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Abstract—This paper proposes a fundamentally novel exten-
sion, namely flrFAM, of the fuzzy ARTMAP (FAM) neural
classifier for incremental real-time learning and generalization
based on fuzzy lattice reasoning (FLR) techniques. FAM is en-
hanced, first, by a parameter optimization training (sub)phase and,
second, by a capacity to process partially ordered (non)numeric
data including information granules. The interest here focuses
on Intervals’ Numbers (INs) data, where an IN represents a
distribution of data samples. We describe the proposed flrFAM
classifier as a fuzzy neural network that can induce descriptive as
well as flexible (i.e., tunable) decision-making knowledge (rules)
from the data. This work demonstrates the capacity of the
firFAM classifier for human facial expression recognition on
benchmark datasets. A novel feature extraction and knowledge-
representation is based on orthogonal moments. The reported
experimental results compare well with the results by alternative
classifiers from the literature. The far reaching potential of FLR
in Human-Machine Interaction (HMI) applications is discussed.

Index Terms — Fuzzy ARTMAP, fuzzy lattice reasoning, inclu-
sion measure, intervals’ number, the lattice computing paradigm

1 I. INTRODUCTION

2 The employment of a computational model for learning
sis often based on simplifying (non-realistic) assumptions,
4+ including abundant/representative data, fixed data distributions
s and independent data samples in order to enable rigorous
s analysis and design. However, far more often than not, the
7 previous assumptions do not hold in practical applications such
s as climate/financial modeling, electricity demand, human-
9 machine interaction, etc. Hence, alternative modeling ap-
10 proaches emerged including (concept) drift models and domain
11 adaptation algorithms, which may engage incremental-learning
12 and/or online-learning [12], [37]. Nevertheless, an alternative
13 modeling approach still makes (heuristic) assumptions such
14 as restrictive types of distributions, moreover it is typically
15 restricted in the Euclidean space 93, Against this background,
1s there is a need for general architectures crafted in a versatile
17 framework to enable learning from — and adapting to — an ever
1s changing environment.

19 This work proposes a straightforward extension of the
20 established fuzzy ARTMAP (FAM) neural classifier [5], [7] for
21 incremental, on-line learning and classification of nonstation-
22 ary data based on fuzzy lattice reasoning (FLR) techniques

23 [29] in the context of the versatile lattice theory [3] — Recall
24 that “FLR” has been defined as decision-making based on
25 an inclusion measure function [25]. In particular, we extend
26 FAM’s application domain from the unit hypercube in 9R%,
27 where learning is pursued by inducing hyperboxes, to a general
2s (mathematical) lattice. In conclusion, the flrFAM classifier
29 emerges here for learning by inducing intervals in a general
% lattice including the induction of hyperboxes in the unit
st hypercube as a special case. An implied advantage is the
22 widening of FAM’s scope so as to deal with data semantics
s represented by partial order. Additional advantages for the
a fIrTFAM classifier are summarized in the following.

The proposed firFAM classifier can learn rare patterns by
as addressing the “stability-plasticity” dilemma the same way as
a7 FAM does — Recall that the aforementioned dilemma states
3 that “(a system) must be capable of plasticity in order to learn
a0 about significant new events, yet it must also remain stable in
a0 response to irrelevant or often repeated events” [4]. Moreover,
a1 the firfFAM classifier can carry out granular computing by
s2 processing lattice-ordered (information) granules [46] instead
s of processing merely points in RY; the latter (points) are
a4 exclusively processed by FAM in the unit hypercube. Fur-
ss thermore, in every data dimension, only the flrtFAM classifier
s may optimize a tunable positive valuation (weight) function
47 towards improving performance.

The basic “decision-making” instrument of the firFAM
s classifier is an inclusion measure function o(.,.), which cor-
s0 responds to both FAM’s choice (Weber) and match functions
s1 as explained below. Note that, historically, inclusion measures
s2 of the form o(A, B) have been introduced for computing the
ss degree of inclusion of a hyperbox A into another one B in
s classification applications [20]. It was then realized that the
ss set of hyperboxes in 9% is lattice-ordered; this fact has been
s6 the motivation to extend the hyperbox based approach for
s7 learning/generalization to a general lattice data domain [22].

The interest of this work is in Intervals’ Numbers (INs)
so data, where an IN represents a distribution of samples. An
s IN may also be thought of as the “a-cuts representation” of a
&1 fuzzy number. In all, an IN is a mathematical object which can
e2 be interpreted either probabilistically or possibilistically [41].
es INs, previously called FINs, have been studied in a series of
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e« publications. In particular, it has been shown that the set 1121 II. A HIERARCHY OF LATTICES
es of INs is a (metric) lattice [21], [31] with cardinality Ny [24],
es where “N;” is the cardinality of the set R of real numbers;
e7 moreover, the space §; is a cone in a linear space [26], [41].
es INs have already been used in numerous (classification and
es regression) applications [21], [24], [26], [27], [30], [41] as
70 well as for hybrid intelligence fusion [25]. Our interest here
71is in an firtFAM classifier application on the lattice (§2, <) of
72 Type-2 Intervals’ Numbers as detailed below.

122 This section introduces constructively, in six steps, a hierar-
123 chy of complete lattices; in particular, each subsection presents
124 an ever enhanced (lattice) hierarchy level. For general lattice
12 theory notions including the definition of an inclusion measure
126 function the reader may refer elsewhere [25], [30].

127 Assume a positive valuation! function v : £ — [0,00) on a
128 complete lattice (£, C) with least and greatest element O and
120 I, respectively, such that v(O) = 0 and v(I) < co. Assume

73 From an application point of view, this work focuses on 43 functions sigma-meet opn : Lx £ = [07 ]_] and sigma.join
74 specific human-machine interaction (HMI) problem, namely; o, : £ x £ — [0, 1] defined as follows

75 human facial expression recognition. Note that a number of

76 learning models have been proposed in human-centered recog- 1, forx = O

77 nition applications [2], [8]. Currently, static/dynamic facial on(z,y) = { @) for 20 (1
78 expression recognition is carried out at large by ‘“number vie)

7o crunching” machine learning techniques [39]. The flrFAM 1 for 2Ly = O
a0 classifier here suggests a viable alternative for flexible (i.e., ou(z,y) = ’v(y) rUy= (2)
s1 tunable) rule-based classification with a considerable potential v(zly)’ forz iy 30

g2 for sound (non)numeric data fusion. . .
132 Then, both or(.,.) and o(,(., .) are inclusion measures. Note

s An “agglomerative” FLR classifier has been reported lately ;; that an inclusion measure function o : £ x £ — [0, 1] can be
e for human facial expression recognition and applied exclu-,,, interpreted as a fuzzy order relation on a lattice (£, C). Hence,
ss sively on the JAFFE benchmark [42]. Substantial differences ., notations o (x,) and o(2 = y) will be used interchangeably.
ss with the work here include: First, this work details construc-

g7 tively a six-level hierarchy of mathematical lattices, whereas
ss the work in [42] engages only part of the aforementioned hi-36 A. Real Numbers

s erarchy. Second, the work in [42] delineates an agglomerative,;;  The set 2R of real numbers is a rotally-ordered, non-complete
s FLR learning scheme only for structure identification such that s Jattice denoted by (M, <), where “<” is the usual order

o1 one Type-1 IN is induced (unconditionally) per class; whereas, ;5 relation of real numbers. Lattice (9%, <) can be extended
e this work details sophisticated extensions of the FAM classifier,, to a complete lattice by including both symbols “—oco” and
e architecture for structure identification followed by parameter,,, “4.o0”. In conclusion, the complete lattice (R, <) emerges,
o optimization such that multiple Type-2 INs may be induced,,, where & = 93U {—o00, +00}, with least and greatest elements
s (conditionally) per class. Third, the work in [42] assumes one,,; O = —oo and I = +o0, respectively.

% 100-dimensional features (moments) vector represented by one,,,  In the context of this work we will employ, in particular, a
o7 (non-trivial) Type-1 IN, furthermore it employs seven random ,; reference ser £ CR so that the totally ordered lattice (£, <)
e data partitions for training/testing; whereas, this work assumes 5 js complete. For example, £ can be either 9 itself or a closed
% one 16-dimensional features (moments) vector represented by, interval [a,b] C 3. In every case, £ includes a least element
100 a (trivial) Type-2 IN, furthermore it employs ten random data,,; denoted by O and a greatest element denoted by I (hence
o1 partitions for training/testing. Fourth, the work in [42] carries ,, ¢ = [0, I]). For example, for £ = R it is O = —oc and
102 OUt computational experiments in space §} engaging only two ., | — +00; whereas, for £ = [a,b] itis O = a and I = b.
s Classifiers, namely (agglomerative) FLR and kNN whereas, ., The inf and sup operations in the complete lattice (£,<) are
104 this work carries out computational experiments in both spaces,, denoted by A and V. Any strictly increasing function v : £ —
s §5 and §3° engaging seven classifiers, namely fIrFLR, kNN, [0, 00) is a positive valuation on (£, <), moreover any strictly
16 LDA, naive Bayes, classification tree, a neural network and g, decreasing function 6 : £ — £ is dual isomorphic? on the
107 FAM as detailed below; furthermore, the filFAM classifier,s; complete lattice (£,<). In this work, we consider bijective
18 here is applied, in addition, on the RADBOUD benchmark; .; (one-to-one) functions 6 : £ — £ such that both #(O) = I and
100 moreover, only this work presents statistical testing results. 0(I) = O; moreover, we consider positive valuation functions

1o Fifth, only this work presents an extensive literature review ;) : £ — [0, 00) such that both v(O) = 0 and v(I) < occ.
111 with novel perspectives including an introduction of the lattice

112 computing (LC) paradigm.

B. Type-1 Interval
13 The paper is organized as follows. Section II presents a hi-"* Ipe-s SieTvas

114 erarchy of mathematical lattices including Intervals’ Numberste ~Consider the complete lattice (J1,C) of Type-1 intervals
115 (INs). Section III details the fIrFAM extension of the FAMs' [a,b], or intervals for short, on a complete lattice (£, <)
116 classifier. Section IV describes the human facial expressiontez Of real numbers with least and greatest elements O and I,
117 recognition problem in context. Section V presents compar- . ‘ _ _
g ative computational experiments on benchmark datasets and le‘i’mQ’e h"”l(”“)‘ion (On) a 1att(lce (?: E)( is a )realdeﬂCUOH v 1(3 T R (th?;t
. . . . .. . satisfies both v(z)+v(y) = v(zMy)+v(zUy) and =z C y = v(z) < v(y).
19 results including a cl.ls.cussmn of s.1gn}ﬁcance. Section VI 2Let (8, C) and (£, C) be lattices. A function § : & — € here is called
120 concludes by summarizing our contribution and future work.  dual isomorphic iff both “z C y < 6(x) 1 0(y)” and “0 onto £”.



163 Tespectively. Recall that an interval is defined as [a,b] = {x :211 D. Type-1 Intervals’ Numbers (INs)

10s @ < z < b}. Moreover, Consider the following definition.

Definition 2.1: A Type-1 Intervals’ Number (IN) is a func-
tion F : [0,1] — J; which satisfies

212

[a,b] N [e,d] =[aVe,bAd] and [a,b] Ue,d] = [a Ac,bVd

16s Note that if a V¢ > bAd then [aV c,bAd] = 0; in words, if
166 @V ¢ > bAd then we assume that the intersection [a, b] N|c, d]
167 is the empty set (). We remark from [22] that a preferable
1es (in computing) representation for the least element Oy; = ()
160 in lattice (J1,C) is O51 = [I, O].

Consider a (strictly increasing) positive valuation functionziz  We will denote the set of INs by §; and equip it with
mv: £ — [0,00), furthermore consider a (strictly decreasing)zis an order relationship < such that F¥ < G < (Vh € [0,1] :
172 dual isomorphic function 6 : £ — £. Then, function vy :21s F'(h) C G(h)). Furthermore, we will denote an IN by a capital
113 £ x £ — [0,00) given by vi([a,b]) = v(8(a)) + v(b) is azs letter in italics, e.g. §1 > F = F(h) = [an,bp], h € [0,1]. In
174 positive valuation on lattice (£x £, > x <) [25]. Furthermore,217 practice, an IN is interpreted as an information granule. It turns
17 based on equations (1) and (2) two inclusion measures o :21s out that (F1, <) is a complete lattice whose least element () is
176 JyxJ1 — [0,1] and o, : J1xTJ; — [0, 1] can be introduced byzis preferably represented as Oz1 = O(h) = [I, 0], h € [0, 1].
177 0n(2,y) = on(z, 2Ny) and o (z,y) = ou(x, y), respectively,2o  Definition 2.1 implies that an IN can be represented by a set
178 on the complete lattice (J1, C) as it will be shown elsewhere. 221 of intervals; that is, its interval-representation. In addition, an
Functions 6(.) and v(.) can be selected in different ways. Inzz2 IN can, equivalently, be represented by a membership function;

F(0)=In,
hl < h2 = F(hl) 2 F(hg),

VP C[0,1]: NpepF (h) = F (\/P) :

170

179

10 the context of this work, we select a pair of functions v(z) and
181 O(x) so as to satisfy equality “vq([z,z]) = v(0(x)) +v(z) =

223 that is, the membership-function-representation [25].

1.2 Constant” required by a “standard” fuzzy lattice realsoning224 E. Type-2 Intervals’ Numbers (INs)

183 (FLR) scheme [25], [28], [29]. For instance, such pairs of

184 functions v(z) and 6(x) include, first, v(x) = pz and 6(z) =
165 ) — x, where p,@ > 0, x € [0,Q)] and, second, vs(z) =
ﬁ and 0(x) = 2u — x, where A, X € Ry, p,z € R.
17 In pariticular, it follows, first, v1([z,z]) = p@ and, second,
18 v1 ([, x]) = A, respectively.

186

180 C. Type-2 Intervals

10 A Type-2 interval is defined as an interval of Type-1
191 intervals. Consider the complete lattice (Jo,C) of Type-2
192 intervals on a complete lattice (£, <) of real numbers with
193 least and greatest elements O and I, respectively. Recall that

104 [[a1, az], [b1, b2]] N [[e1, cal, [di, da]] =

[la1,a2] U [e1, ea], [b1, b2] N [d1, d2]], and
195 [[al, ag}, [bl, 52]] U [[017 CQ], [dl, dg” =
[la1, az] N [e1, ca, [br, bo] U [dy, da]].

196 We remark that a preferable representation for the least ele-
17 ment Og9 = @ in lattice (Jo,C) is Oz9 = [[O, 1], [1, O]].
Consider a (strictly increasing) positive valuation function
: £ — [0,00) as well as a (strictly decreasing) dual
200 isomorphic function 6 : £ — £. Recall that function v; :
201 £x £ — [0, 00) given by vy (a,b) = v(0(a))+wv(b) is a positive
202 valuation. Furthermore, function 6, : £ x £ — £ x £ given
203 by 601(a,b) = (b,a) is dual isomorphic. Therefore, function
204 Vg 1 £X LX L XL — [0,00) given by va([[a1, az], [b1,b2]]) =
205 v(a1) +v(0(az)) +v(0(b1)) + v(be) is a positive valuation on
206 lattice (£ x £ x £ x £, < x > x > x <). In conclusion,
207 based on (1) and (2) inclusion measures o : Jo X Jo — [0, 1]
208 and o : Jo x Jo — [0, 1] can be introduced by on(z,y)
200 o1 (z, 2 Ny) and o (z,y) = ou(z,y), respectively, on the
210 complete lattice (Jo, C) of Type-2 intervals.

198

199 U

25 Another information granule of interest is an interval [U, W]
226 of Type-1 INs U and W, where interval [U, W] by definition
2z equals [U, W] ={X € §1: U < X < W}. In the latter sense
228 we say that X is encoded in [U, W]. Interval [U, W] is called
22 Type-2 IN. Tt follows the complete lattice (F2, <) of Type-2
230 INs. We remark that the least (empty) interval () is preferably
2s1 represented in computing as Oz2 = O(h) = [[O,I],[1,0]],
22 where h € [0,1]. A Type-2 IN will be denoted by a double-
233 line capital letter, e.g. F € §o.
The lattice (F2, <) join operation is demonstrated in Fig.1.
235 In particular, Fig.1(a) shows trivial Type-2 INs C; = [Cy, (],
26 Co = [Co, Co] and C3 = [C3, C3]. Fig.1(b) displays the join
27 Cy Y Cy = [C1 A C2,Cy Y O3] in its membership-function-
238 representation. Note that, since Type-1 INs C; and Cy overlap,
230 the Type-1 IN Cy A Cs is not empty. More specifically, it
a0is (C1 A Ca)(h) # 0, for h € [0,0.6471]; nevertheless, for
an b € (0.6471,1], it is (C1 A C3)(h) = 0. Fig.1(c) displays
22 the join C; Y Cy in the (equivalent) interval-representation.
243 Fig.1(d) displays the join Co Y C3 = [Cy A C3,C5 Y C3] in its
244 membership-function-representation. Note that, since Type-1
25 INs Cy and C5 do not overlap, the Type-1 IN Cy A Cs is
216 empty, that is (Cy A C3)(h) = 0, for all h € [0, 1].

We point out that there are similarities as well as differences
28 between Type-1/2 INs and Type-1/2 fuzzy sets [30].
20 Our interest here focuses on inclusion measure o, Fa X
250 §o — [0, 1] given as [22]

oy (E1, Eo) :/Uu(El(h)»Ez(h))dh 3)
0

251 F. Extensions to More Dimensions

An N-tuple IN of Type-1/2 will be indicated by an “over
253 right arrow”. More specifically, a Type-1 IN will be denoted

252



Category Layer F,
Competition: Winner takes all

06471
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Input Layer F;
Buffering & Matching

Fig. 2. The firART neural architecture for clustering, where an input pattern
X is in the lattice (31, C) of intervals.

Algorithm 1 firART Clustering

1: Assume aset C' C 235; K = |C]; a user-defined vigilance
parameter p € [0,1];

©) 2:. fort=1toi=mndo
. 3. Consider the next input datum X; € JV;
Givg, | 4: S=0C;
PN s J= argmax {o(X; € W;)};
P JE{L,. IS}
: : W]' es
. while (S # {}).and.(c(W; C X;) < p) do
é 1‘0 1'2 : SiS\{WL}};
) 8: J = argmax {o(X; CW,)};
Je{L,...,ISI}
W,es
Fig. 1. Demonstrating the lattice join (Y) operation between trivial Type-2 9: end while
INs. (a) Trivial Type-2 INs [C1, C1] = Cq, [C2,C2] = Cz and [C3,C3] = 10: if § — {} then
C3. (b) Type-2 IN C1 YCq = [C1 AC2, C1 Y C2] is shown in its membership- ) o
function-representation. (c) Type-2 IN C1 ¥ Co = [C1 A C3,C1 ¥ Co] is 11 C=CuU{X;};
shown again, this time in its (equivalent) interval-representation for L = 32 12: K=K+1;
different levels spaced uniformly over the interval [0, 1] on the vertical axis. 13: else
(d) Type-2 IN C2 Y C3 = [C2 A C3,C2 Y C3] = [0,C2 Y Cs). : . .
14: W;=W,;UXy;
15:  end if

by E = (Ey,...,Ex) € (3V, <), whereas a Type-2 IN will  16: end for
255 be denoted by E = (Eq,...,En) € (52, =).

256 The previous has shown how to define inclusion measure
257 functions on lattice (2, =<). The latter functions can be,
25 extended to the product lattice (F2', <) by inclusion measure
250 function o : £ x £ —[0,1] given as follows

The complexity of Algorithm 1 is determined by its two
270 (nested) loops: The outer (for) loop repeats exactly n times
21 such that, each time, the inner (while) loop repeats O(n) times.
272 Hence, the complexity of the firART scheme for clustering is
onl(z1,.. . 2n), (W1, .. yn)) = min  oy(z;,y;) (4)ze quadratic O(n?) in the number n of the input data.

el N} 274 Algorithm 1 is an extension of fuzzy ART [6] as explained
275 in the following. An interval W; € 3, where i € {1,..., K}
276 corresponds to a “category” of fuzzy ART. Moreover, in fuzzy
277 ART’s terminology, the set S holds all the “set” categories.
27s Competition among the “set” categories takes place in step 5,
279 as well as in step 8, where the index J of the winner category
20 is computed. In particular, flrART’s function o(X; € W;)
24 A. The flrART Scheme for Clustering 281 corresponds to fuzzy ART’s choice (Weber) function such that
265 Fig.2 displays the firART neural architecture for clusteringzs2 the flrART calculates, in parallel, the degree of inclusion of
266 in lattice (JIV, C) inspired from fuzzy ART [6]. 2s3 an input datum X; to each “set” category W; € S. Further-
267 Algorithm 1 describes the firART scheme for clustering inzs« more, firART’s match criterion is the following inequality:
265 the interval lattice data domain (I, C). 25 0(Wy; C X;) > p, implicit in step 6, where the winner

260 III. A FUzZzY LATTICE REASONING (FLR) EXTENSION OF
261 THE FAM NEURAL CLASSIFIER

262 This section details the flrART scheme for clustering fol-
263 lowed by the firFAM scheme for classification.



26 category W ; calculates its degree of inclusion to the input MAP field F*
257 datum X;. In conclusion, if the winner category W ; does

288 not satisfy the match criterion then the winner category W ;

289 1S “reset” in step 7 by removing it (the W ;) from the set

200 S of the “set” categories. Otherwise, the winner category 123 | Fy

201 Wy is enhanced in step 14 by the lattice join operation Module reset  Module
22 Wy = W ;UX so as to include the input datum X;. Note that FLR, FLR,
203 the set C'in step 1 is, typically, empty; nevertheless, it could be .

20 C = {W1,..., Wk}, where Wy, € 3 for k € {1,...,K}. h o,

20s Furthermore, note that |C| denotes the cardinality of set C.
206 We point out that for an empty set S = {} the corresponding
207 input datum X; € 3V is memorized.

208 Some technical differences between firART and fuzzy ART
200 are summarized next. First, fuzzy ART employs, in particular, Fig. 3. Thf: firFAM neural architecture for classification, where X € (U{V ,9)
s00 inclusion measure o~(W; C X,;) as choice (Weber) function. and £(X) is the category label of X.

a1 In fact, there is also a (small positive) parameter value « in the

302 denominator of fuzzy ART’s choice (Weber) function, which

a3 has the following form % Nevertheless, parameter®? number. € (in steps 7 a.nd 13) so as tq resolx./e cat.egory
[28]. Second, fuzzy*® contradiction. The set C,, in step 1 of Algorithm 2 is, typically,

s0s @ can be omitted as detailed in [20], -
ws ART assumes exclusively (as well as implicitly) the positive® Py nevertheless, it could be Co = {Wi,... ’WK 13
oss where Wy, € IV for k € {1,...,K}. The complexity of

aos valuation v(x) = x together with the dual isomorphic function i - ] ; A
w 0(z) = 1 — x for normalized input patterns; the latter is*® Algorithm 2 is determined by its two (nested) loops, likewise

w0s assumed by fuzzy ART’s complement coding technique [6], [7].%” 2 the CQmplexity of Alg(.)ri.thm 1 above. In .conc.lusiop, thﬁ:

a0s Third, fuzzy ART employs inequality “on(X; C W) > p” as®® complexity of fIrlFAM training for structure identification is
) S z . 9 N .

w0 a match criterion. A critical advantage for inclusion measure®® quadratic O(nj,,,) in the number n¢,,, of the training data.

a1 0 (.,.) over on(.,.) is that only o (.,.) is non-zero outside Algorithm 3 describes the parameter optimization subphase

U . . . .
sz a category support; in other words, only o (.,.) enables3 of firFAM training (learning) in lattice (J7,C). Such a

a3 generalization beyond category support. 7 ss2 subphase does not exist in FAM [7]. The objective in this

353 subphase is to optimize the parameters: baseline vigilance p,

ase and Ay, A1, pi1, - .-, AN, AN, pv in both the (sigmoid) positive
s1u B. The firtFAM Scheme for Classification a5 valuation and the dual isomorphic function in every data
ais  Fig.3 displays the flrFAM neural architecture for classifi-sse dimension — Apparently, if we assume a different (parametric)
a16 cation inspired from the fuzzy-ARTMAP, or FAM for shortss7 positive valuation function then the corresponding parameters
a7 [7]. That is, a synergy of two firART modules for clustering,sss will have to be optimized. The “heart” of Algorithm 3 is a
sis namely FLR, and FLR,, interconnected via the MAP fieldsss GENETIC optimization (step 30) of all the parameters in each
s19 F%° whose operation is described next. During training, ase of the N, individual firfFAM classifiers per genetic algorithm
a0 pair (X, £(X)) € jfl\’ x B is presented, where B is a setsst generation. An individual flrFAM classifier in Algorithm 3
a1 of category labels. Module FLR,, clusters the input data X,sse carries out structure identification in step 6 with a single
s22 whereas module FLR;, clusters the corresponding labels ¢(X).sss parameter (p,). To avoid overtraining, the fitness x of an
a3 Since we typically assume p, = 1 it follows that modulesss individual firFAM classifier is computed based on both training
s2« FLR, memorizes each label ¢(X). Note that a category labelsss and validation data. The corresponding success rates S, and
ss is typically represented by a binary pattern of Os and a singlesss Syq1, computed in steps 11 and 18, respectively, are jointly
s26 1. The intermediate MAP field F** implements a functionsez employed in step 21 towards computing the fitness Q, where
se7 £ : IV — B that maps clusters (intervals) in FLR, to labelssss bs € [0, 1] is a user-defined balancing factor for success [30].
s in FLRy. A pair (W, £(W},)), stored in the MAP field F'**,ss  We point out that the categories (clusters) of an individual
a9 is interpreted as rule R : “if Wy, then ¢{(Wy,)”, symbolicallys flrFAM classifier are induced, during the structure identi-
w0 R : Wy — £(Wy,), induced from the training data. an fication subphase, from the training data alone; moreover,
ssr The fltFAM training (learning) phase consists of twoasr the learned knowledge (categories) remains permanently in
as2 subphases, namely structure identification subphase and pa-s7s the system and may be updated, any time, by a system
a3 rameter optimization subphase. Algorithm 2 describes thesr input (see in Algorithm 2, step 22). There is no pruning
3 structure identification subphase towards computing categoriessss here. Note that, typically, an fltFAM classifier learns all its
a5 (clusters), i.e. hyperboxes in a lattice (JIV, C). In particular,ss training data. All the parameter values of an individual firFAM
ass Algorithm 2 is a staightforward extension of FAM’s learningss classifier are optimizable, during the parameter optimization
a7 algorithm [7] such that fuzzy ART modules ART, and ART} a7 subphase, using both the training data and the validation data.
ass correspond to modules FLR, and FLRj, respectively. Notesrs In conclusion, an “optimal” flrFAM classifier is computed
ase that there is a single parameter, namely baseline vigilancesso in the sense that it learns well the training data, moreover
a0 pg € [0,1], in the header “firFAMstr(p,)” of Algorithm 2.se it retains a capacity for generalization based on a balanced
s During training, parameter p, may increase by a small positivess2 combination of the training data and the validation data.

X 4X)




a3  The capacity of the aforementioned “optimal” firFAM clas-
a4 sifier for generalization is demonstrated by the success rate
ass S¢sr on the testing dataset in Algorithm 4.

Algorithm 2 firFAMstr(p,): fitFAM Training (Learning) —
Structure Identification subphase

1: Assume, a set C,, C 270 in module FLR,; K = |C,l; a
baseline vigilance parameter p, € [0, 1]; a small positive
number ¢; a set B = {by,...,by} of category labels; the
vigilance parameter p, = 1; a map £ : I — B on Cy;

2: for i =1 to i = ny,p, do

3. Consider the training datum (X;, 4(X;)) € 3V x B;

4 S=C,

5. J= argmax {o(X; CW;)};

Jje{1,...,IS]}
W;es

6: if K(WJ) 75 g(XZ) then

7. Pa=0(W;CX;)+e¢;

8.

9

end if
: while (S # {}).and.(c(W; C X;) < po) do
10: S=S5\{W,}

11 J = argmax {0(X; CW,)};
JE{1,...,|S|}
W]‘GS
12: if /(W ;) # ((X;) then
13: Pa =0(Wy CX;) +e;
14: end if

15:  end while
16: if S = {} then

17: C,=C,U{X;}; K=K +1;
18: if /(X;) ¢ B then
19: B=BU{{(X;)}; L=L+1;
20: end if
21:  else
22: W;=Wj, UXZ,
23:  end if
24: end for
w For 0 = on, v() = = and 6(x) = 1 — z in the unit

3s7 hypercube, Algorithms 1, 2 and 4 describe the classic FAM.
sss  The applicability of the firFAM classifier can be extended
3ss to a general product lattice £1 X - - - X £ including the lattice
s (F5, <) of Type-2 INs as a special case.

391 IV. HUMAN FACIAL EXPRESSION RECOGNITION

a2 Human-Machine Interaction (HMI) is an emerging appli-
393 cation domain of general interest that includes anthropocen-
a4 tric computing, cognitive robotics, etc. The last decade has
ass witnessed a growing interest in anthropocentric computing,
ass that is computing such that a human is directly involved
37 in the computation, e.g. emotion and/or facial expression
ses recognition, human activity recognition, etc. [10], [40]. Even
ass though an assortment of computational modeling techniques
400 have been proposed, it is recognized that the area lacks general
01 mathematical modeling techniques [1].

a2 A. The Lattice Computing (LC) Paradigm

a3 It has been argued lately that a major reason for the
404 existence of different information processing paradigms is the

Algorithm 3 firtFAMpar: firtFAM Training (Learning) — Pa-
rameter Optimization subphase

1:

2:

3:

R A

17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:
30:

31:

A user defines the integers Ng > 0 and N, > 0 as well
as by € [0,1]. Let entr = 0, Qpres = 0;
Randomize parameters (i) baseline vigilance p, € [0, 1]
and (ii) A; € [0,100], A; € [0,10] and p; € [—10,10] for
both one sigmoid positive valuation vs(x; A, A, p;) =
A;/ (14 e (@=1)) and one dual isomorphic function
0;(x) = 2p; — x per data dimension 7 € {1,...,N};
while cntr < Ng do
for k=1to k=N, do
Let Strn = Spar = 0;
firFAMstr(p,,);
for : =1 to i = n¢,py, do
Consider training datum (X;, 4(X;)) € 3V x B;
J = argmax {o(X; CW;)}
je{l,-,|Cal}
W, €C,
if /(W) =/{(X;) then
Update the training data success rate Sy,;
end if
end for
for i =1to i =nyy do
Consider validation datum (X, /(X;)) € IV x B;
J = argmax {o(X; CW;)}
J€{1,...,|Cal}
W, €C,
if /(W ;) ={(X;) then
Update the validation data success rate Syq;;
end if
end for
Qk = bsStrn + (1 - bs)S'ual;
end for
J = argmax {Qx};
ke{l,...,Np}
if QJ = Qprev then
cntr = entr + 1;

else

cntr = 0;
end if
Qprev = QJ;

GENETIC optimization of the N, individual firFAM
classifiers’ parameters pg, A1, A1, 1, ..., AN, AN, NS
end while

Algorithm 4 flrFAMtst: flrFAM Testing (Generalization)
phase

1:

Assume, a set C, = {W1,..., Wk} C 277 in module
FLR,; a set B = {by,...,br} of category labels in
module FLRy; a map ¢ : 3V — B on C,;

2: for i =1 to i = nys; do

3. Consider the next testing datum (X;,b;) € IV x B;
4 J= argmax {0(X; CW;)}
J€{l,...|Cal}
W; eC,
5. The testing datum X is classified in category £(W ;);
6: end for
7: Compute the overall testing data success rate Syg;




405 need to cope with disparate types of data including matrices
406 of numbers, (distribution) functions, sets, set partitions, logic
407 values, relations, (strings of) symbols, etc. In conclusion,
408 motivated by the fact that popular types of data (including the
409 aforementioned ones) are lattice-ordered, a unified modeling
410 and knowledge-representation has been proposed based on
411 mathematical lattice theory [22], [23].

412 The term “Lattice Computing (LC)” has been proposed as
413 2 Computational Intelligence branch that develops algorithms
aain (R, V,A,+), where R is the set of real numbers [14],
415 [15], [16]. This work proposes the term “Lattice Computing
416 (LC) paradigm” for denoting an evolving collection of tools
417 and mathematical modeling methodologies with a capacity
s18 to process disparate types of (lattice ordered) data per se
419 including logic values, numbers, sets, symbols, graphs, etc.
420 In the aforementioned sense HMI, including anthropocentric
421 computing, emerges as a promising application domain for
422 the LC paradigm. More specifically, IN-based LC techniques
423 may combine (numeric) machine learning techniques with
424 (semantic) rule-based interpretations as shown below.

. Fig. 4. Seven different facial expressions, from the JAFFE benchmark
425 B. The Pattern Recognition Problem data set, including (a) “neutral”, (b) “angry”, (c) “disgusted”, (d) “fear”, (e)
] ) “happy™. () “sad™, and (g) “surprise.
w2 Humans may interact with computers by hand gestures, appy”, (f) “sad”, and (g) “surprise
427 facial expressions, speech or combinations of them. Among
«28 those interactions, facial expressions are especially interesting .. A Benchmark Datasets

429 also because they can fairly easily represent human emotions. . . -
. . o .40 Two facial expression recognition benchmark datasets were
430 Hence, facial expressions have already been used in interactive

431 computer games as indicators of the player’s intention and/or*®' engaged. First, the JAFFE dataset [34] including 213 frontal

432 satisfaction [49], in patient monitoring for pain detection [18],462 images (with 256 >< 256 pixels per image) of 10 d{fferent
« in sign language communication systems [38], efc. a3 persons corresponding to seven common human facial ex-

.. . . . . . ressions, namely ‘“neutral” (30), “angry” (30), “disgusted”
44 A critical information-processing module in any electronic*™ P Y (30) gry” (30) &

a3 system for recognizing facial expressions is a classifier. Facial ™ gg;’r fe?(rﬁn(S?), nhappz/ m(?l)’ bs'adt Eg) 4a;nds Su;gniﬁ
436 €xpression recognition can be cast as a pattern mcognition466 cgarding Japanese lema'e subjects thig4). second, the

37 problem, where a facial expression has to be mcognized467 RA.DBOUD datase':t [33] ingluding 078 = 536 frontal images
43 among a number of known facial expressions including for ™ (with 6811024 pixels per image) corresponding to 8 common

. . . 469 emotional expressions, namely “angry” (67), “contemptuous”
439 example, happiness, sadness, surprise, fear, pain etc. Towards p > y gry” (67), P

410 the aforementioned (recognition) objective “feature extraction” " 67, “dls§usted (67“)’ fe:ar ’ 67, happy 67, geutral
wr is typically pursued in a data preprocessing step. an1 (67), “sad” (67) and “surprise” (67) regarding Caucasian and

. . C 472 Moroccan subjects both male and female (Fig.5). A number
w2 Several feature extraction alternatives on digital images have e . .
. . . . 473 within parentheses above, indicates the number of images per
43 been proposed in the literature including wavelet features

444 [45], facial attributes [19], Gabor features [17] and Zernike " facial/emotional expression.
4s moments [32]. Action units (AUs), i.e. the smallest visually
6 discernible facial movements, are especially popular features
a7 [47]. In this work we employ orthogonal moments, that is+7s In an initial “data preprocessing” step we removed irrelevant
s an invertible image transform [44] known for its effectiveness+7 image content such as background/hair by, first, applying the
w9 in potentially rotation-scale-translation (RST) invariant pattern+s Viola-Jones face detector [48] so as to separate the head region
ss0 recognition applications [43]. Even though specific moments«r from the background and, second, by masking the face with
ss1 (Zernike) have already been employed for facial expression«o an ellipse so as to remove the hair and include as much facial
452 recognition [32], to the authors’ best knowledge, this is the first4s information as possible. In a final “data preprocessing” step
453 joint/comparative employment of different moments features«: we used the latter (face) segment for feature extraction by
454 for human facial expression recognition. 43 the method of orthogonal moments. Six kinds of moments,
sss namely Zernike, Pseudo-Zernike, Fourier-Mellin, Legendre,
ass Tchebichef and Krawtchouk moments [44] were computed up
a6 to order 6 and 5 (for order 5 we kept only the first 16 moments)
46 We carried out a number of human facial and emotionalss for Zernike and Pseudo-Zernike moments, respectively, and
457 expression recognition experiments by the firFAM classifiersss up to order 3 for all other moments. In each case, a 16-
458 as described in this section. a9 dimensional feature vector (including 16 moments of a kind)

475 B. Data Preprocessing and Feature Extraction

455 V. EXPERIMENTS AND RESULTS



s17 the aforementioned (random) data partition 10 times. Care was
s18 taken so that all different classes be represented fairly in the
si9 datasets for training, validation and testing. Every experiment
s20 was repeated 10 times using the same (random) data partitions
s21 for all classifiers. We point out that three dataset partitions
s22 (i.e., for training, validation and testing) were employed only
s23 by the Neural Network and the fitFAM classifiers; whereas,
s24 the remaining classifiers employed jointly the training dataset
s2s and the validation dataset for training.

s2e 1) Experiments with 96-dimensional feature vectors: All
se7 the classifiers were applied in the Euclidean space 936 but
s2s the LDA classifier which could not be applied for numerical
s20 reasons due to the large input data dimension (96) compara-
s30 tively to the total number of the training data. For the Neural
s31 Network classifier an optimal number of hidden layer neurons
s32 was estimated by “trial-and-error” to 50. The firFAM classifier
s33 was applied by representing an image by a 6-dimensional
saa trivial Type-2 IN Ep: [ﬁ, %], where a Type-1 IN in E e 38
s3s was induced from a 16-tuple of numeric (feature) data that
s3 corresponded to a moment kind.

s37  2) Experiments with 16-dimensional feature vectors: All
s3 the classifiers were applied in space 26, In particular, a
s39 Neural Network classifier was applied with an optimal number
s40 of hidden layer neurons estimated by “trial-and-error” to 16.
s« The fltFAM classifier was applied by representing an image

Fig. 5. Eight different emotional expressions, from the RADBOUD bench-54 by a 16-dimensional trivial Type-2 IN = [ s ]’ where
mark data set, including (a) “Angry”, (b) “Contemptuous”, (c) “Disgusted”,ss3 a trivial Type-1 IN € F1% was induced from the corre-

(d) "Fear”, (e) "Happy”, (f) "Neutral”, (g) "Sad”, and (h) "Surprise”. s«s sponding feature vector data. Hence, the firfFAM computed
sa5 “hyperboxes” for an upper Type-2 IN envelope, whereas the
se6 corresponding lower Type-2 IN envelope was the empty set.

sz In an N-dimensional firFAM classification experiment (for
s either N = 6 or N = 16), an inclusion measure (o = o)
540 was computed in the product lattice (F2', <) using equations
s50 (3) and (4). All descriptor values were normalized. A Type-1
ss  We carried out a number of experiments with differentssi IN was represented with L = 32 intervals spaced evenly from
494 Classifiers on either 16- or 96- dimensional (feature) vectorsss: h = 0 to h = 1 included.

495 that represented an image. More specifically, a 16-dimensionalsss  Regarding parameter optimization by a genetic algorithm,
s06 (feature) vector included 16 moments of a kind regarding ei-ss« the phenotype of an individual (flrFAM classifier) consisted
so7 ther Zernike or Pseudo-Zernike or Fourier-Mellin or Legendresss of specific values for 3 sigmoid function vs(x; A;, Ai, )
ass or Tchebichef or Krawtchouk moments, separately; whereas,sss parameters A;, A; and p; per data dimension ¢ € {1,..., N}.
a9 2 6 X 16 = 96-dimensional (feature) vector was produced byss; An additional parameter was the baseline vigilance p,. Hence,
so0 concatenating six 16-dimensional (feature) vectors for the sixsss a total number of 3N + 1 parameters was binary-encoded in
so1 aforementioned kinds of moments, respectively. sso the chromosome of an individual. We included NV, = 25 in-
sz We employed a number of classifiers including the k-ss dividuals per generation. The genetic algorithm was enhanced
sos Nearest-Neighbor (kNN) [17] with & = 1, Linear Discriminantse: by the microgenetic hill-climbing operator and, in addition,
so+ Analysis (LDA) [9], Naive Bayes [32], Classification Treesss2 both elitism and adaptive crossover/mutation rates were im-
so5 [11], feedforward Neural Networks [35] and FAM [7], allsss plemented [41]. A balancing factor for success by = 0.5 (see
sos implemented in the MATLAB 7.8.0 integrated developmentsss Algorithm 3, step 21) was employed. The genetic algorithm
so7 environment (IDE). Moreover, we employed the flrfFAM clas-sss was left to evolve until no improvement was observed in the
s08 sifier implemented in the C++ programming language. ses fitness (Q) 7) of the best individual for Ng = 30 generations in
so  In our classification experiments, a different facial/emo-ss a row. Then, the testing data were applied once and the testing
s1o tional expression corresponded to a different class. We ran-ses data percentage success rate (or, equivalently, generalization
s11 domly partitioned the data in three mutually disjoint sets: oneses rate) Sis; was recorded.

si2 for training, one for validation and another one for testing.sno  Table I displays the “minimum (min)”, “maximum (Max)”,
s13 More specifically, for the JAFFE benchmark the datasets fors» “average (ave)” and ‘“‘standard deviation (std)” statistics of
s14 training, validation and testing included 184, 7 and 22 images,sr the generalization rate (%) regarding the JAFFE benchmark
si5 respectively; whereas, for the RADBOUD benchmark theyszs dataset in 10 computational experiments for a number of
sie included 472, 10 and 54 images, respectively. We repeatedsz classifiers and the aforementioned six kinds of moments con-

490 was computed per image. The induction of a Type-1 IN from
491 a vector of real numbers was carried out as detailed in [30].

492 C. Computational Experiments



TABLE I
GENERALIZATION RATE (%) STATISTICS REGARDING THE JAFFE
TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL
CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, CONCATENATED

TABLE III
GENERALIZATION RATE (%) STATISTICS REGARDING THE JAFFE
TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL
CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, SEPARATELY

Classifier name min Max ave std CLASSIFIER NAME
kNN (k=1) 4091 9474 67.68 15.82 Moment Type min Max ave std
Naive Bayes 18.18 52.63 36.80 10.03 kNN (k=1)
Classification Tree 31.82  47.37 40.02 5.67 1) Zernike 50.00 9545 80.37 13.04
Neural Network (50) 18.18 59.09 37.27 13.52 2) Pseudo-Zernike 45.45 90.91 78.57 13.69
FAM 50.00 90.00 68.87 13.49 3) Fourier-Mellin 45.45 9091 73.98 14.52
firFAM 50.00 86.36 69.54 12.31 4) Legendre 63.64 100.00 7591 10.06
5) Tchebichef 63.64 100.00 75.00 11.19
6) Krawtchouk 40.91 9545 6624 16.36
TABLE II LDA
GENERALIZATION RATE (%) STATISTICS REGARDING THE RADBOUD 1) Zernike 4091 68.18  52.49 973
TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL 2) Pseudo-Zernike 4091 59.09 51.24 7.62
CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, CONCATENATED 3) Fourier-Mellin 31.82 72.73 53.82 11.96
4) Legendre 36.36 7727 53.18 10.51
Classifier name min Max ave std 5) Tchebichef 36.36 7727 53.18 10.51
kNN (k=1) 2222 4630 35.74 7.51 6) Krawtchouk 27.27 5454 41.46 9.85
Naive Bayes 3519 5741 48.15 7.04 NAIVE BAYES
Classification Tree 27.78  40.74  34.07 4.20 1) Zernike 22.73 50.00 32.39 8.83
Neural Network (50) 11.11  64.81 4574 15.81 2) Pseudo-Zernike 22.73 4545  30.89 6.77
FAM 2777 4444 3740 6.03 3) Fourier-Mellin 27.27 50.00 41.36 7.25
firFAM 35.18 50.00 43.14 4.86 4) Legendre 9.09 40.91 27.18 8.30
5) Tchebichef 9.09 36.36 25.81 7.11
6) Krawtchouk 18.18 5454  32.61 13.30
CLASSIFICATION TREE
s7s catenated, whereas Table II displays the corresponding statis- g %emijkez N ?57;%; gggg ;‘g?; lgég
. . . . seudo-Zernike . . 2. .
s76 tics regarding the RADBOUD benchmark dataset. Likewise, 3) Fourier-Mellin 13.64 4545 3322 1010
s77 Table III displays “min”, “Max”, “ave” and “std” statistics of 4) Legendre 2273 4545 3290  7.63
s7s the generalization rate (%) regarding the JAFFE benchmark 5) Tchebichef 13.64 5000 2838 11.96
dat t in 10 . t N . 1 ifi d th 6) Krawtchouk 22.73 45.45 32.61 7.35
s79 datase 1n. experlmen s using various classifiers an e NEURAL NETWORK (16)
ss0 aforementioned six kinds of moments separately, whereas 1) Zernike 9.09  50.00 29.18 14.54
se1 Table IV displays the corresponding statistics regarding the 2) Pseudo-Zernike 455 6364 3348 1945
RADBOUD b h Kk dataset 3) Fourier-Mellin 13.63 68.18 37.13  19.06
582 enchmark dataset. 4) Legendre 9.09 100.00 32.88 25.24
ss3  The computation of any kind of 16 moments took around 5) Tchebichef 9.09 59.09 39.40 16.58
s« 0.5 minute per image. A full classification experiment for one gj\f/[rawmh(’“k 455 5000 2500 1534
ss5 image data partition took around: 1 minute for each one of the 1) Zernike 5000 9545 7900 12.14
sss KNN, LDA, Naive Bayes and Classification Tree classifiers; 2) Pseudo-Zernike 50.00  90.90 7490 12.22
ss7 2 minutes for the FAM classifier; 4 minutes for the Neural i; EZ;:;;Z[‘:“‘“ ig:g ggig g;;‘; };;3
ses Network classifier; 61 minutes for the firFAM classifier due $) Tchebichef 5454 9545 7272 1071
ss0 mainly to the computationally expensive genetic algorithm 6) Krawtchouk 4090 8500 6345 16.67
optimization (see in Algorithm 3, step 30). Note that without fitFAM
=0 optimization ( & p 30) 1) Zernike 5000 9545 8363 10.53
591 any optlmlzatlon, firFAM was as fast as FAM. 2) Pseudo-Zernike 34.54 90.90 79.08 12.52
se  Our computational experiments with the firFAM on the 96- 33 Eourie;—Mellin 2888 ggig ;ggg ng
. . . egendre . . . .
s03 dimensional feature~vect.0rs of the JAFFE dgtaset 1.nduced the 5) Tehebichef 63.63 0545 7726 1092
se4 set of rules shown in Fig.6. In particular, Fig.6 displays one 6) Krawtchouk 4545 9545 69.54  15.00

s95 O6-tuple Type-2 IN per class as follows. The first six columns
so6 of the 7 x 7 Table in Fig.6 (excluding the header) display
so7 Type-2 INs corresponding to Zernike (MOMS_Z), Pseudo-
ses Zernike (MOMS_PZ), Fourier-Mellin (MOMS_FM), Legen-

so9 dre (MOMS_L), Tchebichef (MOMS_T) and Krawtchouks2

e11 D. Significance of the Results

Based on 10 experiments for 10 (random) data partitions,

s00 (MOMS_K) moments, respectively; the seventh column dis-sts respectively, we evaluated all classifiers pairwise using the
so1 plays the corresponding class name. For instance, the first rowsis one-sided “matched pairs” statistical ¢ test with df = 9 degrees
sz of the 7 x 7 Table in Fig.6 displays a data-induced “Type-2s1s of freedom. The null hypothesis Hyp: “the two classifiers (in
s0s 6-tuple IN” granule for the class (facial expression) ANGRY, st a pair) give similar results” was tested versus the alternative
o0 the second row displays the corresponding granule for classsi7 hypothesis H,: “the second classifier (in a pair) improves
s0s DISGUSTED, etc. We point out that the lower/upper envelopests classification performance”. For each evaluation we computed
os U/W € F; of a Type-2 IN E = [U, W] in Fig.6 is indicatedss the P-value of the statistic t = (z — 0)/(s/y/n) for n = 10,
s07 in bold (black) color, whereas all the encoded Type-1 INs aresz0 where T is the sample average of differences in generalization
s0s indicated in light (red) color within a Type-2 IN. A similar sete2r accuracy and s is the corresponding standard deviation. We
s00 Of rules was induced by the firFAM from the 96-dimensionals22 worked at 5% level of significance.

et0 feature vectors of the RADBOUD benchmark dataset. e2s Table V presents our results for the JAFFE 96-dimensional



TABLE IV

MOMS_Z MOMS_PZ MOMS_FM MOMS_L MOMS_T MOMS K  CLASS
GENERALIZATION RATE (%) STATISTICS REGARDING THE RADBOUD

TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL L0 1o L0 1o L0 1o
CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, SEPARATELY 05 05 05 05 05 05 ANGRY
0.0 0.0 0.0
CLASSIFIER NAME l»000 05 1.0 1000 0.5 1.0 LOOO 05 1.0 ]000 0.5 1.0 l.000 05 1.0 ]‘000 05 1.0
Moment Type min Max ave std os t o t o t o ] f o J f os Jt
kNN (k=1) - o - o DISGUSTED
1) Zernike 3333 51.85 4130 6.05 0000 05 10 00 05 10 00 05 10 00 05 10 80 05 10 00 05 10
2) Pseudo-Zernike 33.33  50.00 41.30 5.79 1o 10 1o 10 1o 10
3) Fourier-Mellin 35.19 5556 4481 5.71 o5 o o5 o o5 o5 i
4) Legendre 3333 48.15 40.37 5.44
5) Tchebichef 3148 51.85 4093 6.44 050 05 10 000 05 10 00 05 1o 60 05 10 00 05 10 00 05 Lo
6) Krawtchouk 2222 46.30 35.56 7.45 10 10 10 10 10 10
%)D ? ik 3704 5741 4815 720 . . . . . " narry
ernike . . . .
2) Pseudo-Zernike 35.19 59.26 47.59 8.86 ““00 0.5 1.0 0000 0.5 1.0 ““00 0.5 1.0 0000 0.5 1.0 “00 0.5 1.0 000 05 1.0
3) Fourier-Mellin 46.30 66.67 55.37 6.84 10 10 10 1.0 10 10
4) Legendre 4259 5926  49.26 5.53 05 0s 05 05 05 05 !
5) Tchebichef 4259 5926 4926 553 " " TR
6) Krawtchouk 27.78  50.00 41.30 7.51 00 05 1.0 00 05 L0 00 05 1.0 00 0.5 10 00 05 10 00 05 10
NAIVE BAYES 10 10 10 10 10 10
1) Zernike 37.04 5556 45.37 7.57 0.5 05 0.5 05 0.5 05
2) Pseudo-Zernike 3333 6111 4389 824 " o " o o
3) Fourier-Mellin 37.04 59.26 4593 7.03 700 05 10 00 05 10 00 05 10 00 05 1.0 00 05 10 00 05 L0
4) Legendre 3333 5370 41.67 6.13 1o 10 1o 10 1o 1.0
5) Tchebichef 3333 5370 41.85 6.12 05 05 05 05 05 05 SURPRISE
6) Krawtchouk 1667 4074 2722 756 o o o o o o
CLASSIFICATION TREE 700 05 10 00 05 L0 00 05 10 00 05 1.0 00 05 10 00 05 L0
1) Zernike 2222  37.04 29.07 5.92
2) Pseufio—Zern}ke 24074074 32.04 552 Fig. 6. A row of the 7 x 7 Table above (excluding the header) displays one 6-
3) Fourier-Mellin 24.07 4444 3352 6.56 . . . . .
4) Legendre 220 4259 3259 6.49 dimensional Type-2 IN induced for each of the seven human facial expressions
X - (classes) of the JAFFE benchmark dataset. One Type-2 IN corresponds to one

5) Tchebichef 1296 5000 2870 10.23 : : ype-z AN cor as
6) Krawtchouk 2037 4444 2796 6.67 kind of moments. At the end of a row, the corresponding class name is shown.
NEURAL NETWORK (16)
1) Zernike 1667 5185 2926 1141 . TABLE V .
2) Pseudo-Zernike 5.56 38.89 29.07 9.92 -VALUEZ OETHE ONE-SIDED “MATCHED PAIRS” STATISTICAL ¢t TEST
3) Fourier-Mellin 18.52 61.11 46.67 12.52 WITH f =9 DEGREJEASF%FEFSEEDOM FOR PAIRWISE CLASSIFIER
4) Legendre 24.07 55.56 41.11 10.10 EVALUATION ON THE -DIMENSIONAL FEATURE VECTORS
5) Tchebichef 16.67 5370 35.19 14.48 _
6) Krawtchouk 16.67 46.30 31.11 11.31 Classifier kNN NBayes CTree NN (50) FAM firFAM
FAM kNN 0 0.0001 0.0003  0.1991 0.3217
1) Zernike 2407 4259 3444 720 NBayes 0.1178 04663 0 0
2) Pseudo-Zernike 3148 48.14 3740 5.1 CTree 0.2962 0 0
3) Fourier-Mellin 3333 48.14 4018 436 NN (50) 0.0001 0
4) Legendre 3148 5000 4277  6.73 FAM 0.4290
5) Tchebichef 3333 5555 43.88 7.20
6) Krawtchouk 2222 4259 3259 6.30
fitFAM . .
1) Zemnike 3518 5000 4203 545 e37 Naive Bayes,.N.eural Net\york and ﬂrFAM clgssn‘iers produced
2) Pseudo-Zernike 35.18 48.14 4184  5.17 e3s the best (statistically significant) generalization rates.
Z) FOUfiCé-MeHin 2782 3272 i‘é é“ 2(2)4 e  We repeated the previous experiments for both the JAFFE
5; }rliﬁzrl;icrlfef 3;'33 51'é5 41.6é 5.8(7) ss0 and the RADBOUD 96-dimensional data such that a popula-
6) Krawtchouk 2407 48.14 3740  7.18 e41 tion of 16 data, corresponding to a moment kind, was replaced

o2 Dy its first order statistic, namely its average. We recorded an

43 average performance drop by up to 40% and 20% for the

e« JAFFE and the RADBOUD, respectively. We attributed the
24 data. In particular, a comparison of the testing data accuracyses aforementioned drop to the loss of “discriminatory” informa-
es of the fIrFAM (69.54%) with the kNN (67.68%) and FAMas tion. In particular regarding firfFAM, note that an IN advantage
o2 (68.87%) classifiers resulted in ¢ = 0.4796 and ¢t = 0.1842,es is its representation of all order data statistics [24], [25], [26].
627 which implied P = 0.3217 and P = 0.4290, respectively.ess We carried out additional statistical hypothesis testing to
e2s Hence, the null hypothesis Hy could not be rejected; in otheres evaluate, pairwise, different kinds of moments for each classi-
629 words, the firFAM appears to perform as well as either clas-es fier. For the JAFFE 16-dimensional data, the kNN, FAM and
e30 sifier KNN or FAM. Moreover, a comparison of flrFAM withes: fitFAM classifiers with (Pseudo-)Zernike moments produced
ea1 the Naive Bayes (36.80%), Classification Tree (40.02%) andes: the highest generalization rates. Moreover, for the RADBOUD
32 Neural Network (37.27%) classifiers resulted in ¢t = 8.1986,ess 16-dimensional data, the LDA classifier with Fourier-Mellin
633 t = 8.2653 and ¢t = 6.6391, which practically implied P = 0.es« moments produced the highest generalization rates followed by
e3¢ Hence, the null hypothesis Hj could not be accepted; in otheress the KINN, Naive Bayes, Neural Network and firFAM classifiers
e3s words, the firtFAM appears to improve the generalization rate.ess also with Fourier-Mellin moments as well as by the FAM
s36 Furthermore, for the RADBOUD 96-dimensional data, thessr classifier also with Tchebichef moments. It was confirmed that



TABLE VI . . .
AUC VALUES FOR THREE CLASSIFIERS AND 96-DIM FEATURE VECTORs 707 Fecognition schemes have been reported in the literature mostly

FOR JAFFE CLASSES “NEUTRAL” (C1), “ANGRY” (C2), “DISGUSTED” 708 for the JAFFE [17], [32], [45] rather than for the RADBOUD
(C3), "FEAR” (C4), "HAPPY” (C5), "SAD” (C6) AND “SURPRISE” (C7) ;0 henchmark [19]. More specifically, first, the works in [17],
Classihier o ) 3 ) =5 s i 710 [32] and [45] have reported a maximu.m classi.ﬁcati(.)n rate
KNN (k=) 087 082 078 087 089 081 078 71 0f 89.67%, 92.8% and 95.71%, respectively, using different
FAM 090 082 080 089 09 082 079 72 machine-learning classification schemes, different specific fea-
firFAM 080 075 078 092 094 080 077 nstures as well as different training/testing datasets. Second,
74 the work in [19] has reported a maximum classification
7s rate of 93.96% using a Fuzzy Inference System (FIS) with
es8 N0 specific kind of moments is is globally preferable. 716 human-defined initial rules, different features and 414 frontal
s The fIrtFAM classifier application in the JAFFE problem on;; images regarding six basic emotions and two gaze directions.
se0 10-dimensional vectors produced better generalization rates;; Apparently, the maximum (Max) classification rates reported
so1 than its application on 96-dimensional vectors; that is, keeping;i in Tables I and III for the JAFFE benchmark compare well
sz different moment features in different dimensions improves.,, with the aforementioned results from the literature. Moreover,
ses fItFAM'’s generalizability compared to mingling different mo-,,, it appears that all aforementioned 414 frontal images of the
se« ment features in a single dimension. The latter improvement,,, RADBOUD benchmark were employed in [19] for testing.
ses was not confirmed in the RADBOUD problem, where no sta-;,; Given both the sizes of our data sets for training and testing
ses tistically significant difference was mostly recorded between,, (i.e. around 90% and 10%, respectively) and the fact that the
s7 the 16- and 96-dimensional vector representations. 725 flrFAM typically learns all its training data, it follows that the
s We studied the confusion of different classifiers. First, we.»s firFAM here can outperform the classifier in [19].
eeo present our average (confusion) results in 10 experiments;; The firfFAM classifier performed as good as the FAM or the
eo on 10 random data partitions regarding the 96-dimensional;s KNN classifier (for k& = 1) because they operate on the same
e71 feature vectors of the JAFFE problem. It turned out that thex principle: The kNN decides based on the distance of a testing
o2 KNN classifier learns well the classes “neutral” (61.81%),75 datum from the nearest (labeled) training datum, whereas the
o73 “fear” (60.42%) and “happy” (61.36%), whereas it learnsss (flr)FAM classifier decides based on the inclusion of a testing
e74 the remaining classes in the range 51%-58%; the largestss» datum into a (labeled) category induced from the training data.
ers error is the 24.31% confusion of class “sad” with classzss A unique advantage of the firFAM classifier is the induction of
o76 “surprise”. The FAM classifier learns well the classes “neu-7s flexible (i.e., tunable) descriptive decision-making knowledge
o7 tral” (67.36%), “disgusted” (64.03%), “happy” (67.42%) and;ss (rules) as shown in Fig.6, which (Fig.6) also indicates that
e78 “surprise” (66.57%), whereas it learns the remaining classesss the fIlFAM can be interpreted as a fuzzy neural classifier.
e70 in the range 54%-58%; the largest error is the 25% confusion;s; Moreover, since Type-2 INs are involved, this work paves the
es0 Of class “angry” with class “disgusted”. The firFAM classifier;ss way for sound extensions of FAM to Type-2 FISs [36].
es1 learns well the classes “neutral” (63.19%), “fear” (71.53%),
ez “happy” (76.52%) and “surprise” (65.19%), whereas it learns7ss VI. CONCLUSION
ss3 the remaining classes in the range 47%-58%; the largest error,,  This work has introduced the novel firFAM neural classifier
e84 is the 22.22% confusion of class “sad” with class “surprise”.,4 as a Lattice Computing (LC) extension of the fuzzy ARTMAP
sss The remaining classifiers typically confused a class to over;,, (FAM) neural classifier for real-time learning and classification
s8 50%. Second, we confirmed that classification results dete-745 of nonstationary data followed by an application to facial ex-
se7 riorated considerably for the RADBOUD benchmark. More,4, pression recognition. Comparative computational experiments
sss specifically, even though all classifiers recognized class “neu-74 have demonstrated the viability of our proposed techniques.
e tral” well in the range 62%-87%, they typically confused any,s The work here emphasized an application of the firFAM
so0 other class to over 50%. Note that likewise confusion results;; classifier to (static) human facial expression recognition. Ad-
st were recorded for all 16-dimensional feature vector data ins vantages include the induction of flexible (i.e., tunable) rules
so2 both the JAFFE and the RADBOUD classification problems. 746 computable by machine learning techniques as well as the
ss To further demonstrate a classifier system performance, werso capacity for granular computing so as to cope with data
e« computed Receiver Operating Characteristics (ROC) curves.zs: uncertainty/ambiguity. An additional advantage is firFAM’s
sss Each ROC curve computation was based on a few tens of7s capacity for (non)numeric data fusion based, rigorously, on
sos ““false-positive, true-positive” pairs of points. For lack of space,7ss data semantics represented by partial-order.
se7 we display only the corresponding Area Under Curve (AUC)7:  Future work plans include extensions to dynamic (video)
eos values [13] in Table VI for the three “best performing” classi-7ss human recognition applications engaging, as well, additional
eo0 fiers regarding the 96-dimensional JAFFE data. In particular,ss types of data such as voice, etc.
700 @ Table VI cell entry is the average of 10 AUC values for 10
701 random data partitions. Note that the nearest a Table VI entry7s? ACKNOWLEDGMENT
72 is to 1, the better the corresponding classifier (generalization)sss  This work has been supported, in part, by the European
703 performance. Table VI shows that the best performance waszse Union (Social Fund) and Greek national resources under
704 attained by either classifier FAM or flrFAM. 760 the framework of the “Archimedes IIl: Funding of Research
705 Next, we give a measure of comparison of our techniqueszt Groups in TEI of Athens” project of the “Education &
706 With alternative ones. Note that a number of facial expressionze: Lifelong Learning” Operational Programme.
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