o (x,y) functions can be better understood as fuzzy orders;
i.e., o (z,y) expresses the truth value of the statement “x < y”
(where x, y are elements of a lattice). However we stick to the
term “inclusion measure” for historical reasons.

The current paper as well as our abovementioned work
falls within the general framework of Lattice Computing (LC),
which has been defined as “the collection of Computational
Intelligence tools and techniques that either make use of lattice
operators inf and sup for the construction of the compu-
tational algorithms or exploit Lattice Theory for language
representation and reasoning” [21]. This work adheres to an
extended definition of Lattice Computing (LC) that denotes
“an evolving collection of tools and mathematical modeling
methodologies with the capacity to process lattice ordered
data per se including logic values, numbers, sets, symbols,
graphs, etc” [43], [75]. A recent brief review of selected lattice
computing methodologies appears in [20]. Several applications
of lattice-theory-based schemes with emphasis on fuzzy con-
trol are presented in [28]. An excellent reference on accom-
modating vagueness and uncertainty in the context of lattice
computing is [55]. Specific examples of the lattice computing
approach include the connections between granular computing
and lattice theory [52], [67] (since information granules are
partially/lattice-ordered), lattice-valued (propositional) logics
[78], [79], the use of lattice theory to study fuzzy relations
[2] and knowledge representations [17] and to extend the
notion of a belief function [19]. Also, note that mathematical
morphology (MM), generally conducted in complete lattices
or inf-semilattices, is firmly rooted in lattice theory [25], [62],
[63]. Hence, morphological neural networks (MNN) including
both morphological perceptrons and morphological associative
memories (MAMs) [61], [67], [68], [69], [76] should also be
classified as lattice computing models. In particular, a fuzzy
MAM can be used to implement a FIS based on the complete
lattice structure of the class of fuzzy sets [70], [73], [74].
Trends in lattice computing appear in [22], [32], [40].

The paper is organized as follows. Section II presents math-
ematical preliminaries regarding Intervals’ Numbers (INs).
Section IIT details inclusion measure functions with empha-
sis on INs. Section IV illustrates FIS extensions. Section
V presents a preliminary industrial dispensing application.
Finally, section VI concludes by summarizing our contribution
in perspective. The Appendix includes proofs of Theorems and
Lemmas.

II. MATHEMATICAL PRELIMINARIES

In this section we present useful definitions, theorems and
notation. Since most theorems presented here are “classical”,
their proofs are omitted.

We use the following set-theoretic notation. The empty set
is denoted by ). Both A C B and B D A indicate that A is
a subset of B; both A C B and B D A indicate that A is a
proper subset of B, i.e., there is at least one z such that ¢ A
and z € B; both A ¢ B and B 2 A indicate that A is not a
subset of B. Finally, A\B denotes the set of all elements of
A which are not contained in B (set difference).



A binary relation < on a set P is a partial order iff it
satisfies three conditions: z < x (reflexivity), x < y and y <
r = x =y (antisymmetry), and x < yand y < z =z < 2
(transitivity). In this case (P, <) is called a partially ordered
set or poset. Similarly to the set theoretic notation, y > =,
r<y,y>uz x%yy# x are interpreted in the “obvious”
way.

A lattice is a poset (X, <) with the additional property that
any two elements =,y € X have both an infimum (i.e., greatest
lower bound) denoted by = A y and a supremum (i.e., a least
upper bound) denoted by x V y. It may be the case that for
two elements z,y € X neither z < y nor z > y holds; in this
case we say that x and y are incomparable and write x||y. If
in a lattice (X, <) every (x,y) pair satisfies either z < y or
x > y then we say that lattice (X, <) is totally ordered.

Example 2.1: Given any set X, denote by 2% the set of all
subsets of X; then (2%,C) is a (not totally ordered) lattice,
with set intersection N being the infimum operation and set
union U being the supremum operation.

A lattice (X, <) is called complete iff each of its subsets Y
has both a greatest lower bound and a least upper bound in X
(hence, taking Y = X, we see that a complete lattice has both
a least element and a greatest element).

In this paper we will use a reference set . CR, where R =
RU{—00,00} is the set of extended real numbers. We will
choose L so that (L,<) is a complete and totally ordered
lattice (here < is the “usual” order relation of real numbers).
For example, L can be R itself, or an interval [a,b] C R, or
a finite set {z1,za,...,2n} C R. In every case, L includes a
least element denoted by o and a greatest element denoted by
i (hence L = [o, i]); the inf and sup operations are denoted by
A and V.

Given a1, as € L, with a; < asg, the (Type-1) interval A =
[a1, as] is defined by

[a1,a2) ={z:z €L and a1 <z < as}.

The empty set is also considered an interval, the so-called
empty interval>. We denote the collection of Type-1 intervals
of L (including the empty interval) by I(IL), or simply by I.

The structure (I, C) is an ordered set. In fact, it is well-
known that the structure (I, C) is a complete lattice with
respect to the C order (i.e. set theoretic inclusion). The least
element of I is (), which will also be denoted by O; the greatest
element of I is IL = o, ¢], which will also be denoted by I.
Given nonempty intervals A = [aq,as] € I, B = [by,b2] €1,
their infimum and supremum inside I are given by

ANB = [a1Vb1, agAbQ} and AUB = [al/\bl, ag\/bg].

A fuzzy subset F' of L is essentially identical to its member-
ship function mp : L. — [0, 1]; intuitively, the number m p(z)
denotes the degree to which x belongs to F. A partial order
can be defined for fuzzy subsets as follows:

F<G& (Ve:mp(z) <mg(z)). (D)
(We use, without danger of confusion, the same symbol <
for the order on real numbers and the one on fuzzy sets). It is

2The empty interval can also be denoted as [a1,az2] with any ag, az such
that a1 > aso.

easy to check that the infimum (resp. supremum) of two fuzzy
sets F', G is a fuzzy set denoted by F' A G (resp. F'V G) and
defined for every = € L by

mpaa () = mp () Amg (x),
mpvg () = mp () Vmg (x) .

2

Given a fuzzy subset F' with membership function mg, the
h-cut® of F is the set

F(h) ={z:mp(x) > h}.

It is well known that a fuzzy subset is fully determined by the
family of its h-cuts, i.e., {F(h)}ne[0,1).- More specifically, as
shown in [57], given a fuzzy set F' with membership function
mp, we have:

(Vh: F(h) =G (h) < (Vo :mp (z) =mg (z)) .

Fuzzy intervals have been studied extensively (for example,
see [47], [57] and the references therein). Recall that a fuzzy
interval is defined as a fuzzy subset F' whose every h-cut is
an interval: (Vh : F'(h) € T). We denote the set of all fuzzy
intervals by [F’.

In [45] it is proved that the set ' of fuzzy intervals,
equipped with the usual fuzzy sets order <, is a complete lat-
tice; i.e., (F/, <) is a complete lattice. The infimum operation
is A as defined in (2). The supremum operation is denoted by
V and is defined in terms of membership functions, as follows:

Mpye = inf {my : H € F.F<HG<H}.
In words, F'V G is the smallest fuzzy interval which is greater
than both F' and G.

We now introduce Type-1 Intervals’ Numbers (INs for
short).

Definition 2.2: A Type-1 Intervals’ Number is a function
F :[0,1] — I which satisfies

F)=1,
hl Z h,g = F(hl) g F(hg),

VP C[0,1]: NpepF (h) = F (\/P) .

We denote the class of all (Type-1) INs by F.

Consider the following result, which has been proved in
numerous papers and books [3], [47] and also holds in the
more general context of L-fuzzy sets [57], [64], [65].

Given an IN E € F, define m B the membership function
of a fuzzy set E, as follows

Vo :mg(z) =sup{h:z € E(h)}.

The h-cuts of mz are denoted by E (h) and, by definition,
satisfy: Yh € [0,1] : E(h) = {z : mg(z) > h}. Then, it
turns out that for all & € [0, 1] we have E (h) = E (h). Hence,
E (the unique fuzzy set with membership function my) is a
fuzzy interval. In other words, the h-cuts are the intervals of
the original IN and we have a 1-to-1 correspondence between

3We use the term “h-cut” instead of the (equivalent) term “a-cut” used in
the literature for fuzzy sets. The rationale for introducing the new term stems
from two different interpretations for an Intervals’ Number (IN) as explained
in [58].
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Fig. 1. Two equivalent representations for an Intervals’ Number (IN)

E include (a) the interval-representation E(h),h € [0,1], and (b) the
membership-function-representation mg(x),z € R. Samples of the former
representation are shown here for L = 32 different levels spaced evenly over
the interval [0, 1] on the vertical axis.

fuzzy intervals and INs. There follow two equivalent repre-
sentations for an IN, namely the interval-representation and
the membership-function-representation (Fig.1). An advantage
of the interval-representation is that it enables useful algebraic
operations, whereas an advantage of the membership-function-
representation is that it enables convenient fuzzy logic inter-
pretations.

The height of an IN E, symbolically hg, is defined as
the supremum of the associated membership function mpg :
[—00,00] — [0,1] values; ie., hp = \/  mg(z). For

z€[—00,00]
example, the height hg of IN E in Fig.2(a) equals hg = 1,
whereas the height hg of IN G in Fig.2(b) equals hg = 0.7;
in particular, note that it is G(h) = O = ) for h € (0.7,1].

Just like fuzzy intervals are equipped with a partial order
<, similarly INs can be equipped with a partial order <
by defining, for every pair F,G € [, the relationship < as
follows:

F=<Ge (Yhel0,1]: F(h) C G(h)).

The isomorphism of (F/,<) and (F, <) is a consequence
of the following theorem (the proof of which appears in the
Appendix).

Theorem 2.3: For all F,G € F we have

F<G& (Vhe|0,1]: F(h) CG(h) <
< (VzeLl:mp(x) <mg(z)).

Theorem 2.3 has the following corollaries.
Corollary 2.4: For all F,G € F the following equivalence
holds.

Vh: F(h) C G(h)

F<G©<H%JW@CGW@>©

Fig. 2. (a) The height hg of IN E equals hg = 1. (b) The height hg of
IN G equals hg = 0.7.

Tz : mp(zo) < ma(xg)

- ( Vo :mp(x) < mg(x) ) .

Corollary 2.5: The relationship < is a partial order on
F and (F,=) is a complete lattice (the lattice of INs). If
we denote the infimum operation by A and the supremum
operation by Y, then

Vh e [0,1]: (F A G)(h) = F(h) N G(h) and
(F Y G)(h) = F(h) UG(h).

Corollary 2.6: The lattice of fuzzy intervals (F’, <) and the
lattice of INs (T, <) are isomorphic.

III. INCLUSION MEASURE FUNCTIONS

As already mentioned in the Introduction section, an inclu-
sion measure quantifies (by a real number in [0, 1]) the degree
to which a (crisp or fuzzy) set is included in another one.
At a higher level of generality, an inclusion measure o (z,y)
quantifies the degree to which the order x C y is true, where x
and y are elements of a lattice with order C (the crisp interval
inclusion C and the fuzzy interval inclusion < are special
cases of C). Let us now give a precise definition.

Definition 3.1: Let (X, C) be a lattice with inf operation M
and sup operation LI. A function o : X x X — [0, 1] is called
an inclusion measure on X if the following properties hold for
all z,y,z € X.

Cl o(z,z) =1
C2 zlly=o(x,y) <l
C3yCz=o0(r,y) <o(zx,2).

In short, an inclusion measure function o (x,y) quantifies

the degree of inclusion of a general lattice element x to another



one y, in a “principled way” (in the sense of satisfying
properties C1-C3). Another way to look at the matter is this:
C1-C3 imply that ¢ is “compatible” with the order relation
C; in fact yet another formulation is that o (z,y) is a fuzzy
order relation. This can also be seen by the following theorem
(the proofs of theorems and lemmas are presented in the
Appendix).

Theorem 3.2: For all x,y € X we have: (a) x C y <
o(x,y)=1land b) 2Ny Cx <o (z,y) < 1.

We remark that Definition 3.1 is more general than a pre-
vious definition for an inclusion measure [31], [38], [41]; the
latter (definition) included the property “CO0 o(x, O) = 0, for
2 3 O” regarding, in particular, a complete lattice (X, C) with
least element O. However, CO is overly restrictive because,
for z 1O, it follows (O Cyand 2 My C x) = o(z,0) <
o(z,y) < 1; in other words, for 1 O, in a complete lattice,
Definition 3.1 only implies o(x,O) < 1 instead of the overly
restrictive o(x, O) = 0.

An inclusion measure function o : X x X — [0, 1] gives rise
to a parametric (fuzzy) membership function o(.,y), where
y represents a parameter. Moreover, recall that an inclusion
measure function o supports two different modes of reasoning,
namely Generalized Modus Ponens and Reasoning by Analogy
[41]. Recall also that an employment of inclusion measure
function o(.,.) for decision-making is called fuzzy lattice
reasoning, or FLR for short [35].

In the rest of this section we will construct inclusion
measures specifically for (crisp or fuzzy) intervals. In other
words, we will construct inclusion measures on the lattices
(I, C) and (F, =). To this end we will use the following two
functions, which will be considered fixed for the rest of the
section.

Al A strictly increasing function v : L. — [0,00) which
satisfies both v (0) = 0 and v (i) < co.
A2 A strictly decreasing function 6 : L. — L.

A. Inclusion Measures on 1

First we will introduce inclusion measures for crisp inter-
vals. To this end, using functions v and 6, which satisfy Al-
A2, we introduce length functions next.

Definition 3.3: A length function V : 1 — [0,00) has the
following form

0 iff A=0

V(A){ v (0 (a1)) +v(ag) iff A=[a1,aq] #O

The following Lemmas describe some properties of length
functions, which hold for every v and 6 satisfying A1-A2.

Lemma 3.4: Every length function V is a strictly increasing
function, i.e.,

ACB=V(A) <V(B)

and, for all A € I\ {O}, V (4) > 0.
Lemma 3.5: For every length function V' and for all A =
[a1,as], B = [b1,b2],C = [c1, 2] € T we have:

OCBQC:H/(AUC)—V(C)gV(AUB)—V(B).
(3)

Now we are ready to introduce functions ¢ and ¢" which
are inclusion measures for every pair (v,6) which satisfies
A1-A2 (hence we actually define two families of inclusion
measures, with members of each family determined by the
choice of v and 6).

Definition 3.6: The functions o : Ix I — [0,1] and o :
I x I — [0,1] are defined as follows

- 1 iff A=0
oA (A7B) = V‘(/z‘zzl)g) iff A+O °
v 1 iff AUB=0 @)
oy (4,B) = B i AUB£O

where V : T — [0, 00) is a length function.

Theorem 3.7: The functions o and 05 are inclusion mea-
sures on 1.

Remark 3.8: In previous work [37] we have used an ap-
proach similar to the current one to introduce inclusion mea-
sures in the lattice of generalized intervals (i.e., mathematical
objects [ay, as] where we allow a1 > as) as follows. Starting
with a positive valuation v on the lattice of real numbers, we
extended it to a positive valuation V' on the lattice of gener-
alized intervals by V ([a1,az2]) = v (0 (a1)) + v (az). Then, V
can be used to define an inclusion measure on the lattice of
generalized intervals. The similarity to our current approach is
obvious, but there is a technical difficulty. More specifically,
even when v is a valuation (on the real numbers) and 6 is
a decreasing function, V ([a1,az2]) = v (0 (a1)) + v (a2) is
not necessarily a valuation in the lattice of crisp intervals.
Nevertheless, the significance of Theorem 3.7, is that V' can
still be used to define inclusion measures, as long as it is a
length function.

Example 3.9: In this example we take L = [0, M], v(x) =
x and 0(x) = M — x (which, obviously, satisfy A1-A2). Take
intervals A = [ay, az] and B = [by,bs] (in case A = O = ),
we write A = [M, 0] and similarly for B). Then

V(A) = V(lai,az2]) = M + az — ay.

The functions

v 1 iff A=0
of (A, B) = V(avbrasnbe) g and
V([alv‘IZ]) (5)
V(4 B) 1 iff A=B=0
o, 4, b)) = V([b1,b2]) ;
U V([al/\bi,az\/bg]) otherwise
are inclusion measures on the lattice (I ([0, M]), Q).
Example 3.10: In this example we take L = [—o0, oo] and
1

(where A € RT, u € R) which, obviously, satisfy A1-A2. Take
intervals A = [ay, az] and B = [by,bs] (in case A = O = ),
we write A = [0o, —oo] and similarly for B). Then

1 1
Vid) = 1 4 er(a1—p) + 1+ e A(az—p)
and the functions of (5) (with V now given by (6) ) are
inclusion measures on the lattice (I ([—o0,0]), C).

(6)



B. Inclusion Measures on F

We now introduce (families of) inclusion measures for INs.

Definition 3.11: Let oY and ¢ be the inclusion measure
functions of Theorem 3.7 (these definitions depend on the
choice of the length function V and, ultimately, on both
functions v and #). Now we define the functions sigma-meet
of + F xF — [0,1] and sigma-join 0¥ : F x F — [0,1] as
follows.

oV (F.G) = [ oY (F(h),G(R)dh  and
0

oV(F,G) = jaK(F(h),G(h))dh.
0

v

Theorem 3.12: The functions o

measures on (F, <).

We remark that both inclusion measures o} and ! have
been presented elsewhere [30], [31], [35], [42] based on a
positive valuation function V' in the lattice of generalized
intervals rather than based on the (different) length function
V in the lattice I of intervals as shown in this work.

We argue in the next Section IV that an inclusion measure
o is widely (though implicitly) used by traditional FISs. The
basis for our claim is provided by the following two theorems.

Theorem 3.13: Take any F' € F and Xy € F such that
Xo(h) = [zo,20] for all h € [0,1]. Then, for any length
function V, we have o (Xo, F) = mz(zo) (where F is the
fuzzy interval corresponding to IN F).

Remark 3.14: Theorem 3.13 couples an IN’s two different
representations, namely the interval-representation and the
membership-function-representation (see in Fig.1). Note that
the proof of Theorem 3.13 justifies our requirement V (O) = 0
for a length function V.

Remark 3.15: Theorem 3.13 can be used to show an inter-
esting connection between inclusion-measure-based inference
and the compositional rule of inference (CRI) [82]; the latter
(CRI) has the form

and O’\‘,(/ are inclusion

ma (y) = SI;P (mr (z) AN R(z,y)) @)

where mp, mg are membership functions and R (z,y) is a
fuzzy relationship connecting = and y. Now suppose G, F €
F; in particular, let F' be a trivial IN, i.e., F(h) = [zg, o]
for all h € [0,1] (and a fixed (). Furthermore, suppose that
for all y, R (x,y) is a fuzzy interval; the latter corresponds to
IN R,. Now, inferences regarding F' can be performed using
either the inclusion measure ¥ (.,.) or CRI. On the one hand,
if we use the inclusion measure then by Theorem 3.13 the
matching degree is given by

o} (F, Ry) = R(wo,y).
On the other hand, if we use the CRI then by (7) the matching
degree is

me (y) = sup (mp (z) A R(z,y)) = R (z0,y) )

since mp (x) = 0 for all  # xo and mp (zg) = 1. So we
see that inclusion-measure-based inference and CRI produce
the same result when both F' is a trivial IN and R (z,y) is a

fuzzy interval with respect to its first argument. However, for
a nontrivial IN F, the CRI and oY (F, R,) produce different
results as demonstrated in the industrial dispensing application
example in section V.

Given N lattices (X;,C;), ¢ € {1,..., N}, with the corre-
sponding inf and sup operations denoted by I1; and LJ;, we
can define the product lattice as follows [4]. The reference set
is X = X; x -+ x Xy; for any N-tuples x = (z1,...,2n)
eXandy = (y1,...,yn) € X, the order C is defined by:
xCy < (Vi € {1,..,N} : z; C; y;). Then (X,C) is a
lattice with inf M and sup LI operations defined as follows:

xMy =(x1 M y1, ..., 2§ Ny yn) and
xUy =(z1U1y1, .., anUNYN) -

The following definition and theorem show how to introduce
inclusion measures to “product” or, equivalently, “aggregate”
lattices.

Definition 3.16: Let lattice (X,C) be the product of N
lattices (X;,C;) (¢ € {1,..,N}) and suppose o; is an
inclusion measure on (X;,C;) (for i € {1,2,...,N}). We
define functions o : X X X —[0,1] and o1 : X x X — [0, 1]
as follows

on(X,y) = minie{l,...,N} oi(w;,y;) and
N
on(x,y) = Hi:lai(-riayi)'

Theorem 3.17: The functions on(x,y) and op(x,y) are
inclusion measures on the product lattice (X, C).

Remark 3.18: Any one of the lattices (X;,C;) implicit in
Theorem 3.17 can be a lattice of crisp intervals or INs (or, in
fact, any other lattice) and the inclusion measures o; can be
any of the previously defined o, O'L‘.j, oV, oV (for various
choices of functions v;,6;). We can use these “component
lattices” to build an “aggregate lattice”; then Theorem 3.17
tells us how to obtain an inclusion measure for this aggregate
lattice. Furthermore, we point out that Theorem 3.13 applies,
in particular, to the lattice (F, <) of INs, whereas Theorem
3.17 applies to a general product lattice (X, C).

C. Some Remarks on the Construction of the Inclusion Mea-
sures

We now present some remarks about our methodology of
constructing inclusion measures in (F, <). This methodology
consists of two steps: in the first step we construct oY and
O'L‘j, inclusion measures for crisp intervals; in the second step
we construct O')‘{ and UYV, inclusion measures for Intervals’
Numbers.

Regarding oY and ", note that these are determined by
the length function V (fal,ag}) = v (0 (a1)) + v (az) and so
ultimately by the strictly increasing function v : L — [0, c0)
and the strictly decreasing function 6 : L. — L. For instance,
as shown in Example 3.9, given v(z) = x as well as
O(x) = M — z it follows V([a,b]) = M +b— a. In
practice, a parametric family of functions v(.) and/or 6(.) is
proposed by the user. Note that different authors have already
proposed linear /hyperbolic tangent /arctan /sigmoid positive
valuation functions v(.) [36], [37], [41], [51], [52]; whereas,
the corresponding function 6(.) is an affine. Then, typically,



optimal parameter estimates are induced from “training data”
using stochastic search techniques (e.g., genetic algorithms) as
demonstrated in numerous pattern classification and regression
applications [36], [42], [58].

Function V ([a1, az]) is meant (as its name indicates) as a
generalization of the length of the interval [a1, as]. In this light,
for example, the inclusion of interval A = [a1, as] in interval
B = [by,bs] is a ratio of lengths (0 (A, B) = V‘(/‘?Z?)),
namely the length of the common part of A and B divided
by the total length of A. This approach to inclusion measure,
not just for crisp intervals but for general fuzzy sets, has been
introduced in [50]; see [80] for many interesting generaliza-
tions. We can also understand V'(.) as a probability measure,
in which case V‘(faf) will be understood as a conditional
probability. Now, recall that a probability is a special case of
a set-measure® which, in turn, is a generalization of length.
Similar (though not identical) remarks can be made about
UEJ/ (A,B) = %. In short: we obtain our inclusion
measures by generalizing the concept of length.

It remains to explain why V' ([a1,as]) = v (0 (a1)) +v (asz)
is indeed a generalization of length. Recall that we work with
crisp intervals; these are a restricted (but very useful) type of
sets which are characterized by two numbers: their endpoints.
Hence V ([a1, az]) need only depend on the endpoints a;, as;
and if it is meant to generalize length, then V ([ay, as]) must
be increasing with ao and decreasing with a1; an easy way to
achieve this is by setting V ([a1,a2]) = v (0 (a1)) + v (a2) .

We now turn to 0¥ and o . These are inclusion measures
for INs (or, equivalently, for f\itzzy intervals) and they work by
aggregating the degrees of inclusion for an infinite family of
crisp intervals, namely the cuts A (h) and B (h) for every h
value. A natural way to achieve this aggregation is by using
the integral operator; this is the motivation behind Definition
3.11.

Let us conclude by remarking that the length function can
be generalized in other ways. Perhaps the simplest one is to
let V' ([a1,az]) be a true set-measure. For example, one could
try to obtain a family of inclusion measures by using

V (or.aa)) = |

ai

as

w(x) dz 9)

where w (z) is a strictly positive bounded function [33], [34].
However (9) yields V ([a1,a1]) = 0, which contradicts the re-
quirement V (A) = 0 = A = O. More generally, an inclusion
measure cannot be obtained from a set-measure V' under which
exist nonempty sets of measure zero. This technical difficulty
can be resolved on discrete spaces, in which set-measures
can be used to construct inclusion measures. For example let
L = {z1,...,zn} be a subset of the real numbers (equipped
with the “usual” order < ) and define (for n = 1, ..., N ) the
“weights” v (x,,) = wy, > 0; then the function

V(anas)) = Y

a1<zp<az

v (2y)

can be used to construct an inclusion measure in a manner
similar to that of Section III-A. Further generalizations are
possible; we will pursue this direction in a future publication.

4As in “Lebesgure measure”.

IV. Fuzzy INFERENCE SYSTEM (FIS) EXTENSIONS

Even though an explicit connection was shown between
mathematical lattices and fuzzy sets since the introduction
of fuzzy set theory [81], it is remarkable, as explained in
[34], that no tools have been established for FIS analysis and
design based on lattice theory. In this connection we have
presented two theoretical contributions, that is, Theorem 3.13
and Theorem 3.17, which substantiate that inclusion measures
o are widely (though implicitly) used by traditional FISs as
detailed in this section.

Here is an interesting consequence of Theorem 3.13. Take
a fuzzy interval F' € F and its corresponding membership
function mp : [—00, 00] — [0, 1]. Then mp may, equivalently,
be represented by the inclusion measure function o{ (X, F) =
mp(x) for trivial INs X = X (h) = [z, z], where h € [0, 1]
and z € [—00, 00| Parameter “F™ of the fuzzy set o¥ (X, F')
is called here kernel (of the fuzzy set ¢! (X, F)). In terms of
fuzzy set theory, the kernel F' constitutes the core of the fuzzy
set o' (X, F).

An inclusion measure o(X, F') has a significant potential
in FIS applications due to several advantages. First, for any
membership function mpg : [—o0, 00] — [0,1] both inclusion
measures o (X, F) and cr‘v/ (X, F) can accommodate vague-
ness in X in a “principled way”, in the sense of satisfying the
properties C1-C3 of Definition 3.1. A second advantage, in
particular for inclusion measure 0¥ (X, F), is its applicability
beyond the support of the fuzzy set F'. A third advantage
for both inclusion measures o' (X, F') and O'YV(X , F') is their
(parametric) tunability since both o} (X, F') and o (X, F)
are defined based on parametric functions 6 : . — L and
v:L — [0,00).

Furthermore, it is known that a traditional FIS typically uses
either the “min” operator or the “product” operator to calculate
the degree of truth of a fuzzy rule (involving N simple
propositions as antecedents) from the degrees of truth of
the aforementioned /N propositions. Theorem 3.17 establishes
that a traditional FIS implicitly employs inclusion measure
functions o (x,y) and or(x,y) for the “min” operator and
the “product” operator, respectively. Therefore, an explicit
employment of an inclusion measure is expected to result in
the three abovementioned advantages as demonstrated below.
We point out explicitly that this work is not concerned with the
consequents of rules; instead, our interest here focuses on rule
antecedents as explained in the following examples, where all
the definite integrals were calculated by numerical integration
using a standard commercial software package (MATLAB).

Example 4.1: Fig. 3 displays the antecedent of a typical
FIS rule, say R. In the interest of simplicity, without loss
of generality, we show only two INs E; and FEs with
parabolic membership functions mpg, (z) = —2% + 62 —
8 and mp,(z) = —0.252% + 3.5z — 11.25, respectively.
Let an input (x1,0,220) = (3.5,5.5) be presented to the
rule R as shown in Fig. 4(a). Using traditional FIS tech-
niques, the activation m R(m,o,xz,o) of rule R is a function
of both numbers mg, (z109) = 0.75 and mg,(z29) =
0.4375; the latter (numbers) are the degrees of member-
ship of the inputs z10 and z2o to the INs F; and FEs,



respectively. Popular functions mg(.,.) in the literature in-
clude mR1($170,$2,0) = min{mEl(x17o),mE2(:U270)} and
mp2(21,0,220) = mpg,(x10) - mp,(x20). Recall that the
advantage of the former function mpg;(.,.) is that it is com-
puted quickly, whereas the advantage of the latter function
mp2(.,.) is that it results in a “smooth” output (without
abrupt changes). Identical results were obtained using in-
clusion measure oV (.,.) with o,(Xo,E) and op(Xo,E),
respectively, where E = (E1, E3) and Xo = (X1,0,X20)
with Xl,O = Xl’o(h) = (1‘1’0,1}1’0) = (35,35) and
X270 = Xg)o(h) = (332’0,372,0) = (5.5,5.5), for all h € [0, 1].
In conclusion, the results by o¥(.,.) do not differ from the
results by traditional FIS techniques. In addition, our proposed
technology can overcome the abovementioned inherent FIS
restrictions as follows.

g £

e AND

Fig. 3. The antecedent of a typical FIS rule R including the conjunction of
two propositions, namely “variable V1 is E1” and “variable V3 is E2”. The
membership functions of INs E; and Es are the parabolas mp, (1) and
mp, (x2), respectively.

Example 4.2: An inclusion measure can accommodate
granular input INs towards representing vagueness in practice.
For instance, consider the granular input INs X; and X,
shown in Fig. 4(b) each with an isosceles (triangular) mem-
bership function of width 2 - 0.2 = 0.4 centered at 1 = 3.5
and o = 5.5, respectively. Given functions v(m) = x and

0=10—= over the domain [0, 10], it follows oV (X1, EBy) =
0.6825 0.7

f 1dh + f % =k gk + f 0dh ~ 0.7898
0.6825 0.7902
0.3331 0.5088

and o) (Xo, Ep) = [ ABSAHOVISh gy

[ 1dh + 550
0 0.3331

1
| 0dh ~ 0.5072. Note that the upper integral ends 0.7902

%338%.5088 are upper bounds for Zadeh’s Compositional Rule
of Inference (CRI) [82], only for a Mamdani type FIS as
explained next. For a traditional FIS rule “if A then B”,
symbolically A = B, represented by a fuzzy relation R, the
(fuzzy) output B’ to a fuzzy input A’ can be computed using
Zadeh’s CRI: B’ = A’ o (A = B) = A’ o R, where the max-
min product “A’ and R” in [82] was later generalized by the
“sup T” compositional operator. On the one hand, restrictions
of Zadeh’s CRI include, first, the aforementioned fuzzy sets
A and A’ need to overlap, otherwise a zero fuzzy output B’
results in; second, a fuzzy relation R can be defined for a
Mamdani type FIS [53] but not for a Sugeno type FIS [72]
— Recall that a Mamdani type FIS has been described as a
function m : FN — FM whereas a Sugeno type FIS has been
described as a function s : FV — P,, where Pp is a family of
models with p parameters [34]. On the other hand, since an
inclusion measure involves only rule antecedents, an inclusion
measure is applicable on either Mamdani- or Sugeno- type
FISs. In particular, inclusion measure o (.,.) may involve
nonoverlapping INs as demonstrated next.

bt AND

(a)

Gas AND

me e
e

(b)

Fig. 4. Consider the antecedent of rule R from Fig.3. (a) Rule R is activated
by a trivial INs vector Xg = (X1,0, X2,0). Using either a traditional FIS or
inclusion measure o, (.) the degree of truth of proposition “variable Vi =
X1,0 is E1” equals 0.75; furthermore, the degree of truth of proposition
“variable Vo = X2 o is E2” equals 0.4375. (b) Rule R is activated by a
nontrivial INs vector X = (X1, X2) such that each one of INs X and X2
has an isosceles (triangular) membership function of width 2 - 0.2 = 0.4.
Only inclusion measure o, (.) can calculate, as explained in the text, the
degrees of truth of the propositions “variable V1 = X1 is E1” and “variable
Vo = X2 is E2”; in particular, it was computed o, (X1 =< E1) ~ 0.7898
and o, (X2 = E2) =~ 0.5072, respectively.

Example 4.3: Fig. 5(a) shows a trivial INs input vector
Xo = (Xo, Xo) beyond rule support, where Xy = Xo(h) =
(4.5,4.5), h € [0,1]. Given functions v(x) =z and 0 =

10 — , it follows that 0¥ (Xo, E1) f TR gy ~

L5V
10441 .
0.9311 and 0 (Xo, F2) f o 5+2\/7dh 0.9144. Fig.
5(b) shows a nontrivial INs 1nput vector X = (X, X), also

beyond rule support, where IN X has an isosceles (triangular)
membership function of width 2-0.2 = 0.4 centered at 4.5. It

1
50410y/T
follows that o (X E) = Of on h+5\/7dh ~ 0.9235, and

1
of %dh ~ 0.9078. We remark that
computing a rule activation beyond rule support is important
for decision-making in a sparse rule base. Next, we discuss
how traditional FISs typically handle a sparse rule base.
Inference in sparse rule bases is typically carried out by Fuzzy
Rule Interpolation (FRI) [48], [49] motivated towards reducing
a fuzzy model’s rule complexity by inducing fuzzy rules from
other ones according to the following scheme [8]:
Rule 1:

\% _
0-{( (X7 E2) -

IF (X is A11) and ... and (X,, is A1,,) THEN Y is B;
Rule n:

IF (X;is A,1) and ... and (X,, is A,,,) THEN Y is B,
Observation:

(X is A7) and ... and (X,, is A})

Conclusion: Y is B*,

where X; is an antecedent variable (or, equivalently, system
input variable), Y is the consequent variable (or, equivalently,
system output variable), A;; is a fuzzy number value for
variable X; and B; is a fuzzy number value for variable Y,
ie{l,...,n}, je{l,...,m}

A number of FRI schemes have been introduced in the
literature [8], [26], [48], [49]. In general, the FRI techniques



proposed in the literature are restricted to Mamdani type
FISs, where nonlinearities are introduced by ad hoc function
f : FN — F FIS techniques (for details the reader may
refer to [34]) without, usually, a capacity for “fine tuning”.
Even though (non)linear rule interpolation/extrapolation is
feasible in the cone I of INs [36], [58], this work deals
with sparse rules differently, with significant advantages. More
specifically, we treat a fuzzy number A (with an arbitrary
membership function shape) in a sparse rule base, as the kernel
of the fuzzy set O'\‘;(X ,A), where V is a length function with
tunable parameters. That is, instead of inserting new fuzzy
rules by interpolation/extrapolation, we extend the support
of the existing (sparse) rules. Since this work focuses on
the matching degree (or satisfaction degree, or firing degree)
part of a FIS, our techniques here unify the treatment of
Mamdani type FISs and Sugeno type FISs. The number of
the “closest”, in an inclusion measure sense, rules to “fire”
is user-defined. How exactly to use an inclusion measure, e.g.
towards computing multiple “firing rules” and/or resolving any
inconsistencies, depends on a specific application and it is a
topic for future work.

meeh AND

()

o) AND

(b)

Fig. 5. Consider the antecedent of rule R from Fig.3. (a) A trivial INs input
vector Xo = (X0, Xo) is presented. (b) A nontrivial INs input vector X =
(X, X) is presented such that IN X has an isosceles (triangular) membership
function of width 2-0.2 = 0.4. Neither a traditional FIS nor inclusion measure
o (.) can activate rule R because input IN X (as well as input IN Xjp) is
outside the support of both IN F; and IN E>. Nevertheless, inclusion measure
O'Y(.) can activate rule R. In particular, it was computed UV(XQ < E)) =~
0.9311 and o, (Xo = E2) ~ 0.9144; moreover, O’Y(X < E7) =~ 0.9235
and O’\-((X < E3) = 0.9078.

Example 4.4: An inclusion measure can employ alternative
functions than functions v(z) = z and O(z) = 10 — z
employed above. More specifically, in Fig.6, we considered the
INs Eq, Fs, Xy and X from Fig.5. Moreover, we considered
both the (sigmoid) strictly increasing function v, (z; A, u) =
m, x € R, where A € R, 1 € R, and the strictly
decreasing function 6(z;pu) = 2u — x. Several inclusion
measure values were computed and the corresponding results
are displayed in Table I for various values of A and p. Next, we
computed all aforementioned inclusion measure values using
the same (sigmoid) strictly increasing function vs(x; A, p),
nevertheless we used the strictly decreasing function 6(x) =
—x instead; the corresponding results are displayed in Ta-
ble II. Tables I and II demonstrate that different functions
v(.) and 6(.) may result in different fuzzy sets o (X, M)
with the same kernel M. Most interesting is that inequality
O'\‘; (X0, E1) > UYV (Xo, E2) in Table I is reversed in Table II.

That is, Tables I and II demonstrate that (parametric) functions
v(.) and 6(.) can be used as instruments for tunable decision-
making. Note that conventional FISs carry out solely local rule
activation in the sense that a rule is activated if and only if an
input falls inside its (rule) support, whereas a FIS based on
inclusion measure U‘Y,/(., .) can carry out global rule activation
in the sense that a rule can be activated for any input either
inside or outside its (rule) support. In conclusion, conventional
FISs can introduce only local nonlinearities typically by tuning
the shape and/or the location of fuzzy sets involved in the com-
putations, whereas the proposed FISs, based on an inclusion
measure, can, in addition, introduce global nonlinearities via
the tunable (parametric) functions v(.) and 6(.).

Fig. 6. Parabolic INs F1 and E> (in dotted lines) are displayed as well
as both trivial IN X and triangular IN X from Fig.5. Inclusion measure
O'Y(.) values were computed using the displayed sigmoid strictly increasing
functions vs(z; A\, ) = 1/(1 + e~ M==#) for different values of the
parameters A and g including: (a) A =1, p = 4.5; (b) A =3, p = 4.5; (¢)
A =3, p = —4. The corresponding O'\»((.) values for the strictly decreasing
functions 6(z) = 2u — x and 6(z) = —=z are displayed in Table I and Table
II, respectively.

V. AN INDUSTRIAL DISPENSING APPLICATION

This section demonstrates an employment of our proposed
techniques in a preliminary industrial application regarding
liquid dispensing. The industrial problem as well as a soft-
ware application platform, namely XtraSP.vl, and algorithm
CALCIN have been detailed elsewhere [35].



TABLE I
INCLUSION MEASURE VALUES REGARDING FIG.6. THE STRICTLY
DECREASING FUNCTION 6(x) = 2p4 — & WAS EMPLOYED.

Fig.6(a): Fig.6(b): Fig.6(c):
Inclusion Measure  vs(x;1,4.5)  ws(x;3,4.5)  wvs(x;3,—4)
o, (Xo, E1) 0.8598 0.7261 1
o, (Xo, E2) 0.8287 0.7036 1
o, (X, En) 0.8446 0.6916 1
o (X, E2) 0.9449 0.9148 1
TABLE I
INCLUSION MEASURE VALUES REGARDING FIG.6. THE STRICTLY
DECREASING FUNCTION 6(z) = —x WAS EMPLOYED.
Fig.6(a): Fig.6(b): Fig.6(c):
Inclusion Measure  vs(x;1,4.5)  ws(x;3,4.5)  wvs(x;3,—4)
o, (Xo, E1) 0.6114 0.1793 1
o, (Xo, E2) 0.9999 1 0.8571
o, (X, Er) 0.5803 0.1509 1
o, (X, E») 1 1 0.9626

A. Feedback Control Based on Fuzzy Lattice Reasoning

Effective control in the food industry calls for sensible
decision-making rather than for ultimate precision. Therefore,
we estimated the volume of a liquid being dispensed to a
mixing tank by both flowmeter measurements and ultrasonic
level meter (U.L.M.) measurements accommodating vagueness
as follows.

Even though the flowmeter device supplies one precise mea-
surement, there is uncertainty regarding the dispensed volume
due to both time-delays and the (exact) storage capacity of the
pipes/devices used to drive a liquid to the mixing tank. The
latter uncertainty has been modeled by two adjacent uniform
pdfs, respectively, one above- and the other below- a flowmeter
measurement [35]. Hence, in our computer simulation experi-
ments below, five numbers were drawn randomly (uniformly)
for each one of the aforementioned two pdfs. In addition, in
a short sequence, we considered randomly (uniformly) ten
successive measurements of the liquid level in the mixing
tank using the U.L.M. device. In conclusion, we kept inducing
an IN V from a population of twenty measurements using
algorithm CALCIN [35], [42]. In our experiments, for any
population of twenty measurements, we assumed an average
measurements population range of 6 [It] with an insignificant
standard deviation.

The following simple decision-making rule was assumed for
dispensing a liquid to the mixing tank.

Rule Ry : IF the volume V (of the liquid being dispensed)

is Vi..y THEN stop dispensing

We remark that V,..r(h) = [Vo — AV, Vo + AV],h € [0, 1],
where “V;” is the desired (crisp) volume and “AV” is an
acceptable tolerance regarding the desired liquid volume V).

Fig. 7 shows the feedback control scheme we employed
towards automating industrial liquid dispensing. We assumed
that the degree of fulfilment of rule Ry equals the degree
of truth of its antecedent. The latter degree of truth equals
the degree of membership of IN V to the fuzzy inclusion
measure function o(V, V,.r) with kernel V,..y = Vicp(h) =
[Vo — AV, Vo + AV, h € [0, 1]. We stop dispensing when the
degree of truth of the antecedent statement “the volume V' (of

Et)

the liquid being dispensed) is V,..;” is larger-than or equal-
to a user-defined threshold T' € [0, 1]. An advantage of the
proposed scheme is its capacity to deal in a “principled way”,
in the sense of satisfying properties C1-C3 of Definition 3.1,
with vagueness in both the system output and reference signals
represented by INs V' and V.., respectively.

Comparator

Fig. 7. Feedback control based on fuzzy lattice reasoning (FLR): The system
output (volume) v € R is sampled by sensor(s); the produced population of
measurements is represented by IN V. The latter (1) is fed back for compar-
ison to the reference volume IN V,..y = V,..y(h) = [1496.4,1503.6],h €
[0,1]. An inclusion measure o (V, V.. ¢) drives the controller who generates
a binary (ON/OFF) control signal v = {o(V, V;.cy) > T}, where T' € [0, 1]
is a user-defined threshold.

B. Application of our Techniques

Inclusion measure sigma-meet o, (V,V,ey) was computed
as follows:

1
UY(V7Vref) = fO'X([CLh,bh],[VO*AV,V()*FAV])dh =

0
mAVNmy(VORAY) | any (Vo AV)) o (b AVO+AV)) g7,
0 vs(0(an))+vs(on)
where the symbol my (.) above denotes the membership
function of IN V' = V' (h) = [ap, bp], h € [0, 1].
Inclusion measure sigma-join o (V, V,..y) was computed as
follows:

my (Vo

Y (V. Vier) fa ([an, bu, Vo — AV, Vp + AV])dh =
_ fl vsw(vofAv»m(von) dh
- 0 vs(0(an AN(Vo—AV)))+vs (bnV(Vo+AV))

We sought an optimal estimation of the parameters A
and p for both the sigmoid strictly increasing function
ve(z; A, 1) = 1/(1 + e M==1)) and the strictly decreasing
function 0(z; 1) = 2u—x according to the following rationale.
Given the dynamics of our dispensing system in practice it is
required an “early warning” signal at v = 1486 [It]. It is
already known that an IN induced from a uniform distribution
has an isosceles triangular shape [35]. Therefore, in line with
our assumptions above, a population of measurements with an
average equal to L was repesented by an isosceles triangular
INV =V (h) = [an,bn], h € [0, 1] with support [L—3, L+3].
There follows ap, = 3h+ (L —3) as well as b, = (L+3)—3h
for h € [0,1]. In conclusion, inclusion measure o (V, V,.y)
equals

OS(/(V, VT’Cf) =

_ v, (0(1496.4))+v, (1503.6) dh —
= of v, (0((3h+1483)A1496.4))+v; ((1489—3h)V1503.6)

=0, (\p).




Fig.8 displays the degree of membership O’\.{V(VV, Viep) re-
garding an isosceles triangular IN V' with support [1483, 1489
located at L = 1486, as a function of the sigmoid function
vs(v; A, ) parameters A and p. It is preferable to select
a pair (A, p) of parameter values that results in a small
value of UYV(V7 Vier) so as to secure an easily detectable
“early warning” signal. Fig.8 indicates that smaller values of
function o (), u) are attained for both y ~ 1492 and large

values of A. In fact, it can be (easily) shown analytically
that  lim of(\p = 1492) = 0.5. We decided to use
— 400

A = 1 so as to retain the typical sigmoid function shape.
Furthermore, using a steepest descent method we computed
= 1492.270 resulting in an acceptable optimal (minimum)
value 0¥ (X = 1,1 = 1492.270) = 0.516. We point out that,
in previous works, optimal parameter estimation “of scale”
has been pursued using stochastic search techniques such as
genetic algorithms [36], [42], [58].

1450

Uil 1475

iy

1500
1525

1550 ®

Fig. 8. The 2-dimensional curve above shows the degree of membership
a:.(/(V7 Viey), regarding an isosceles triangular IN V' with support [1486 —
3,1486 + 3] and Vi = Vyep(h) = [1496.4,1503.6] for h € [0, 1], as a
function of the sigmoid function vs(v; A, ) parameters A and f.

Fig.9 displays INs Vi, Vo and V3 induced by algorithm
CALCIN from the measurements of a liquid being dispensed
into the mixing tank, whereas IN V,.¢(h) = [V — AV, 1, +
AV],h € [0,1] is the reference volume with Vi = 1500 [it]
and AV = 3.6 [lt]. IN V; was induced first, followed by
IN V5, the latter in turn was followed by IN V3. In general,
not only the peak of an IN but also its shape changes with
time because a different distribution of samples is obtained
at a different time. Fig. 9 also displays the strictly increasing
(sigmoid) function vg(v; A, u) = m employed here
with the optimally estimated parameter values A = 1 and
p = 1492.270. In all cases, the strictly decreasing function
O(v; ) = 21 — v = 2984.54 — v was employed.

Fig.10 (a) and (b) display inclusion measure o (V, V,.y)
and UX(V, Vres), respectively, furthermore Fig.10(c) displays
the result of applying Zadeh’s compositional rule of inference
(CRD) v = V o (Ve = “stop dispensing”) versus the
dispensed liquid volume v over the range [1480, 1520]. Fig.10
demonstrates that either function o (V,V,cs) or the CRI

| |
| |
I I
I I
! |
0 I
1480 1484.7 1490 1495 1500 1505 1510 1515 1520

1515 1520

1515 180

Fig. 9. (a) IN V7 was induced first, followed by (b) IN Va2, followed by
(c) IN V3. The reference volume IN V.. is displayed in all figures as
well as the optimally estimated, as explained in the text, sigmoid function
vs(v;1,1492.270) = 1/(1 + e~ (v=1492:270)) Iy (c) the average py of a
population of measurements regarding a liquid volume equals py = 1496.4.

signify more “crisply” than function O'K(V, Viey) the order
relation “V' < V,..;” in the sense that either oV (V,Vye ¢) or
the result by CRI rises from 0 all the way to 1, whereas
UZ(V, Vyey) rises only from (slightly over) 0.5 to 1. Nev-
ertheless, only the inclusion measure function JYV(‘/, Vier)
can warn as early as at around v = 1486 that we approach
the reference volume V.r. Hence, the inclusion measure
O’\‘; (V, V,ey) appears to be a better decision-making instrument
in practice than either inclusion measure o (V,V,.) or the
CRI towards stop dispensing within specifications.

C. Comparative Experimental Results

A standard practice in the industry for dealing with a
population of measurements is to replace it with its first-order
data statistic, namely the population average. Therefore, we
considered the following alternative decision-making rule for
dispensing a liquid to the mixing tank.

Rule R; : IF |uy — Vy| < AV THEN stop dispensing,

where py is the average of a population of measurements
regarding the volume of a liquid being dispensed, whereas
both Vy and AV have been defined above.
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Fig. 10. Using the optimal parameter estimated functions vs(v; A =
1, = 1492.270) and O(v; p = 1492.270) we computed (a) Inclusion
measure o (V, Vres), and (b) Inclusion measure o (v, Viey), all versus

the dispensed liquid volume v € [1480, 1520]. Alternatively, (c) presents the
corresponding result by Zadeh’s compositional rule of inference (CRI) versus
the dispensed liquid volume v € [1480, 1520].

Fig.9(c) illustrates how rule R; can be activated while, at the
same time, the previous rule Ry remains inactive for 7' = 1.
The practical problem in this case is that liquid dispensing
stops while the actual volume of the dispensed liquid might
be less than |Vy — AV| = |1500 — 3.6] = 1496.4; hence, the
final industrial product might be outside specifications. The
aforementioned problem is dubbed here “false triggering” and
it can be resolved in Fig.9(c) using rule Ry with either o, (., .)
oro,(.,.)and T = 1.

It might be thought that, under the (numerical) assumptions
of Fig.9(c), “false triggering” can be avoided using the fol-
lowing alternative rule

Rule R, : IF uy = Vy THEN stop dispensing.

However, rule R» might not be able to deal with another
problem; the latter occurs when the support “2 - AV” of IN
Vres is smaller than the support of IN V, furthermore the
problem exacerbates when IN V' is skewed thus deteriorating
performance as detailed in [35].

In a series of computational experiments, using rule Ry
with either inclusion measure o¥(.,.) or a‘y./(., .) and a user-
defined threshold 7" = 0.93, it turns out that rule R clearly

maximizes the probability of stop dispensing a liquid within

specifications. The latter probability corresponded to the por-
tion of IN V' over the interval [V — AV, V; + AV] at the very
moment liquid dispensing stops due to the activation of the
rule in use. Our explanation for the superior performance of
an inclusion measure (in rule Rp) is that o¥ (.,.) as well as
a\‘;( .,.) engage all-order data statistics, whereas an alternative
rule typically engages fewer (user-defined) data statistics such
as the corresponding average and standard deviation, i.e. first-
and second- order data statistics, respectively.

This preliminary industrial dispensing application was
meant to demonstrate the practical applicability of our pro-
posed techniques rather than to analyze their efficiency. A
comparative study regarding the efficiency of our proposed
techniques including potential improvements is a topic for
future research.

VI. DISCUSSION & CONCLUSION

The thrust of this paper is the introduction of novel per-
spectives as well as sound mathematical results, including
theorems 3.13 and 3.17, towards a “principled” (in the sense of
satisfying the properties C1-C3 of Definition 3.1) extension
of a Fuzzy Inference System (FIS) involving arbitrary (fuzzy
number) membership function shapes. In particular, this work
has introduced a number of FIS extensions regarding the
matching degree (or satisfaction degree, or firing degree) part
of a FIS. This has been achieved by studying the lattice (I, C)
of conventional intervals on the line of real numbers followed
by a constructive study of the lattice (F,=<) of Intervals’
Numbers (INs). Lattice (I, <) was shown to be isomorphic to
the lattice (F’, <) of fuzzy intervals. Two inclusion measures
oy (.,.) and o (.,.) were introduced on (I,C) giving rise
to inclusion measures o (.,.) and o (.,.), respectively, on
(F, <).

Based on theorems 3.13 and 3.17 we showed that inclusion
measures are widely (though implicitly) used by traditional
FISs. Examples 4.1-4.4 indicated that an explicit employment
of an inclusion measure (o) may result in substantial benefits
including: 1) Accommodation of granular FIS inputs, 2) Em-
ployment of sparse FIS fuzzy rule bases, and 3) Introduction
of tunable nonlinearities globally, rather than locally, via
parametric length functions, while retaining traditional FIS
semantics.

APPENDIX

Theorem 2.3
Proof:
F=<G<& (Vhel0,1]: F(h) C G(h)) by definition.
Suppose (Vh € [0,1] : F'(h) € G(h)) holds. Take any x €
L and let h = mp(z). Then z € F(h) C G(h) = z €
G(h):>mg( )>h ’ITLF( )
Suppose that (Vz € L : mp(x) < mg(z)) holds. Take any
h € [0,1]. If F(h) is empty, then F(h) C G(h). If F(h) is
not empty, take any x € F'(h). Then h < mp(x) < mg(z)
and so « € G(h). Hence, F(h) C G(h). [ |
Theorem 3.2
Proof:



(i) We first prove: o (z,y) = 1 = z C y. This is simply
the contrapositive of C2.
(i) Next we prove: © C y = o (x,y) = 1. To do this, replace
in C3 y with z and z with y, to get z C y = o (z,2) <
o (z,y); but o (z,z) = 1 (from C1) and o (z,y) < 1 (since
0:XxX—=[0,1] ), hence s Cy = o (x,y) = 1.
(iii) Now we prove z My C z = o (z,y) < 1. As already
proved, o (z,y) = 1 = 2 C y = z My = z. Using the
contrapositive of this, we have z My # =z = = £ y =
o(z,y) <1
(iv) Finally we prove o (z,y) < 1 = My C «. Choose x
and y such that o (z,y) < 1 and assume x My [Z x; then
clearly x My = x and so x C y. But then, from (ii) we get
o (z,y) = 1 which contradicts o (z,y) < 1. Hence o (z,y) <
l=zNyC e [ |

Lemma 3.4

Proof:

Suppose first that ) = O = A C B = [by, ba]; then V (A) =
0 <wv(f(b1))+v(b2) =V (B). If, on the other hand, O C
A= [al,ag] CcB= [bl,bg], then

either b1 < a1 < as < by or by < a1 <ag <by

or b1 < ap <ag < bs.
We will only consider the first case (the others are treated

similarly). If b; < a1 < ag < by, we have 6 (a1) < 6 (b;) and
so v (0 (a1)) <v(6(b1)); also v (az) < v (by). And so

V(A)=v(0(a1)) +v(az) <v(0(b1))+v(be) =V (B).

|
Lemma 3.5
Proof:
To prove (3), let us distinguish two cases.
i. If A C C then we have

C:AUC:>V<AUC)—V(C):O

BQAUB:>V<AUB)—V(B)20

which proves (3).
ii. If A Z C then also A = [ay,az] D O. Either a1 < ¢1 < by
or by < ¢co < as (or both). We examine the two subcases

separately.
ii.1. If a1 < ¢; < b; we have
AUC = [a1,a2 V ca], C = [e1,c9]
V(AUC) —V(C) =
=v(0(a1))+v(azVea) —v(0(c1)) —v(c)
and
AUB = [aj,a3 V by, B = [b1, bs]

V(AUB) ~V(B) =

=v(0(a1))+v(azVby)—v(0(b1)) —v(b2).
So, to test the validity of (3), we must compare
v(agVea) —v(0(c1)) —v(ca) and

v(az Vba) —v(0(b1)) —v(b2).

Now
cr<bp=0(b) <0(cr) =0v(0(b1)) <
—v (6 (b1)).

Also, for the relative position of as, ba, co we have three
possibilities
ii.1.1 If as < by < ¢5 then

v(ag Vea) —v(ea) =v(eg) —v(ce) =v(by) —v(by) =
:’U(ag\/bQ)—U(bg).

v(0(c1)) =

= —v(0(c1)) <

ii.1.2 If by < as < ¢ then
v(agVea) —v(ce) =v(ea) —v(c2) <wvlag) —v(b) =
=wv(az Vby) —v(ba).
ii.1.3 If by < c2 < agy then
v(azVer) —v(ce) =v(az) —v(c2) <wvlag) —v(be) =
=v(ag Vby) —v(bs).

Hence (3) holds in this case.
ii.2. The treatment of the case by < ¢y < a9 is similar to that
of ii.1 and hence is omitted. It turns out that (3) holds in this
case too.

Hence (3) holds in every case and the proof of the Lemma
is complete. [ ]

Theorem 3.7

Proof:

First let us verify that Properties C1-C3 hold for % .
i.If A= O then oY (A,A) =1.1f AD O then oY (A, A) =
V%Q;‘) =1 and C1 holds.
ii. Assume A ¢ B.ThenO C A, ANB C AandV (AN B) <
V (A). Hence oY (A, B) = V‘(,AQ;B) < 1 and C2 holds.
iii. Assume B C C; then we also have AN B C AN C and
V(AN B) <V (ANC). Now consider two cases.
iii.1 First, suppose A = O. Then o (A,B) =1 = X ( C).
iii.2 Second, suppose A D O. Then oY (4, B) = viAng) <

( )
VAR = o (A,0).

Hence C3 holds.

Next let us verify Properties C1-C3 for a
iLIfA= Otheno (A,A) =1. IfADOthenU (AA) =

V@A)
V(AoA) ~ 1 and Cl holds.

ii. Assume A ¢ B. Then O C AC AUB and ANB C A.
Also, either B C A or both ANB ¢ A ¢ AUB and
ANBcCBC AUB.

i1IfBC A thenalso A = AUB, 0 < V(AUB)

and V(B) < V(A) = V(AUB) hence o V(A,B) =
V(B)
vV (AUB)
ii2If ANBCAC AUBand ANB C B C AU B then
also V (B )<V(AUB) hencea (A,B) = VIB) 1.

V(AUB)
In both cases C2 holds.
iii. Assume B C C.

<L




iii.1. If B =0, we distinguish two subcases.

iii.1.1. If also A = O, o (A, B) =1. Butalso C' = AUC

and hence (for both C = O and C'D O): o V(A,C)=1=
Y (A,B).

11112 If A D> O, then V(A

AUC=0<V (A UB

) > 0.Also O C AUB C
(AUC) Hence

)
(AUB)

iii.2. If B D O then V
we have

V(AUC)—V(C)g

Vv (C)
(A U C)

oV (A,B) = =0 (4,0)

AU B) > 0 and, using Lemma 3.5,

(AUB) ~V(B) =

YV (B)-V ( U B) =

V (B) V(AUC < V(AUB) V(C) =

V(B) V(0O)
1% (A UB (A U C)
JK (A,B) < crx (A,C).
In both cases C3 holds. [ |
Theorem 3.12
Proof:

We will only verify Properties C1-C3 for o (the case of

O’}.(/ can be proved similarly).

Cl We want to prove: for any F' € [F, we have
o¥(F,F) = 1 . We partition [0,1] into two sets
A and B, where A = {h F(h) = O},
B = {h : F(h) D O}. Then, as already seen,
o¥(F(h),F(h)) = 1 for all h € A; and also
o¥ (F(h), F(h)) = YEEEM) = 1 for all h € B.
And so

1
:/1dh+/1dh:/1dh:1.
0

A B

C2  We want to prove: for any F, G € F such that FF £ G
we have o} (F,G) < 1. Note that F A G = F A

G < F. Then, according to Corollary 2.4 we have:
(@) Vz :mp,g(x) = mp(x) Amg(x) < mp(x) and
(b) Jzg : mpa(xo) = mp(xo) Ama(xg) = hy <
he = mp(zp). Then, we have

Vh € (hl,hg] : mF(IQ) /\mG(.T()) =hi<h<hy=

:mF(xo):>

VhE(hl,h2]2x0¢(F)\G)( )and(E()EF()
Vh € (hn, ha) s (F A G)(h) C F(h) =

Vh € (hy,ho] = o (F(h),G(h)) < L.

Hence,

aﬂR®=/3mﬂmawa
0
=l/’ oY (F(h), G(h))dh+
(h1,h2]

+/ oY (F(h),G(h))dh <
(0,1]\(h1,h2]

< (h2—h1)+(1_(h2—h1)) =

C3 We want to prove: for any F,G,A € [ with
F < G, we have 0 (A, F) < o (A,G). Indeed,
for all h € [0,1] we have F(h) C G(h) and so
o¥ (A(h), F(h)) < 0¥ (A(h),G(h)) which means

O’AAF:/O'
0

< [ oK (A0, G)dn = ¥ (4.6)
0

h))dh <

Theorem 3.13
Proof:
Take any h € [0,1]. We have ¢ € F'(h) < mz(2z0) > h
or, equivalently, zo ¢ F'(h) < mz(20) < h. Now:

V([zo, 20l N F(h)) _
V([xo, zo])

([1?0,960])

V ([0, 7o])
V([Jﬁo,l’o] N F(h))
V([xo, zo])

V(0)

~ V([wo,za]) o

xg € F(h) = UX([$O7$O]7F(h)) =

=1

)

zo & F(h) = o} ([zo, zo], F(R)) =

Define the sets
A={h:zg€ F(h)} ={h:h <mg(xo)} = [0,mg(zo)],
B={h:x9o¢ F(h)} ={h:h>mz(x0)}
Then

1
J)‘{(X(MF) = JX(Xan(h))dh =
/



mz(zo) 1 (6]
= / 1dh+ / 0dh =mz(xo).
0 m g (zo) [7]
and the proof is complete. ]
Theorem 3.17 [8]
Proof:
We just check that C1 — C3 of Definition 3.1 are satisfied.
Cl1 For any x € X, oa(x%,x) = M
min;eqy, . Ny 0i(zi, 7)) = 1 and op(x,x) =
N
Hi:lai('riu'ri) = 1 10
C2  Take any x,y € X such that x [ y. Then also [10]
xMNyCx=Gne{l,...,N}: 2, My yn Cn ) =
= on(Tn,yn) < 1. [11]
Hence, oA (X,y) = min;eqq,.. Ny 0i(2,9:) < 1 and
N
on(x,y) =[[isy0i(@i, 4:) < 1. (121
C3  Take any u,w € X such that u C w. More specif-
ically, let (u1,...,uny) =uC w = (wy,...,wN). [13]
Now take any x = (z1,...,2y) € X. We have
(Vie{l,...,N}:uiEiwi):(Vie{l,...,N}: (14]
O'Z'(.’EZ'7 ’LLZ) S O’i(l'i, U}Z))
Hence, [15]
min  o;(z;, ;) < min  o;(x;, w;) =
i€{1,...,N} i@ u) < ie{1,...,N} i@, wi) [16]
= op(x,u) < oa(x,w) (7]
and (18]
N N
HCTZ'((EZ',UZ') < Hm(ml,wi) = (19]
i=1 i=1 [20]
= on(x,u) < on(x, w).
The proof is complete. 21]
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