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Abstract 

 

A detailed analysis of the distance and similarity measures for intuitionistic fuzzy sets 

proposed in the past is presented in this paper. This study aims to highlight the main 

theoretical and computational properties of the measures under study, while the 

relationships between them are also investigated. Along with the literature review, a 

comparison of the analyzed distance and similarity measures from a pattern 

recognition point of view in three different classification cases is also presented. 

Initially, some artificial counter intuitive recognition cases are considered, while in a 

second phase real data from medical and well known pattern recognition benchmark 

problems are used to examine the discrimination abilities of the studied measures. 

Moreover, all the measures are applied in a face recognition problem for the first time 

and useful conclusions are drawn regarding the accuracy and confidence of the 

recognition results. Finally, the measures' suitability and their drawbacks that make 

the development of more robust and efficient measures' a still open issue are 

discussed.       
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1. Introduction 

 

Intuitionistic fuzzy sets (IFSs) have been proposed by Atanassov [1-3] as a 

generalization mathematical framework of the traditional fuzzy sets (FSs) originated 

from an early work of Zadeh [4]. The main advantage of the IFSs is their property to 

cope with the hesitancy that may exist due to information impression. This is achieved 

by incorporating a second function, along with the membership function of the 

conventional FSs, called non-membership function. In this way, apart from the degree 

of the belongingness, the IFSs also combine the notation of the non-belongingness in 

order to better describe the real status of the information. 

Due to their property to model hesitancy and the lack of information precision, 

intuitionistic fuzzy sets have found application in edge detection [5], image 

segmentation [6,7], decision making [8], fault-tree analysis [9], pattern recognition 

[10,11] etc.. 

Among the most interesting topics in IFSs theory is the definition of appropriate 

measures that compare the information carried by two intuitionistic fuzzy sets. To this 

end, many types of measures owing different properties have been proposed in the 

literature such as distance [12-16], similarity [17-32], dissimilarity [33] measures and 

entropy [34-36], cross-entropy [36,37], correlation [38-40] and divergence [5,29] 

indices. 

This work is focused on the distance and similarity measures between intuitionistic 

fuzzy sets, due to their duality (only for normalized distances) and their popularity in 

pattern recognition applications. The number of the proposed distance [12-16] and 

similarity [17-32] measures over the last twenty years is constantly increasing. This 

observation motivated the authors to make an exhaustive review and comparison of 

the most representative measures according to their importance and publication date.  

Although, a short comparative analysis of some similarity measures has been 

conducted by Li et al. [41], there is still enough space for an additional more complete 

analysis with respect to some points. Compared to [41] this work extends the analysis 

to both distance and similarity measures and examines a wider range of both past and 
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recent measures. Moreover, the aforementioned measures are compared to each other 

not only in artificial classification problems but also in real pattern recognition 

problems e.g. face recognition.     

Summarizing, the contribution of this work is twofold. First, a significant number 

of the most representative distance and similarity measures are reviewed and their 

properties are analysed. Second, the previously analyzed measures are exhaustively 

compared in both artificial and real pattern recognition/classification problems. To 

evaluate the performance of the measures under comparison, the recognition accuracy 

and a degree of confidence index proposed herein, are used. 

The paper is organized by presenting some mathematical preliminaries of IFSs in 

Section 2. The theoretical and computational details of the studied distance and 

similarity measures are introduced in Section 3 and 4, respectively. A useful review 

discussion of the analyzed measures is taking place in Section 5, while Section 6 

evaluates their performance in pattern recognition/classification problems and 

summarizes the resulted experimental outcomes. Finally, some useful conclusions are 

drawn in Section 7. 

 

 

2. Intuitionistic Fuzzy Sets (IFS)  

 

In 1965, Zadeh proposed the theory of fuzzy sets (FSs) according to, a fuzzy set (FS) A 

in a universe of discourse X is defined as a set of ordered pairs [4], 

  , /AA x x x X  ,  

where the function  : 0,1A X  , define the degree of membership of the element 

x X . 

In 1983, Atanassov [1] introduced the concept of the intuitionistic fuzzy set ( IFS ) 

defined as: an intuitionistic fuzzy set A in X is an object of the following form, 

    , , /A AA x x v x x X   

where the functions,  : 0,1A X   and  : 0,1Av X  , define the degree of 

membership and non-membership of the element x X , respectively. For 
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every x X :    0 1A Ax v x    and if      1A A Ax x v x    , then  A x  is 

the hesitancy degree of the element x X  to the set A and  A x  0,1 , x X  .  

It is easily seen that each fuzzy set is a particular case of the intuitionistic fuzzy set 

and in this case   0A x  , x X  . 

Several relations and operations are defined [1-3], for every two intuitionistic fuzzy 

sets A and B, some of them are the follow:   

 

(i) A B           and ,A B A Bx x v x v x x X      

(ii) A B  AB   

(iii) A B           and ,A B A Bx x v x v x x X      

(iv)     , , /A AA x v x x x X   

(v) BA =      ,min , ,A Bx x x       max , /A Bv x v x x X  

(vi) BA =      ,max , ,A Bx x x       min , /A Bv x v x x X  

(vii) BA  =         , ,A B A Bx x x x x         /A Bv x v x x X  

(viii) BA  =         , ,A B A Bx x x v x v x        /A Bv x v x x X  

 

Intuitionistic fuzzy sets, proved to be a more nature information representation 

scheme, able to describe imprecise knowledge in respect to a specific problem. This is 

the reason why IFSs have attracted the scientists to develop new tools and 

applications to apply them. 

Particular interest shows the problem of measuring the difference and/or the 

similarity between two IFSs, since this information is very useful in many 

applications of the engineering life e.g. pattern recognition. 

In the following sections a detailed analysis of the most representative distance and 

similarity measures proposed in the last two decades and a comparative study from a 

pattern recognition point of view is taken place. 
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3. Distance measures between IFSs 

 

Generally, a distance is a measure of the difference between two elements of a set. 

For the case of IFSs the axiomatic definitions of a distance (metric) are described in 

the following definition. 

 

Definition 1: A distance (metric) d  in an intuitionistic fuzzy set A in a universe of 

discourse X is a real function :d A A R  , which satisfies the following conditions 

for Azyx ,, :   

 C1.  , 0d x y  ,    (non-negativity) 

 C2.  , 0d x y x y      (coincidence) 

 C3.    , ,d x y d y x    (symmetry) 

 C4.      , , ,d x z d z y d x y    (triangle inequality) 

 

Various distance (metric) measures, involving fuzzy sets, have been proposed in 

[42,43]. Some of these distance measures have been extended to intuitionistic fuzzy 

sets, while other new distances have been introduced in the past.  

The distance measures for IFSs can be categorized into two types the main 

members of which are analysed in the next sections. In order to simplify the distances' 

definitions the following notations are used.  

 

     
     
     

A i B i

v A i B i

A i B i

i x x

i v x v x

i x x





 

 

  

  

  

 (1)

 

The above notations describe the ith,  1, 2,...,i n difference between the 

membership, non-membership and hesitancy degree of two IFSs A, B in a universe of 

discourse  1,..., nX x x . 
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3.1 Type I - Distance measures 

From the fuzzy sets theory it is well known that if a universe set X is finite, 

i.e.  1,..., nX x x  then for any two fuzzy subsets A and B of X with membership 

functions  .A  and  .B , respectively, the following distance measures dH 

(Hamming distance),  dnH (normalized Hamming distance), dE (Euclidean distance) 

and dnE (normalized Euclidean distance), are defined: 

 

   
1

,
n

H
i

d A B i


   (2)

 

   
1

1
,

n

nH
i

d A B i
n 



   (3)

 

    2

1

,
n

E
i

d A B i


   (4)

 

    2

1

1
,

n

nE
i

d A B i
n 



   (5)

 
By incorporating the non-membership function  .v , Atanassov [1] has suggested a 

generalization of the above distances Eq.(2)-Eq.(5) for IFSs .  

 Let A, B are IFSs  in X, with membership and non-membership functions  .A , 

 .B and  .Av ,  .Bv , respectively. The above distances take the following form for 

the case of IFSs: 

 

     1

1

1
,

2

n

H v
i

d A B i i


       (6)

 

     1

1

1
,

2

n

nH v
i

d A B i i
n 



       (7)

 

       2 21

1

1
,

2

n

E v
i

d A B i i


        (8)

 

       2 21

1

1
,

2

n

nE v
i

d A B i i
n 



        (9)
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On the other hand Szmidt and Kacprzyk [12] proved that the omission of the 

hesitant index  .  from the above definitions, transforms them to the corresponding 

distances for fuzzy sets Eq.(2)-Eq.(5) multiplied by some  constant values. In the light 

of this observation Szmidt and Kacprzyk [12] proposed modified versions of the 

above distances by adding the hesitance index. 

 

       2

1

1
,

2

n

H v
i

d A B i i i 


         (10)

 

       2

1

1
,

2

n

nH v
i

d A B i i i
n  



         (11)

 

          2 2 22

1

1
,

2

n

E v
i

d A B i i i 


          (12)

 

          2 2 22

1

1
,

2

n

nE v
i

d A B i i i
n  



          (13)

 
On an attempt to take the advantages of the Hausdorff metric, Grzegorzewski [13] 

proposed Hausdorff -based distance measures, which are counterparts of those defined 

in Eq.(6)-Eq.(9), which after revised by Chen [44] have the form:  

  

      
1

, max ,
n

h
H v

i

d A B i i


    (14)

 

      
1

1
, max ,

n
h
nH v

i

d A B i i
n 



    (15)

 

        2 2

1

, max ,
n

h
E v

i

d A B i i


    (16)

 

        2 2

1

1
, max ,

n
h
nE v

i

d A B i i
n 



    (17)

 
Recently, Yang and Chiclana [14] proved that the omission of the hesitant 

index gives different results and the incorporation of the hesitant part is in some 

words mandatory. Following the same procedure with Szmidt and Kacprzyk [12], 

they proposed a generalization of the Grzegorzewski's distances Eq.(14)-Eq.(17), 

which take into account the hesitant part.    
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        
1

, max , ,
n

eh
H v

i

d A B i i i 


     (18)

 

        
1

1
, max , ,

n
eh
nH v

i

d A B i i i
n  



     (19)

 

           2 2 2

1

, max , ,
n

eh
E v

i

d A B i i i 


     (20)

 

           2 2 2

1

1
, max , ,

n
eh
nE v

i

d A B i i i
n  



     (21)

 
Wang and Xin [15] aiming to resolve some unreasonable results of the 

previous traditional measures, proposed the following distance measures:    

 

 
        

1
1

max ,1
,

4 2

n
vv

i

i ii i
d A B

n





    
  
 
 

  (22)

 

 
        

1
1 1

max ,
,

4 2

n n
vv

w i i
i i

i ii i
d A B w w



 

    
  
 
 

   (23)

 

 
   

2
1

1
,

2

p
n

vp p
p

i

i i
d A B

n





   
 
 
 

  (24)

 
In the above formulas, wi corresponds to the weight of the 

 1 2, ,...,i nx X x x x   element, with 0 1iw   and p is a positive integer. It is 

obvious that the d1 distance is a special case of the d1w, which is derived from Eq.(23) 

for the weight set  1/ , 1,2,...,iw n i n  .  

 

3.2 Type II - Distance measures 

The aforementioned distance measures are characterized by the linear or non-

linear relationship of the membership and non-membership functions  . and  .v of 

the IFSs, respectively. However, the authors have proposed [16] a different type of 

distance measures based on fuzzy implications. 
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A fuzzy implication is a function      : 0,1 0,1 0,1 ,    which for any truth 

values a , b  0,1  of (fuzzy) propositions ,p  q , respectively, gives the truth value 

 ,a b , of conditional proposition " if p then q ". Function  .,.  should be an 

extension of the classical implication from the domain  0,1  to the domain 0,1 . 

The implication operator of classical logic is a map      : 0,1 0,1 0,1m   which 

satisfies the following conditions:      0,0 0,1 1,1 1m m m    and  1,0 0m  . The 

latter conditions are typically the minimum requirements for a fuzzy implication 

operator. In other words, fuzzy implications are required to reduce to the classical 

implication when truth-values are restricted to 0 and 1; i.e.  0,0   0,1   

 1,1 1   and  1,0 0  . 

A number of basic properties of the classical (logic) implication have been 

generalized by fuzzy implications. Hence, a number of "reasonable axioms" emerged 

tentatively for fuzzy implications. Some of the aforementioned axioms are displayed 

next [45]. 

 

A1. a b    , ,a x b x      Monotonicity in the first argument 

A2. a b   ,x a   ,x b   Monotonicity in the second argument 

A3.      , , , ,a b x b a x        Exchange property 

A4.       , ,a b n b n a     Contraposition  

A5.  1,b b      Neutrality of truth 

A6.  0, 1a      Dominance of falsity 

A7.  , 1a a      Identity 

A8.  , 1a b   a b    Boundary condition 

A9.   is a continuous function  Continuity 

     

The properties of some representative fuzzy implications [45] are summarized in 

the following Table 1.: 
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Table 1. Properties of some fuzzy implications. 

Implication 
Name 

Implication  
Definition 

Description 

Reichenbach  R , 1a b a ab     S-implication 

Gödel  G

1, for
,

, for

a b
a b

b a b



  

 R-implication 

Lukasiewicz    L , min 1,1a b a b     S- and R-implication 

Kleene-Dienes    KD , max 1 ,a b a b    S- and QL-implication 

Mamdani    M , min ,a b a b   engineering implication 

Larsen  La ,a b ab   engineering implication 

 

Moreover, a novel fuzzy implication    
 

,T

f b
a b

f a b
 


has been presented in 

[46], where  , 0,1a b  and    : 0,1 0,1f  , stemming from a fuzzy lattice inclusion 

measure function. It was shown that the aforementioned fuzzy implication satisfies a 

number of "reasonable axioms" and properties of fuzzy implications. 

Following the same process with [47], a new family of metric distances between 

intuitionistic fuzzy sets based on matrix norms and fuzzy implications are derived.  

Furthermore, it is remarked [48] that if    1 2,ij ijΠ a Π b  , 1, ,i n  , 1, ,j n   

are square matrices then the norm  can be used to define a metric d  as:  

 
 1 2 1 2,d Π Π Π Π   (25)

 
Let A  be IFS  in a finite universe  1,..., nX x x , with membership functions 

 .A , and with non-membership functions  .Av , respectively. Let   be a fuzzy 

implication. We define the n n  matrices  AΠ μ  and  AΠ v  of   as follows:  

 

      
1,...,

,A i A iA i n

σ μ x μ xΠ μ 


 
  

 =

 

 
   

1

1, , ,
A

A A n

A n

x

x x

x


  




  
  

     
  
  

  

 

         

         

1 1 1

1

,       ,

                                                       

,      ,

A A A A n

A n A A n A n

σ μ x μ x σ μ x μ x

σ μ x μ x σ μ x μ x

 

 

 
 

  
 
  

 

   
 

 and 
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      
1,...,

,A i A iA
i n

σ v x v xΠ v 


 
  

 =

 

 
   

1

1, , ,
A

A A n

A n

v x

σ v x v x

v x


  
  

     
  
  

  

         

         

1 1 1

1

,       ,

                                                       

,      ,

A A A A n

A n A A n A n

σ v x v x σ v x v x

σ v x v x σ v x v x

 

 

 
 

  
 
  

 

   
 

, respectively. 

 

Let X denote a universe of discourse, where X is a finite and let X
IFSsΣ  denote the set 

of all IFSs  in X. 

 

Definition 2: Given two intuitionistic fuzzy sets,     , , /A AA x x v x x X   

and     , , /B BB x x v x x X  , where  1,..., nX x x is a finite universe of 

discourse. Also, let   be a fuzzy implication and any tensor-or operator-norm  . 

Then 

 

       ( , ; ) A B A Bd A B σ Π μ Π μ Π v Π v   
 

(26)

 

where       
1,...,

,i i
i n

σ μ x μ xΠ μ    

    
,       

1,...,

,i i
i n

Π v σ v x v x   


    
, defines a 

metric distance  : 0,X X
IFSs IFSsd Σ Σ   . 

 

The above function ( , ; )d A B σ  is a metric [47]. So, this definition actually 

introduces multiple distance metrics with different meanings, according to the used 

fuzzy implication.  

In Eq.(26) the norm Π  is computed by using the largest non negative eigenvalue 

of the positive definite Hermitian matrix TΠ Π  (ΠΤ is the transpose of matrix Π) [48], 

 

maxΠ λ
 (26)

 
It is worth noting that the main advantage of the fuzzy implication based distance 

measure Eq.(26) is its flexibility, which permits different fuzzy implications to be 
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incorporated by extending its applicability to several applications where the most 

appropriate implication is used. 

The distance measures obtained by using the fuzzy implications of Table 1 and the 

 ,T a b  one are hereafter used in a large scale comparative analysis. More precisely, 

the distance measures imp
Rd , imp

Gd , imp
Ld , imp

KDd , imp
Md , imp

Lad  and imp
Td defined in Eq.(26) when 

the fuzzy implications  R , G , L , KD , M , La  and T  defined in Table 1, are used 

respectively. 

The authors have extended the above distance measure to D-implications [49] for 

fuzzy sets and can be generalized herein for the case of the intuitionistic fuzzy sets. 

Therefore, in the following analysis an additional distance metric ( Dimpd ) based on the 

D-implication     , max min 1 ,1 ,DI a b a b b    is formed by using Eq.(26). 

 

4. Similarity measures between IFSs 

By revising the definition of a symmetry measure proposed by Dengfeng and 

Chuntian [20], Mitchell introduced the definition of the strong symmetry measure 

[22], which is more appropriate for pattern recognition applications and defined as: 

  

Definition 3: A similarity measure S in an intuitionistic fuzzy set A in a universe of 

discourse X is a real function :S A A R  , which satisfies the following conditions 

for Azyx ,, : 

  

 S1.  0 , 1S x y  ,     (non-negativity) 

 S2.  , 1S x y if and only if x y    (coincidence) 

 S3.    , ,S x y S y x     (symmetry) 

 S4. if x y z  , then    , ,d x z d x y  (triangle inequality) 

           , ,and d x z d y z  

  

Considering the outcome of the analysis presented by Bustine and Burillo [50], 

which concluded that the intuitionistic fuzzy sets and the vague sets are similar, Chen 

[17] proposed the first similarity measure for IFSs defined as: 
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     1

1

1
, 1

2

n
A i B i

C
i

S x S x
S A B

n 

 
   

 


 

(27)

 

     1

1 1

, 1
2

n n
w A i B i

C i i
i i

S x S x
S A B w w

 

 
   

 
 

 

(28)

 

where      k i k i k iS x x x   ,  ,k A B and 0 1iw  . It is obvious that 1
CS is a 

special case of 1w
CS and is derived from Eq.(28) for the weight set 

 1/ , 1, 2,...,iw n i n  . 

Furthermore, Chen [18] proposed a weighted similarity measure between vague 

sets 

 

 
        

1 1

* * *
, 1

n n
v vw

C i i
i i

a i b i c i i
S A B w w

a b

 

 

       
  

 
 

   (29)

 

where 0 1iw  ,  1, 2,...,i n and 0a c b   . 

Hong and Kim [19] found that Chen's similarity measures, shown unreasonable 

results in some cases and proposed the following measures: 

 

 
   1

1

1
, 1

2

n
v

H
i

i i
S A B

n




   
  
 
 

  (30)

 

 
       

1

* * *
, 1

n
v vw

H i
i

a i b i c i i
S A B w

a b c

 



       
  
   
 

  (31)

 

where 0 iw ,  1, 2,...,i n and , , 0a b c  . 

The years to follow the latest work of Hong and Kim [19], the beginning of a 

tremendous development of many similarity measures was pointed out. The first work 

of this period was from Denfeng and Chuntian [20] who proposed two new similarity 

measures. 

 



 

 14

     
1

1
, 1

n
pp p

d A Bp
i

S A B i i
n

 


    (32)

  

     
1

, 1
n

pp p
dw i A B

i

S A B w i i 


    (33)

 

where       1 2k k i k ii x x     ,  ,k A B , 1 p   , 0 1iw   

 1, 2,...,i n and 
1

1
n

i
i

w


 . Similarity measure p
dS is a special case of p

dwS and is 

derived from Eq.(33) for the weight set  1/ , 1,2,...,iw n i n  . 

Liang and Shi [21], proposed the following four similarity measures, claiming that 

they contain more information in IFSs than those of Denfeng and Chuntian [20]. 

 

 
   

1

1
, 1

2

p
n

vp p
e p

i

i i
S A B

n





   
  
 
 

  (34)

 

      1 2
1

1
, 1

n
pp p

s s sp
i

S A B i i
n

 


    (35)

 

where 

     1 1 1 2s A i B ii m x m x   ,      2 2 2 2s A i B ii m x m x   ,and

      1 2k i k i k im x x m x  ,       2 1 2k i k i k im x m x v x   , 

      1 2k i k i k im x x v x   ,  ,k A B . 

 

   
3

1 1

1
, 1

pn
p p

h m mp
i m

S A B i
n

 
 

    
 

   (36)

 

where 0 1m  , 
3

1

1i
i




 , 

      1 2vi i i     ,      2 A Bi m i m i   , 

           3 max , min ,A B A Bi l i l i l i l i    with      k k kl i m i i  ,  ,k A B . 
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   
3

1 1

, 1
pn

p p
w i m m

i m

S A B w i 
 

    
 

   (37)

 

with 0 1iw    1, 2,...,i n and 
1

1
n

i
i

w


 . It is obvious that p
hS is a special case of 

p
wS and is derived from Eq.(37) for the weight set  1/ , 1,2,...,iw n i n  . 

Park et al. [22], showed that although the similarity measure p
eS gives reasonable 

results in most cases, there are other ones where this measure does not work properly. 

In order to overcome this deficiency of p
eS  Park et al. [22] proposed the following 

alternative similarity measures: 

 

 
     

1

1
, 1

2

p
n

vp p
g p

i

i i i
S A B

n

 



     
  
 
 

  (38)

  

 
     

1

, 1
2

p
n

vp p
gw i

i

i i i
S A B w

 



     
  
 
 

  (39)

with1 p   , 0 1iw    1, 2,...,i n and 
1

1
n

i
i

w


 . It is obvious that p
gS is a 

special case of p
gwS and is derived from Eq.(39) for the weight set 

 1/ , 1, 2,...,iw n i n  . 

Mitchell [23] pointed out that the similarity measures of Denfeng and Chuntian 

[20] give some counter-intuitive results, by characterizing two different IFSs as 

identical. Mitchell tried to overcome this drawback by revising the definition of a 

similarity measure and by providing a more realistic strong similarity measure of the 

following form: 

 

      mod,

1
, , ,

2p fS A B A B A B    (40)

  

 where        , ,p
d A i B iA B S x x    and       , 1 ,1p

f d A i B iA B S v x v x    . 
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Recently, Julian et al. [24] have questioned the way the experimental results of 

Mitchell [22] are derived and proposed a more consistent to those results similarity 

measure defined as: 

 

       ,
1 1

, 1
n np p

p p
new p i i v

i i

S A B w i w i
 

       (41)

  

with 0iw    1, 2,...,i n and 
1

1
n

i
i

w


  and 1p  . 

However, by analysing Julian's similarity Eq.(41), Tung et al. [51] found that this 

similarity does not satisfy condition (S1) concerning the non-negativity condition of 

Definition 3. 

Working in the same way as Grzegorzewski [13], Hung and Yang [25] introduced 

a new set of similarity measures based on the Hausdorff 

distance       
1

1
, max ,

n

H v
i

d A B i i
n 



   . 

 

   , 1 ,l HS A B d A B   (42)

  

 
 , 1

1
,

1

Hd A B

e

e e
S A B

e

 







 (43)

  

   
 

1 ,
,

1 ,
H

c
H

d A B
S A B

d A B





 (44)

  

Moreover, if the weighted Hausdorff distance is used then the weighted versions of 

the above similarities are derived. 

In an attempt to resolve some unreasonable results presented by the similaritiy 

measures of Hong and Kim [19] and Denfeng and Chuntian [20], and working in the 

same way as Szmidt and Kacprzyk [12], Liu [26] proposed the following similarity 

measures: 

 

       
1

1
, 1

2

n p p pp p
L v

i

S A B i i i
n  



           (45)
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       
1

, 1 * * *
n p p pp p

Lw i v
i

S A B w a i b i c i 


           (46)

 

where   1 p   0 1iw    1, 2,...,i n ,
1

1
n

i
i

w


 ,  , , 0,1a b c and 1a b c   . 

Moreover, Zhang and Fu [27] proposed a unified similarity measure for three kinds 

of fuzzy sets, which for the case of the intuitionistic fuzzy sets has the following form:   

 

          
1

1
, 1

2

n

ZF A i B i A i B i
i

S A B x x x x
n

   


      (47)

 

where   

          1k i k i k i k i k ix x x v x x      

          1k i k i k i k i k ix v x x v x v x     and  ,k A B . 

 

Following the same procedure with their previous work [25] on Haussdorff-based 

similarity measures, Hung and Yang [28] suggested some similarity measures based 

on the distance       1/

1

1
,

n pp p

p v
i

d A B i i
n 



     derived by using the Lp 

metric, defined as: 

 

   1/

1/

2 ,
,

2

p
pLp

l p

d A B
S A B


  (48)

  

 
   

 

1/

1/

2,

2
,

1

p
p

p

d A B
Lp
e

e e
S A B

e









 (49)

  

   
  

1/

1/

2 ,
,

2 1 ,

p
dLp

c p
d

d A B
S A B

d A B





 (50)

  

with 1p   . 
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Furthermore, the same authors Hung and Yang [29] extended the similarity 

measures proposed by Pappis and Karacapilidis [52] for fuzzy sets, to IFSs and 

suggested two new exponential-type ones. 

 

           
         1

1

min , min ,1
,

max , max ,

n
A i B i A i B i

w
i A i B i A i B i

x x v x v x
S A B

n x x v x v x

 
 




  (51)

  

      2
1

1 1
, 1

2

n

w v
i

S A B i i
n 



      
 

  (52)

  

           
         

1
1

1

min , min ,
,

max , max ,

n

A i B i A i B ii
pk n

A i B i A i B ii

x x v x v x
S A B

x x v x v x

 

 











 (53)

 

        2

1
, 1 max max

2pk v
i i

S A B i i      (54)

  

 
    

        
1

3

1

, 1

n

vi
pk n

A i B i A i B ii

i i
S A B

x x v x v x



 




  
 

  




 (55)

  

 
    

 
1

1

1
1 exp

2
, 1

1 exp

n

vi

new

i i
S A B

n



      
  

 


 

(56)

 

 
        

 
1

2

1
1 exp

2
, 1

1 exp

n

A i B i A i B ii

new

x x v x v x
S A B

n

 


      
  

 


 

(57)

 

where exp( ) xx e is the exponential operation. 

 

A totally different to all the previous definitions approach, was suggested by Hung 

and Yang [30] in order to construct novel similarity measures. They firstly defined a 

divergence measure ( J ) between two IFSs and then by using J they constructed a a 

new similarity measure. 
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     
 

,
,l U J A B

S A B
U








  (58)

  

 
    

  

,

,
1

UJ A B
e

U

e e
S A B

e

 

 









 (59)

  

     
    

,
,

1 ,
c U J A B

S A B
J A B U













 (60)

  

where 

 
1

ln 2, 1

, 1, 01 1
1

1 2

U a



 

 


        

 (61)

  

and 

   
1

1
, ,

n

i i
i

J A B j A B
n 



   (62)

  

with 

 
 

 

1
, 1, 0

1,
1

, 1
2

v
AB AB AB

v
AB AB AB

T T T a
j A B

L L L a

  


 



          



 (63)

  

is the J -divergence between two intuitionistic fuzzy sets. 

 1

2 2
q A B

AB A B

q q
T q q


      

 
, 

  ln ln ln
2

q A B
AB A B A A B B

q q
L q q q q q q

     
 

 and  , ,q    . 

Recently, Ye [31] proposed two cosine similarity measures for IFSs defined as: 

  

         
       2 2 2 2

1

1
,

n
A i B i A i B i

IFS
i A i A i B i B i

x x v x v x
C A B

n x v x x v x

 

 




 
  (64)
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         
       2 2 2 2

1

1
,

n
A i B i A i B i

IFS i
i A i A i B i B i

x x v x v x
W A B w

n x v x x v x

 

 




 
  (65)

  

with 0 1iw    1, 2,...,i n and 
1

1
n

i
i

w


 . If we take 1/iw n , 

 1, 2,...,i n then    , ,IFS IFSW A B C A B . 

Hwang and Yang [32] realized that Ye's cosine similarity measure does not satisfy 

condition (S1) of Definition 3 and proposed a modified version according to the 

following formulas: 

 

      * **1
, , ,

3IFS IFS IFS IFSS C A B C A B C A B    (66)

 

where  

         
       

*

2 2 2 2
1

1
,

n
A i B i A i B i

IFS
i A i A i B i B i

x x v x v x
C A B

n x v x x v x

 

 




 
  (67)

and 

             
           

**

2 2 2 2
1

1 1 1 11
,

1 1 1 1

n
A i B i A i B i

IFS
i

A i A i B i B i

x x v x v x
C A B

n x v x x v x

 

 

    


     
  (68)

 

with      1

2
k i k i

k i

x v x
x




 
  and  ,k A B . 

 

 

 

5. Discussion 

 

It is worth noting the commonly used procedure to propose a new distance or 

similarity measure is to find the counter intuitive cases of the already introduced 

measures, followed by the development of a new one that alters this deficiency. 

Specific attention has to be paid to the satisfaction of the definitional axioms by the 

proposed measure, since these conditions determine the desirable behaviour of the 

measure.    
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The unified representation of the measurements of the previous sections, not only 

simplifies the overall technical presentation but also enables the direct comparison of 

them. For example, a closer look at 2
pd Eq.(24) and p

eS Eq.(34) leads to the conclusion 

that these measures are identical, while some other measures have close relation with 

the Hamming distance Eq.(7). These important observations have already been 

reported by Baccour et al. [53] and show that some measures share the same counter 

intuitive cases and thus give the same unreasonable results.    

Since the main point of view of this work is the performance of the distance and 

similarity measures in pattern recognition applications, it would be constructive to 

compare these measures with other representative measures of different nature. For 

this purpose the first information-driven measure introduced by Vlachos and Sergiadis 

[37] is selected. Inspired by the concept of the cross-entropy measure they proposed a 

symmetric discrimination information measure defined as: 

    
     , , ,IFS IFS IFSD A B I A B I B A   (69)

 
where  

     
    

   
    

1
1 2

1
2
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n
A i

IFS A i
i A i B i

A i
A i

A i B i

x
I A B x

x x

v x
v x

v x v x




 


 




 
 


 (70)

 

Besides, the comparison with the aforementioned cross-entropy measure will 

contribute to analyze in a more overall view the classification performance of the 

studied measures. 

 

 

6. Performance evaluation  

 

In order to study the ability of the proposed measures to indicate the difference or the 

similarity between two intuitionistic fuzzy sets, a set of experiments has been 

arranged. The experiments are conducted in two different directions regarding the 

nature of the problems where the measurements are applied.  
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In the most papers that introduced the measurements of the previous sections, the 

experimental evaluation contained was restricted in artificial classification problems. 

This was due to the fact that the usage of artificial intuitionistic fuzzy sets can 

highlight the deficiencies of the measures, although they do not have any practical 

meaning. 

Worthwhile to point out that the reasonable behaviour of a measure, regarding the 

satisfaction of the definitional axioms and the avoidance of identical measurements 

for totally different sets, are two desirable properties. Moreover, the discrimination 

capability of a measure is another important property, which is very useful in pattern 

recognition applications. To this direction little work has been done [54,55] and more 

complex pattern recognition problems having big enough data have to be considered 

in order to exhaustively examine this property. 

To this end, the analysed measures are firstly evaluated for well known from the 

literature artificial intuitionistic fuzzy sets, constructed to detect unreasonable 

behaviours. In a second experimental round the same measures are applied to 

recognize the samples of real pattern recognition problems. This experimental section 

includes examples from medical diagnosis, common benchmark pattern recognition 

problems and a face recognition application. The latter problem constitutes a real 

pattern recognition task which constitutes an important part of modern computer 

vision and surveillance systems and therefore the performance of the examined 

measures is of high importance.   

In all the experiments the classification task is accomplished by a Minimum 

Distance Classifier (MDC) according to, a test sample (TS) is assigned to the class 

(Pk) from which its distance (d) is minimum and is described by the following 

equation: 

 

  arg min ,k
k

k d P TS   (71)

 

If a similarity measure is used instead of the distance in Eq.(71), then the similarity 

measure has to be transformed to a distance  by using the formula d=1-S. In this case 

it is expected the resulted distance measure to be normalized into [0,1]. Moreover, for 

the case of the problems consisting of many data samples the centre of each class, 
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which is computed by averaging the class's feature vectors, serves as the class's 

prototype (Pk) used in Eq.(71). 

In order to compare in depth the distance and similarity measures in real problems, 

a new performance index called Degree of Confidence (DoC) is introduced. This 

index measures the confidence of each measure to recognize a specific sample that 

belongs to the ith class and has the following form: 

 

     
1,

, ,
n

i
j i

i i j

DoC dist P S dist P S
 

   (72)

 

It is obvious from the above Eq.(72) that the greater DoC(i) the more confident the 

result of the specific measure is. This index is used in the next experimental sections 

along with the Classification Rate - CRate (Correct-Classified-Samples/Total-

Samples)), in order to give a more accurate measurement of the measures' behaviour. 

Worthwhile to note that the weighted measures are configured with the weights 

 1/ , 1, 2,...,iw n i n  (so the weighted measures are equal to their non-weighted 

versions) and those measures that include the factor (p) are examined in two cases 

(p=1 & p=2) in order to investigate the dependency of the measures' performance on 

this free parameter. Furthermore the  , ,a b c and  1/ , 1, 2,...,i n i n    parameters of 

the similarity measures w
CS , w

HS , p
LS and p

LS  are set to {2,-1,1}, {1,1,1}, {1/3,1/3,1/3}   

and {1/3,1/3,1/3}, respectively. 

Based on the above configuration a total of 28 distance and 45 similarity measures 

will participate in a large scale experimental study that aims to extract useful 

conclusions regarding their suitability in recognizing similar or totally different 

patterns. 

 

 

5.1 Artificial classification problems 

 

In a very constructive work, Li et al. [41] presented a review on similarity measures 

for intuitionistic fuzzy sets by investigating the particular situations where those 

measures give unreasonable results and finally providing the counter intuitive cases 

for each one of them. Although these cases are close relative to the specific measures, 
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they constitute a very good artificial benchmark where any proposed measure should 

be tested. The testing IFSs used by Li et al. [41] are depicted in Table 2, while the 

distances' and similarities' counter intuitive cases (in bold face) for these sets are 

summarized in Table 3 and 4 respectively.      

 

Table 2. Test intuitionistic fuzzy sets.  

 

 Test IFSs 

 1 2 3 4 5 6 

 
 

, ,

, ,

A A

B B

A x

B x

 

 

   
   

  
 
 

,0.3,0.3

,0.4,0.4

x

x

  
  

 
 
 

,0.3,0.4

,0.4,0.3

x

x

  
  

 
 
 

,1.0,0.0

,0.0,0.0

x

x

  
  

 
 
 

,0.5,0.5

,0.0,0.0

x

x

  
  

 
 
 

,0.4,0.2

,0.5,0.3

x

x

  
  

 
 
 

,0.4,0.2

,0.5,0.2

x

x

  
  

 

 

 

Table 3. Distance measures of the test sets (Table 2). 

 

 Test IFSs  Test IFSs 
 1 2 3 4 5 6  1 2 3 4 5 6 

1
Hd  0.10 0.10 0.50 0.50 0.10 0.50 eh

Ed  0.20 0.10 1.00 1.00 0.20 0.10 
1
nHd  0.10 0.10 0.50 0.50 0.10 0.50 eh

nEd  0.20 0.10 1.00 1.00 0.20 0.10 
1
Ed  0.10 0.10 0.71 0.50 0.10 0.70 1d  0.10 0.10 0.75 0.50 0.10 0.75
1
nEd  0.10 0.10 0.71 0.50 0.10 0.70 1

2
pd   0.10 0.10 0.50 0.50 0.10 0.50

2
Hd  0.20 0.10 1.00 1.00 0.20 0.10 2

2
pd   0.10 0.10 0.50 0.50 0.10 0.50

2
nHd  0.20 0.10 1.00 1.00 0.20 0.10 imp

Rd  0.06 0.06 0.00 0.50 0.06 0.01 

2
Ed  0.17 0.10 1.00 0.87 0.17 0.10 imp

Gd  0.00 0.00 0.00 0.00 0.00 0.00 

2
nEd  0.17 0.10 1.00 0.87 0.17 0.10 imp

Ld  0.00 0.00 0.00 0.00 0.00 0.00 

h
Hd  0.10 0.10 1.00 0.50 0.10 0.10 imp

KDd  0.20 0.20 0.00 1.00 0.20 0.10 

h
nHd  0.10 0.10 1.00 0.50 0.10 0.10 imp

Md  0.20 0.20 1.00 1.00 0.20 0.10 

h
Ed  0.10 0.10 1.00 0.50 0.10 0.10 imp

Lad  0.14 0.14 1.00 0.50 0.14 0.09 

h
nEd  0.10 0.10 1.00 0.50 0.10 0.10 imp

Td  0.00 0.00 0.00 0.00 0.00 0.00 

eh
Hd  0.20 0.10 1.00 1.00 0.20 0.10 Dimpd  0.20 0.20 0.00 1.00 0.20 0.10 

eh
nHd  0.20 0.10 1.00 1.00 0.20 0.10 IFSD  0.01   0.01   0.69   0.69 0.01   0.01 
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Table 4. Similarity measures of the test sets (Table 2). 

 

 Test IFSs  Test IFSs 
 1 2 3 4 5 6  1 2 3 4 5 6 

1
CS  1.00 0.90 0.50 1.00 1.00 0.95 ZFS  0.94 0.87 0.50 0.50 0.94 0.95 
w
CS  0.97 0.90 0.67 0.83 0.97 0.97 1Lp

lS   0.90 0.90 0.50 0.50 0.90 0.95 
1
HS  0.90 0.90 0.50 0.50 0.90 0.95 2Lp

lS   0.90 0.90 0.29 0.50 0.90 0.93 
w
HS  0.87 0.93 0.33 0.33 0.87 0.93 1Lp

eS   0.79 0.79 0.27 0.27 0.79 0.89 
1p

dS   1.00 0.90 0.50 1.00 1.00 0.95 2Lp
eS   0.83 0.83 0.17 0.33 0.83 0.88 

2p
dS   1.00 0.90 0.50 1.00 1.00 0.95 1Lp

cS   0.75 0.75 0.25 0.25 0.75 0.86 
1p

eS   0.90 0.90 0.50 0.50 0.90 0.95 2Lp
cS   0.79 0.79 0.15 0.29 0.79 0.85 

2p
eS   0.90 0.90 0.50 0.95 0.90 0.95 1wS  0.75 0.75 0.00 0.00 0.75 0.86 

1p
sS   0.95 0.90 0.50 0.75 0.95 0.95 2wS  0.90 0.90 0.50 0.50 0.90 0.95 

2p
sS   0.95 0.90 0.50 0.75 0.95 0.95 1pkS  0.75 0.75 0.00 0.00 0.75 0.86 

1p
hS   0.93 0.93 0.50 0.67 0.93 0.95 2pkS  0.90 0.90 0.50 0.50 0.90 0.95 

2p
hS   0.93 0.93 0.50 0.67 0.93 0.95 3pkS  0.86 0.86 0.00 0.00 0.86 0.92 

1p
gS   0.80 0.90 0.00 0.00 0.80 0.90 1newS  0.85 0.85 0.38 0.38 0.85 0.92 

2p
gS   0.80 0.90 0.00 0.00 0.80 0.90 2newS  0.87 0.87 0.38 0.20 0.87 0.94 

mod, 1pS   0.90 0.90 0.50 0.50 0.90 0.95 1
l
aS   0.97 0.99 0.00 0.00 0.97 0.99 

mod, 2pS   0.90 0.90 0.50 0.50 0.90 0.95 2
l
aS   0.97 0.99 0.00 0.25 0.97 0.99 

, 1new pS   0.88 0.88 0.40 0.40 0.88 0.93 1
e
aS   0.95 0.99 0.00 0.00 0.95 0.99 

, 2new pS   0.85 0.85 0.23 0.23 0.85 0.93 2
e
aS   0.96 0.99 0.00 0.21 0.96 0.99 

lS  0.90 0.90 0.00 0.50 0.90 0.90 1
c
aS   0.94 0.98 0.00 0.00 0.94 0.99 

eS  0.85 0.85 0.00 0.38 0.85 0.85 2
c
aS   0.96 0.99 0.00 0.18 0.96 0.99 

cS  0.82 0.82 0.00 0.33 0.82 0.82 IFSC  1.00 0.96 0.00 0.00 0.9971 0.9965 
1p

LS   0.87 0.93 0.33 0.33 0.87 0.93 IFSS  0.9970 0.9742 0.5690 0.5690 0.9956 0.9976 
2p

LS   0.86 0.92 0.18 0.29 0.86 0.92        

 

By studying Table 3, it is deduced that the most distance measures show many 

counter intuitive cases and therefore they failed to distinguish the IFSs accurately. 

However, 1
Ed , 1

nEd and imp
Lad  distance measures have the less counter intuitive cases with 

the imp
Lad being the most accurate. This is justified by examining the distances for the 

cases 3 and 6, where 1
Ed , 1

nEd measures give very close values (0.71 and 0.70 for cases 

3 and 6 respectively) although these cases are very different. On the other hand 

imp
Lad distance  distinguish the two cases clearly by giving 1.00 for case 3 and 0.09 for 

case 6 and thus reflect the real differences of the IFSs under comparison. Furthermore, 

by studying carefully these two cases 3 and 6, it is deduced that the IFSs' distance of 
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case 3 is higher than that of case 6. The aforementioned three distance measures are 

able to model these differences accurately, while there are distances which fail such 

as 1
Hd , 1

nHd , 1d , 1
2
pd   etc.. Moreover, there are several distance measures that give 

identical values for some or all cases, an observation that highlights their high 

relevance pointed out in the discussion section.    

As far as the results of the similarity measures are concerned, it is concluded that 

more similarity measures perform better than the distances', but there are also a lot of 

counter intuitive cases. The most effective similarity measure is the modified cosine 

similarity measure IFSS , which outperforms the other measures totally. However, this 

measure needs to handle the 0

0
indeterminacy, occurred in cases 3 and 4 in the same 

way with IFSC  due to the presence of the first factor of Eq.(66), by substituting with 0. 

Again, several similarity measures show an identical performance, while other 

measures 1
CS , 1p

dS  , 2p
dS  (cases 1, 4, and 5) and IFSC (case 1), wrongly identify different 

sets. Finally, it has to be noted that the free parameter (p) does not affect the 

performance of the measures, while parameter (a) seems to slightly influence the   

behaviour of the measures but without helping them to correctly measure the IFSs' 

differences. 

 

 

 

5.2 Real pattern recognition problems 

 

Although the previous experiments on artificial data highlight the behaviour of the 

measures under particular cases, they provide information regarding the satisfaction of 

the measures' fundamental definitional axioms and conditions. However, the question 

of how all these measures are performed in real pattern recognition applications is 

raised. There is not much work in this direction in the literature, and moreover there 

are not any comparative results between such measures in such problems. 

To this end, three types of real pattern recognition applications have been selected 

and used to evaluate the measures under study, by pointing out some interesting 

outcomes. 
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5.2.1 Medical diagnosis 

 

Several measures between IFSs have been applied to classify the symptoms of some 

patients to a set of deceases, by providing an alternative diagnosis to help doctor's 

decisions. A well known medical diagnosis problem, which commonly used 

[37,56,57] to testify the distance and/or similarity measures for IFSs is described in 

Table 5 & 6.  

More precisely, the statement of this problem is as follows: medical diagnosis 

among five possible deceases of four patients (Al, Bob, Joe, Ted) by taking into 

account five medical symptoms (temperature, headache, stomach pain, cough, chest 

pain). Tables' data are presented in intuitionistic fuzzy sets and the distance and 

similarity measures of the previous sections are applied to make the diagnosis. 

 
Table 5.  Symptoms characteristics of each decease. 

 

 Viral  

fever 

Malaria Typhoid Stomach 

problem 

Chest  

problem 

Temperature (0.4, 0.0) (0.7, 0.0) (0.3, 0.3) (0.1, 0.7) (0.1, 0.8) 

Headache (0.3, 0.5) (0.2, 0.6) (0.6, 0.1) (0.2, 0.4) (0.0, 0.8) 

Stomach pain (0.1, 0.7) (0.0, 0.9) (0.2, 0.7) (0.8, 0.0) (0.2, 0.8) 

Cough (0.4, 0.3) (0.7, 0.0) (0.2, 0.6) (0.2, 0.7) (0.2, 0.8) 

Chest pain (0.1, 0.7) (0.1, 0.8) (0.1, 0.9) (0.2, 0.7) (0.8, 0.1) 

 

 

Table 6. Symptoms characteristics of each patient. 

  

 Temperature Headache Stomach pain Cough Chest pain 

Al (0.8, 0.1) (0.6, 0.1) (0.2, 0.8) (0.6, 0.1) (0.1, 0.6) 

Bob (0.0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7) (0.1, 0.8) 

Joe (0.8, 0.1) (0.8, 0.1) (0.0, 0.6) (0.2, 0.7) (0.0, 0.5) 

Ted (0.6, 0.1) (0.5, 0.4) (0.3, 0.4) (0.7, 0.2) (0.3, 0.4) 

 

The diagnosis performance of each distance and similarity measure is presented in 

the following Table 7 and 8, respectively. In these tables the degree of confidence 

(DoC) for each correct diagnosis, while the symbol X indicates an incorrect diagnosis.  
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Table 7. Distance measures' diagnosis performance (DoC). 

 

 Patients  Patients 
 Al Bob Joe Ted  Al Bob Joe Ted 

1
Hd  X 5.050 3.550 2.700 

eh
Ed  X 3.044 1.434 1.338 

1
nHd  X 1.010 0.710 0.540 

eh
nEd  X 1.361 0.641 0.598 

1
Ed  1.511 2.807 1.734 1.393 1d  X 1.035 0.645 0.580 
1
nEd  0.676 1.255 0.776 0.623 

1
2
pd   X 1.010 0.710 0.540 

2
Hd  X 5.400 3.000 2.700 

2
2
pd   0.689 1.281 0.843 0.615 

2
nHd  X 1.080 0.600 0.540 

imp
Rd  3.831 8.181 4.774 4.557 

2
Ed  X 2.732 1.340 1.283 

imp
Gd  5.216 12.211 8.708 9.692 

2
nEd  X 1.222 0.599 0.574 

imp
Ld  4.047 8.528 4.727 5.981 

h
Hd  X 5.300 2.900 3.100 

imp
KDd  X 8.447 4.764 3.992 

h
nHd  X 1.060 0.580 0.620 

imp
Md  4.562 8.262 4.981 4.878 

h
Ed  X 3.031 1.565 1.501 

imp
Lad  3.710 5.746 X 3.473 

h
nEd  X 1.355 0.700 0.671 

imp
Td  5.594 12.120 7.703 8.520 

eh
Hd  X 5.400 3.000 2.700 

Dimpd  X 6.110 X 2.495 
eh
nHd  X 1.080 0.600 0.540 IFSD  3.547 5.476 4.392 2.760 

 

 

According to Eq.(72), the computation of the DoC requires the definition of the 

correct diagnosis for each patient. However, such important information has not been 

reported in the literature [37,55-57], only the performance of some similarity 

measures compared to the first work introduced this problem [55] has been published. 

However, without loss of generality, it is decided to consider the outcomes of the 

most recent work [37] as the correct diagnosis, which are Al (Viral fever), Bob 

(Stomach problem), Joe (Stomach pain) and Ted (Viral fever). 

A careful study of the above results leads to the conclusion that for many distance 

measures is difficult to diagnose correctly Al's symptoms, while the decision of the 

imp
Td measure is the most confident. In general the implication based distance measures 

outperform the measures of type I, since they provide diagnoses of high confidence, 

with the imp
Gd one being the winner in this short competition. 

The corresponding results for the case of the similarity measures are similar, with 

many measures failing to diagnose correctly Al patient. Several measures perform 

satisfactory with the most efficient being , 2new pS  , followed by IFSC . 
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Table 8. Similarity measures' diagnosis performance (DoC). 

 Patients  Patients 
 Al Bob Joe Ted  Al Bob Joe Ted 

1
CS  0.700 0.990 0.690 0.620 ZFS  0.744 1.199 0.927 0.652 
w
CS  0.753 1.113 0.747 0.713 

1Lp
lS   X 1.010 0.710 0.540 

1
HS  X 1.010 0.710 0.540 

2Lp
lS   X 0.985 0.647 0.564 

w
HS  X 0.720 0.400 0.360 

1Lp
eS   X 1.478 0.936 0.701 

1p
dS   0.700 0.990 0.690 0.620 

2Lp
eS   X 1.308 0.785 0.688 

2p
dS   0.780 1.279 0.913 0.655 

1Lp
cS   X 1.456 0.883 0.657 

1p
eS   X 1.010 0.710 0.540 

2Lp
cS   X 1.338 0.768 0.674 

2p
eS   0.689 1.281 0.843 0.615 1wS  X 1.314 0.829 0.541 

1p
sS   0.680 1.000 0.735 0.600 2wS  X 1.010 0.710 0.540 

2p
sS   0.776 1.279 0.913 0.648 1pkS  X 1.533 0.978 0.616 

1p
hS   X 0.690 0.430 0.387 2pkS  0.800 2.000 X 0.850 

2p
hS   X 0.881 0.513 0.427 3pkS  X 1.259 0.890 0.575 

1p
gS   X 1.080 0.600 0.540 1newS  X 1.707 0.908 0.662 

2p
gS   X 1.361 0.641 0.598 2newS  X 1.331 0.905 0.665 

mod, 1pS   X 1.010 0.710 0.540 1
l
aS   0.465 0.862 X 0.473 

mod, 2pS   0.676 1.258 0.771 0.616 2
l
aS   X 0.744 0.504 0.392 

, 1new pS   X 2.020 1.420 1.080 1
e
aS   0.553 1.066 X 0.592 

, 2new pS   1.351 2.515 1.541 1.233 2
e
aS   X 0.888 0.582 0.467 

lS  X 1.060 0.580 0.620 1
c
aS   0.593 1.182 X 0.662 

eS  X 1.272 0.634 0.685 2
c
aS   X 0.990 0.631 0.519 

cS  X 1.312 0.621 0.674 IFSC  0.962 1.433 1.130 0.729 
1p

LS   X 0.720 0.400 0.360 IFSS  0.812 1.188 0.885 0.621 
2p

LS   X 0.997 0.489 0.469      

 

 

It is worth mentioning that the free parameters (p and a) affect significantly the 

performance of the measures e.g. measures mod, 1pS  and , 1new pS  couldn't diagnose Al 

patient correctly but mod, 2pS  and , 2new pS  did it. Therefore, the appropriate calibration of 

these free parameters may lead to more efficient measures in terms of diagnosis 

accuracy and decision confidence. 

Comparing the best measures of each category, it can be claimed that the 

imp
Gd distance measure outperforms the similarity , 2new pS  in terms of the degree of 

confidence. 
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5.2.3 Pattern classification benchmarks 

 

Apart from the previous investigation of the measures' performance in a real 

medical diagnosis problem, two pattern classification benchmarks widely used in the 

literature are selected from the UCI repository [58] and used herein. The main 

properties of these benchmarks are summarized in the following Table 9.  

 

Table 9. Datasets' characteristics. 

 

Dataset Attributes Instances Classes 
Iris 4 150 3 
Wine 13 178 3 

 

The first dataset Iris consists of three different classes of Ireland flowers (Iris 

Setosa, Iris Versicolour and Iris Virginica), 50 instances for each, while 4 attributes 

used to describe each instance. The second dataset Wine consists of three different 

classes of Italian wines, variable number of instances per class (class #1: 59, class #2: 

71 and class#3: 48), and 13 attributes. The measures' classification performance is 

summarized in the following Table 10 and 11. 

Since, the original benchmarks' data are real numbers, a procedure to transform 

them to intuitionistic fuzzy sets need to be applied. For this purpose, the process of 

[37] according to, the membership and non-membership function are constructed by 

the following forms, is used. 

 

   
    

,

1

x g x

v x g x


 

 
 (73)

 

where  0,1 and  g x is a fuzzy membership function. Without loss of 

generality, function   24 4g x x x    is used as the fuzzy membership function 

and 1/ 2  . Of course, a more in depth analysis can be performed in order to find the 

most appropriate membership function in terms of classification accuracy, but such an 

analysis is beyond the scope of this work. Therefore, after data normalization into the 

range [0,1], the data is transformed to IFSs by using Eq.(73) with the aforementioned 

settings.   
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Table 10. Distance measures' classification performance. 

 

 
Iris 

Dataset 
Wine 

Dataset 
 

Iris 
Dataset 

Wine 
Dataset 

 CRate DoC CRate DoC  CRate DoC CRate DoC 
1
Hd  0.913 1.155 0.725 0.843 eh

Ed  0.927 0.861 0.680 0.386 
1
nHd  0.913 0.289 0.725 0.065 eh

nEd  0.927 0.431 0.680 0.107 
1
Ed  0.927 0.688 0.691 0.288 1d  0.920 0.338 0.713 0.081 
1
nEd  0.927 0.344 0.691 0.080 1

2
pd 

 0.913 0.289 0.725 0.065 
2
Hd  0.920 1.543 0.708 1.262 2

2
pd 

 0.900 0.320 0.702 0.072 
2
nHd  0.920 0.386 0.708 0.097 imp

Rd  0.967 1.707 0.674 1.256 
2
Ed  0.927 0.760 0.685 0.336 imp

Gd  0.900 3.248 0.747 3.333 
2
nEd  0.927 0.380 0.685 0.093 imp

Ld  0.967 2.017 0.764 1.215 
h
Hd  0.920 1.543 0.708 1.262 imp

KDd  0.927 2.069 0.697 1.671 
h
nHd  0.920 0.386 0.708 0.097 imp

Md  0.920 1.884 0.747 0.935 
h
Ed  0.927 0.861 0.680 0.386 imp

Lad  0.893 1.502 0.837 0.669 
h
nEd  0.927 0.431 0.680 0.107 imp

Td  0.947 3.199 0.629 2.204 
eh
Hd  0.920 1.543 0.708 1.262 Dimpd  0.893 1.410 0.584 0.700 
eh
nHd  0.920 0.386 0.708 0.097 IFSD  0.940 0.672 0.657 0.710 

 

 

From the above Table 10, it can be seen that for the Iris dataset the implication 

based distance measures give the highest classification rate (CRate) with the imp
Rd and 

imp
Ld being the most efficient measures with 96.7% classification performance. The 

next most efficient non implication based distance measure is IFSD which classifies the 

Iris data with 94% accuracy (2.7% lower). For the case of the Wine data, again an 

implication based measure imp
Lad shows the highest classification rate of 83.7%, which 

is 11.2% higher than the next most efficient non implication based distance 

measures 1
Hd , 1

nHd and 1
2
pd  (72.5%). 

 

Table 11. Similarity measures' classification performance. 

 

 
Iris 

Dataset 
Wine 

Dataset 
 

Iris 
Dataset 

Wine 
Dataset 

 CRate DoC CRate DoC  CRate DoC CRate DoC 
1
CS  0.913 0.289 0.725 0.065 ZFS  0.947 0.332 0.713 0.084 
w
CS  0.920 0.322 0.719 0.075 

1Lp
lS   0.913 0.289 0.725 0.065 

1
HS  0.913 0.289 0.725 0.065 

2Lp
lS   0.920 0.308 0.713 0.072 

w
HS  0.920 0.257 0.708 0.065 

1Lp
eS   0.913 0.516 0.725 0.111 



 

 32

1p
dS   0.913 0.289 0.725 0.065 

2Lp
eS   0.920 0.473 0.713 0.106 

2p
dS   0.900 0.320 0.702 0.072 

1Lp
cS   0.913 0.557 0.725 0.115 

1p
eS   0.913 0.289 0.725 0.065 

2Lp
cS   0.920 0.525 0.713 0.114 

2p
eS   0.900 0.320 0.702 0.072 1wS  0.927 0.495 0.713 0.114 

1p
sS   0.913 0.289 0.725 0.065 2wS  0.913 0.289 0.725 0.065 

2p
sS   0.900 0.320 0.702 0.072 1pkS  0.920 0.531 0.719 0.121 

1p
hS   0.920 0.225 0.713 0.054 2pkS  0.900 0.485 0.624 0.139 

2p
hS   0.927 0.251 0.685 0.060 3pkS  0.920 0.353 0.719 0.087 

1p
gS   0.920 0.386 0.708 0.097 1newS  0.913 0.713 0.725 0.131 

2p
gS   0.927 0.431 0.680 0.107 2newS  0.947 0.653 0.685 0.133 

mod, 1pS   0.913 0.289 0.725 0.065 1
l
aS   0.933 0.177 0.674 0.059 

mod, 2pS   0.907 0.325 0.702 0.072 2
l
aS   0.927 0.136 0.685 0.045 

, 1new pS   0.913 0.577 0.725 0.130 1
e
aS   0.933 0.235 0.674 0.076 

, 2new pS   0.907 0.650 0.702 0.145 2
e
aS   0.927 0.169 0.685 0.055 

lS  0.920 0.386 0.708 0.097 1
c
aS   0.933 0.275 0.674 0.088 

eS  0.920 0.513 0.708 0.123 2
c
aS   0.927 0.195 0.685 0.063 

cS  0.920 0.564 0.708 0.130 IFSC  0.940 0.216 0.702 0.081 
1p

LS   0.920 0.257 0.708 0.065 IFSS  0.933 0.190 0.708 0.064 
2p

LS   0.927 0.310 0.685 0.076      

 

 

For the case of the similarity measures, 2newS  shows the highest classification 

performance 94.7% with high degree of confidence (0.653) for the Iris dataset, while 

a lot of measures have the highest classification rate 72.5% (e.g. 1
CS , 1p

dS  , 1p
eS  ) for the 

Wine benchmark. 

What is of great importance is the superiority of the distance measures over the 

similarity ones in both benchmark datasets. More precisely, imp
Rd and imp

Ld distances 

show 2.7% higher rate than 2newS for the case of Iris data, while this difference is 

increased to 11.2% between imp
Lad  and the best similarity measures for the Wine data. 

   

 

5.2.4 Face recognition  

 

Along with the previous investigation of measures' classification capabilities, an 

additional experiment where some human faces need to be recognized under various 

illumination and angle view conditions is also considered herein.  
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To this end distance and similarity measures are applied to recognize the faces of 

the well known Yale [59] face dataset consisting of 165 images of 15 persons with 11 

images per person. Some samples of this dataset are illustrated in Fig.1. 

 

 

   
 

Fig. 1. Samples of the Yale face dataset. 

 

An extra pre-processing task has to be performed on the images, in order to isolate 

the image’s part, which includes the main face’s information, by discarding the 

useless content. For this purpose the Viola Jones face detector [60] and masking of the 

detected face with an ellipse, so as to remove the hair and include as much facial 

information is possible are applied so the images are cropped into blocks of 118×118 

pixels size. 

The method of orthogonal image moments is used to extract discriminative 

features able to distinguish the faces. Orthogonal image moments have been proved 

very efficient discrimination descriptors due to their ability to encode the image's 

content with minimum redundancy, with many applications [61-65].  

Two representative moment families are applied to extract discriminative 

information relative to the content of the face images, namely the Zernike (ZMs) and 

Tchebichef (TMs) moments, which are defined in the continuous and discrete 

coordinate space respectively [66]. 

The same procedure with the previous section for the transformation of the real 

numbers of the discrimination features to intuitionistic fuzzy sets is also applied in the 

case of the moment descriptors (ZMs and TMs).  

The recognition results of all distance and similarity measures for both moment 

features are summarized in Table 12 and 13.     
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Table 12. Distance measures' recognition performance. 

 

 
Zernike 

Moments 
Tchebichef 
Moments 

 
Zernike 

Moments 
Tchebichef 
Moments 

 CRate DoC CRate DoC  CRate DoC CRate DoC 
1
Hd  0.800 10.133 0.788 12.070 eh

Ed  0.794 4.129 0.800 5.189 
1
nHd  0.800 0.633 0.7878 0.754 eh

nEd  0.794 1.032 0.800 1.297 
1
Ed  0.782 3.448 0.806 4.243 1d  0.788 0.691 0.794 0.844 
1
nEd  0.782 0.862 0.806 1.061 1

2
pd 

 0.800 0.633 0.788 0.754 
2
Hd  0.782 11.989 0.788 14.828 2

2
pd 

 0.770 0.829 0.806 1.018 
2
nHd  0.782 0.749 0.788 0.927 imp

Rd  0.782 20.091 0.800 24.432 
2
Ed  0.794 3.664 0.806 4.572 imp

Gd  0.733 35.712 0.806 44.463 
2
nEd  0.794 0.916 0.806 1.143 imp

Ld  0.770 18.426 0.782 22.224 
h
Hd  0.782 11.989 0.788 14.828 imp

KDd  0.776 25.408 0.812 29.786 
h
nHd  0.782 0.749 0.788 0.927 imp

Md  0.776 21.264 0.721 25.303 
h
Ed  0.794 4.129 0.800 5.189 imp

Lad  0.740 18.422 0.709 22.441 
h
nEd  0.794 1.032 0.800 1.297 imp

Td  0.758 29.889 0.782 34.587 
eh
Hd  0.782 11.989 0.788 14.828 Dimpd  0.770 23.886 0.782 28.014 
eh
nHd  0.782 0.749 0.788 0.927 IFSD  0.758 3.665 0.788 6.406 

 

By examining the recognition results of distance measures (Table 12) it is deduced 

that they perform satisfactory in recognizing human faces. For the ZMs features, the 

classification rate varies between 73.3%-80%, with the 1
Hd , 1

nHd  and 1
2
pd  being the 

most efficient and the implication based measures the most confident. On the other 

hand for TMs features imp
KDd shows the highest classification accuracy of 81.2% slightly 

higher than that of the ZMs, with acceptable degree of confidence (29.786). Again the 

implication based measures proved to be high confident although in some cases the 

rate is lower. 

 

Table 13. Similarity measures' recognition performance. 

 

 
Zernike 

Moments 
Tchebichef 
Moments 

 
Zernike 

Moments 
Tchebichef 
Moments 

 CRate DoC CRate DoC  CRate DoC CRate DoC 
1
CS  0.800 0.633 0.788 0.754 ZFS  0.788 0.636 0.788 0.786 
w
CS  0.794 0.672 0.794 0.816 

1Lp
lS   0.800 0.633 0.788 0.754 

1
HS  0.800 0.633 0.788 0.754 

2Lp
lS   0.794 0.648 0.788 0.778 
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w
HS  0.782 0.500 0.788 0.618 

1Lp
eS   0.800 1.273 0.788 1.423 

1p
dS   0.800 0.633 0.788 0.754 

2Lp
eS   0.794 1.093 0.788 1.253 

2p
dS   0.770 0.829 0.806 1.018 

1Lp
cS   0.800 1.470 0.788 1.576 

1p
eS   0.800 0.633 0.788 0.754 

2Lp
cS   0.794 1.292 0.788 1.432 

2p
eS   0.770 0.829 0.806 1.018 1wS  0.782 1.073 0.770 1.195 

1p
sS   0.800 0.633 0.788 0.754 2wS  0.800 0.633 0.788 0.754 

2p
sS   0.770 0.829 0.806 1.018 1pkS  0.794 1.158 0.776 1.298 

1p
hS   0.788 0.461 0.794 0.562 2pkS  0.745 2.032 0.721 2.402 

2p
hS   0.788 0.621 0.800 0.770 3pkS  0.794 0.668 0.776 0.796 

1p
gS   0.782 0.749 0.788 0.927 1newS  0.800 3.671 0.788 2.882 

2p
gS   0.794 1.032 0.800 1.297 2newS  0.788 3.401 0.776 2.724 

mod, 1pS   0.800 0.633 0.788 0.754 1
l
aS   0.764 0.240 0.806 0.424 

mod, 2pS   0.770 0.833 0.806 1.026 2
l
aS   0.794 0.188 0.806 0.330 

, 1new pS   0.800 1.267 0.788 1.509 1
e
aS   0.764 0.328 0.806 0.571 

, 2new pS   0.770 1.666 0.806 2.052 2
e
aS   0.794 0.236 0.806 0.413 

lS  0.782 0.749 0.788 0.927 1
c
aS   0.764 0.394 0.806 0.678 

eS  0.782 1.089 0.788 1.297 2
c
aS   0.794 0.276 0.806 0.480 

cS  0.782 1.278 0.788 1.476 IFSC  0.776 0.235 0.794 0.435 
1p

LS   0.782 0.500 0.788 0.618 IFSS  0.794 0.241 0.800 0.421 
2p

LS   0.794 0.748 0.806 0.933      

 

Concerning the performance of the similarity measures, the results are similar with 

that of the distances, with a lot of measures showing the highest classification rate of 

80% and 80.6% for the case of ZMs and TMs features respectively. In general 

1newS similarity measure combines the high classification rate with simultaneous high 

degree of confidence. 

A short comparison between distance and similarities measures leads to the 

conclusion that the former is more appropriate to recognize human faces due to the 

highest or equal classification rates for both feature sets, but most of all due to the 

high confidence of their decisions.   

 

 

7. Conclusion 

 

An extensive review of the distance and similarity measures for intuitionistic fuzzy 

sets from the literature was presented in the previous sections. Through this literature 
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review, the main characteristics of each measure were highlighted and useful 

conclusions regarding the relationships of these measures are drawn through a unified 

technical representation.  

The examined measures were studied in depth, under several experimental 

configurations. Initially, the counter intuitive cases for each measure are extracted by 

using artificial intuitionistic fuzzy sets and the most robust measures that give 

reasonable results were pointed out.  

In a second phase the aforementioned experimental analysis was focused on the 

performance of the measures in patter recognition applications, in order to examine 

their practical utility. The experiments have shown that although all the measures 

present a lot of counter intuitive cases, they perform well in real pattern recognition 

problems. More specifically, the distance measures outperform the similarity ones 

(the most efficient were , 2new pS  , 1newS , 2newS ), with the implication based measures 

(e.g. imp
Gd ) being the most accurate and confident ones, in overall.  

An outcome which is of high importance is that the introduced degree of 

confidence (DoC) index along with the absolute classification accuracy can further 

help to examine the suitability of a measure. 

This work aims to serve as a full guide of distance and similarity measures between 

IFSs for the new scientists and a basis framework for developing more robust and 

efficient measures for the experts in this research field. 
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