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Abstract—This paper proposes a fundamentally novel exten-
sion, namely flrFAM, of the fuzzy ARTMAP (FAM) neural
classifier for incremental real-time learning and generalization
based on fuzzy lattice reasoning (FLR) techniques. FAM is en-
hanced, first, by a parameter optimization training (sub)phase and,
second, by a capacity to process partially ordered (non)numeric
data including information granules. The interest here focuses
on Intervals’ Numbers (INs) data, where an IN represents a
distribution of data samples. We describe the proposed flrFAM
classifier as a fuzzy neural network that can induce descriptive as
well as flexible (i.e., tunable) decision-making knowledge (rules)
from the data. This work demonstrates the capacity of the
flrFAM classifier for human facial expression recognition on
benchmark datasets. A novel feature extraction and knowledge-
representation is based on orthogonal moments. The reported
experimental results compare well with the results by alternative
classifiers from the literature. The far reaching potential of FLR
in Human-Machine Interaction (HMI) applications is discussed.

Index Terms – Fuzzy ARTMAP, fuzzy lattice reasoning, inclu-
sion measure, intervals’ number, the lattice computing paradigm

I. INTRODUCTION1

The employment of a computational model for learning2

is often based on simplifying (non-realistic) assumptions,3

including abundant/representative data, fixed data distributions4

and independent data samples in order to enable rigorous5

analysis and design. However, far more often than not, the6

previous assumptions do not hold in practical applications such7

as climate/financial modeling, electricity demand, human-8

machine interaction, etc. Hence, alternative modeling ap-9

proaches emerged including (concept) drift models and domain10

adaptation algorithms, which may engage incremental-learning11

and/or online-learning [12], [37]. Nevertheless, an alternative12

modeling approach still makes (heuristic) assumptions such13

as restrictive types of distributions, moreover it is typically14

restricted in the Euclidean space RN . Against this background,15

there is a need for general architectures crafted in a versatile16

framework to enable learning from – and adapting to – an ever17

changing environment.18

This work proposes a straightforward extension of the19

established fuzzy ARTMAP (FAM) neural classifier [5], [7] for20

incremental, on-line learning and classification of nonstation-21

ary data based on fuzzy lattice reasoning (FLR) techniques22

[29] in the context of the versatile lattice theory [3] – Recall23

that “FLR” has been defined as decision-making based on24

an inclusion measure function [25]. In particular, we extend25

FAM’s application domain from the unit hypercube in RN ,26

where learning is pursued by inducing hyperboxes, to a general27

(mathematical) lattice. In conclusion, the flrFAM classifier28

emerges here for learning by inducing intervals in a general29

lattice including the induction of hyperboxes in the unit30

hypercube as a special case. An implied advantage is the31

widening of FAM’s scope so as to deal with data semantics32

represented by partial order. Additional advantages for the33

flrFAM classifier are summarized in the following.34

The proposed flrFAM classifier can learn rare patterns by35

addressing the “stability-plasticity” dilemma the same way as36

FAM does – Recall that the aforementioned dilemma states37

that “(a system) must be capable of plasticity in order to learn38

about significant new events, yet it must also remain stable in39

response to irrelevant or often repeated events” [4]. Moreover,40

the flrFAM classifier can carry out granular computing by41

processing lattice-ordered (information) granules [46] instead42

of processing merely points in RN ; the latter (points) are43

exclusively processed by FAM in the unit hypercube. Fur-44

thermore, in every data dimension, only the flrFAM classifier45

may optimize a tunable positive valuation (weight) function46

towards improving performance.47

The basic “decision-making” instrument of the flrFAM48

classifier is an inclusion measure function σ(., .), which cor-49

responds to both FAM’s choice (Weber) and match functions50

as explained below. Note that, historically, inclusion measures51

of the form σ(A,B) have been introduced for computing the52

degree of inclusion of a hyperbox A into another one B in53

classification applications [20]. It was then realized that the54

set of hyperboxes in RN is lattice-ordered; this fact has been55

the motivation to extend the hyperbox based approach for56

learning/generalization to a general lattice data domain [22].57

The interest of this work is in Intervals’ Numbers (INs)58

data, where an IN represents a distribution of samples. An59

IN may also be thought of as the “α-cuts representation” of a60

fuzzy number. In all, an IN is a mathematical object which can61

be interpreted either probabilistically or possibilistically [41].62

INs, previously called FINs, have been studied in a series of63
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publications. In particular, it has been shown that the set F164

of INs is a (metric) lattice [21], [31] with cardinality ℵ1 [24],65

where “ℵ1” is the cardinality of the set R of real numbers;66

moreover, the space F1 is a cone in a linear space [26], [41].67

INs have already been used in numerous (classification and68

regression) applications [21], [24], [26], [27], [30], [41] as69

well as for hybrid intelligence fusion [25]. Our interest here70

is in an flrFAM classifier application on the lattice (F2,≼) of71

Type-2 Intervals’ Numbers as detailed below.72

From an application point of view, this work focuses on a73

specific human-machine interaction (HMI) problem, namely74

human facial expression recognition. Note that a number of75

learning models have been proposed in human-centered recog-76

nition applications [2], [8]. Currently, static/dynamic facial77

expression recognition is carried out at large by “number78

crunching” machine learning techniques [39]. The flrFAM79

classifier here suggests a viable alternative for flexible (i.e.,80

tunable) rule-based classification with a considerable potential81

for sound (non)numeric data fusion.82

An “agglomerative” FLR classifier has been reported lately83

for human facial expression recognition and applied exclu-84

sively on the JAFFE benchmark [42]. Substantial differences85

with the work here include: First, this work details construc-86

tively a six-level hierarchy of mathematical lattices, whereas87

the work in [42] engages only part of the aforementioned hi-88

erarchy. Second, the work in [42] delineates an agglomerative89

FLR learning scheme only for structure identification such that90

one Type-1 IN is induced (unconditionally) per class; whereas,91

this work details sophisticated extensions of the FAM classifier92

architecture for structure identification followed by parameter93

optimization such that multiple Type-2 INs may be induced94

(conditionally) per class. Third, the work in [42] assumes one95

100-dimensional features (moments) vector represented by one96

(non-trivial) Type-1 IN, furthermore it employs seven random97

data partitions for training/testing; whereas, this work assumes98

one 16-dimensional features (moments) vector represented by99

a (trivial) Type-2 IN, furthermore it employs ten random data100

partitions for training/testing. Fourth, the work in [42] carries101

out computational experiments in space F1
1 engaging only two102

classifiers, namely (agglomerative) FLR and kNN; whereas,103

this work carries out computational experiments in both spaces104

F6
2 and F16

2 engaging seven classifiers, namely flrFLR, kNN,105

LDA, naive Bayes, classification tree, a neural network and106

FAM as detailed below; furthermore, the flrFAM classifier107

here is applied, in addition, on the RADBOUD benchmark;108

moreover, only this work presents statistical testing results.109

Fifth, only this work presents an extensive literature review110

with novel perspectives including an introduction of the lattice111

computing (LC) paradigm.112

The paper is organized as follows. Section II presents a hi-113

erarchy of mathematical lattices including Intervals’ Numbers114

(INs). Section III details the flrFAM extension of the FAM115

classifier. Section IV describes the human facial expression116

recognition problem in context. Section V presents compar-117

ative computational experiments on benchmark datasets and118

results including a discussion of significance. Section VI119

concludes by summarizing our contribution and future work.120

II. A HIERARCHY OF LATTICES121

This section introduces constructively, in six steps, a hierar-122

chy of complete lattices; in particular, each subsection presents123

an ever enhanced (lattice) hierarchy level. For general lattice124

theory notions including the definition of an inclusion measure125

function the reader may refer elsewhere [25], [30].126

Assume a positive valuation1 function v : L → [0,∞) on a127

complete lattice (L,⊑) with least and greatest element O and128

I , respectively, such that v(O) = 0 and v(I) < ∞. Assume129

functions sigma-meet σ⊓ : L × L → [0, 1] and sigma-join130

σ⊔ : L× L → [0, 1] defined as follows131

σ⊓(x, y) =

{
1, for x = O
v(x⊓y)
v(x) , for x A O

(1)

σ⊔(x, y) =

{
1, for x ⊔ y = O
v(y)

v(x⊔y) , for x ⊔ y A O
(2)

Then, both σ⊓(., .) and σ⊔(., .) are inclusion measures. Note132

that an inclusion measure function σ : L× L → [0, 1] can be133

interpreted as a fuzzy order relation on a lattice (L,⊑). Hence,134

notations σ(x, y) and σ(x ⊑ y) will be used interchangeably.135

A. Real Numbers136

The set R of real numbers is a totally-ordered, non-complete137

lattice denoted by (R,≤), where “≤” is the usual order138

relation of real numbers. Lattice (R,≤) can be extended139

to a complete lattice by including both symbols “−∞” and140

“+∞”. In conclusion, the complete lattice (R,≤) emerges,141

where R = R∪{−∞,+∞}, with least and greatest elements142

O = −∞ and I = +∞, respectively.143

In the context of this work we will employ, in particular, a144

reference set L ⊆R so that the totally ordered lattice (L,≤)145

is complete. For example, L can be either R itself or a closed146

interval [a, b] ⊂ R. In every case, L includes a least element147

denoted by O and a greatest element denoted by I (hence148

L = [O, I]). For example, for L = R it is O = −∞ and149

I = +∞; whereas, for L = [a, b] it is O = a and I = b.150

The inf and sup operations in the complete lattice (L,≤) are151

denoted by ∧ and ∨. Any strictly increasing function v : L →152

[0,∞) is a positive valuation on (L,≤), moreover any strictly153

decreasing function θ : L → L is dual isomorphic2 on the154

complete lattice (L,≤). In this work, we consider bijective155

(one-to-one) functions θ : L → L such that both θ(O) = I and156

θ(I) = O; moreover, we consider positive valuation functions157

v : L → [0,∞) such that both v(O) = 0 and v(I) < ∞.158

B. Type-1 Intervals159

Consider the complete lattice (I1,⊆) of Type-1 intervals160

[a, b], or intervals for short, on a complete lattice (L,≤)161

of real numbers with least and greatest elements O and I ,162

1Positive valuation on a lattice (L,⊑) is a real function v : L → R that
satisfies both v(x)+v(y) = v(x⊓y)+v(x⊔y) and x @ y ⇒ v(x) < v(y).

2Let (K,⊑) and (L,⊑) be lattices. A function θ : K → L here is called
dual isomorphic iff both “x @ y ⇔ θ(x) A θ(y)” and “θ onto L”.
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respectively. Recall that an interval is defined as [a, b]
.
= {x :163

a ≤ x ≤ b}. Moreover,164

[a, b] ∩ [c, d] = [a ∨ c, b ∧ d] and [a, b]
.
∪ [c, d] = [a ∧ c, b ∨ d]

Note that if a ∨ c > b ∧ d then [a ∨ c, b ∧ d] = ∅; in words, if165

a∨c > b∧d then we assume that the intersection [a, b]∩ [c, d]166

is the empty set (∅). We remark from [22] that a preferable167

(in computing) representation for the least element OI1 = ∅168

in lattice (I1,⊆) is OI1 = [I,O].169

Consider a (strictly increasing) positive valuation function170

v : L → [0,∞), furthermore consider a (strictly decreasing)171

dual isomorphic function θ : L → L. Then, function v1 :172

L × L → [0,∞) given by v1([a, b]) = v(θ(a)) + v(b) is a173

positive valuation on lattice (L×L,≥ × ≤) [25]. Furthermore,174

based on equations (1) and (2) two inclusion measures σ∩ :175

I1×I1 → [0, 1] and σ .
∪ : I1×I1 → [0, 1] can be introduced by176

σ∩(x, y) = σ⊓(x, x∩y) and σ .
∪(x, y) = σ⊔(x, y), respectively,177

on the complete lattice (I1,⊆) as it will be shown elsewhere.178

Functions θ(.) and v(.) can be selected in different ways. In179

the context of this work, we select a pair of functions v(x) and180

θ(x) so as to satisfy equality “v1([x, x]) = v(θ(x)) + v(x) =181

Constant” required by a “standard” fuzzy lattice reasoning182

(FLR) scheme [25], [28], [29]. For instance, such pairs of183

functions v(x) and θ(x) include, first, v(x) = px and θ(x) =184

Q − x, where p,Q > 0, x ∈ [0, Q] and, second, vs(x) =185

A
1+e−λ(x−µ) and θ(x) = 2µ− x, where A, λ ∈ R+

0 , µ, x ∈ R.186

In pariticular, it follows, first, v1([x, x]) = pQ and, second,187

v1([x, x]) = A, respectively.188

C. Type-2 Intervals189

A Type-2 interval is defined as an interval of Type-1190

intervals. Consider the complete lattice (I2,⊆) of Type-2191

intervals on a complete lattice (L,≤) of real numbers with192

least and greatest elements O and I , respectively. Recall that193

[[a1, a2], [b1, b2]] ∩ [[c1, c2], [d1, d2]] =194

[[a1, a2]
.
∪ [c1, c2], [b1, b2] ∩ [d1, d2]], and

[[a1, a2], [b1, b2]]
.
∪ [[c1, c2], [d1, d2]] =195

[[a1, a2] ∩ [c1, c2], [b1, b2]
.
∪ [d1, d2]].

We remark that a preferable representation for the least ele-196

ment OI2 = ∅ in lattice (I2,⊆) is OI2 = [[O, I], [I,O]].197

Consider a (strictly increasing) positive valuation function198

v : L → [0,∞) as well as a (strictly decreasing) dual199

isomorphic function θ : L → L. Recall that function v1 :200

L×L → [0,∞) given by v1(a, b) = v(θ(a))+v(b) is a positive201

valuation. Furthermore, function θ1 : L × L → L × L given202

by θ1(a, b) = (b, a) is dual isomorphic. Therefore, function203

v2 : L×L×L×L → [0,∞) given by v2([[a1, a2], [b1, b2]]) =204

v(a1)+ v(θ(a2))+ v(θ(b1))+ v(b2) is a positive valuation on205

lattice (L × L × L × L,≤ × ≥ × ≥ × ≤). In conclusion,206

based on (1) and (2) inclusion measures σ∩ : I2×I2 → [0, 1]207

and σ .
∪ : I2 × I2 → [0, 1] can be introduced by σ∩(x, y) =208

σ⊓(x, x ∩ y) and σ .
∪(x, y) = σ⊔(x, y), respectively, on the209

complete lattice (I2,⊆) of Type-2 intervals.210

D. Type-1 Intervals’ Numbers (INs)211

Consider the following definition.212

Definition 2.1: A Type-1 Intervals’ Number (IN) is a func-
tion F : [0, 1] → I1 which satisfies

F (0) = II1,

h1 ≤ h2 ⇒ F (h1) ⊇ F (h2),

∀P ⊆ [0, 1] : ∩h∈PF (h) = F
(∨

P
)
.

We will denote the set of INs by F1 and equip it with213

an order relationship ≼ such that F ≼ G ⇔ (∀h ∈ [0, 1] :214

F (h) ⊆ G(h)). Furthermore, we will denote an IN by a capital215

letter in italics, e.g. F1 ∋ F = F (h) = [ah, bh], h ∈ [0, 1]. In216

practice, an IN is interpreted as an information granule. It turns217

out that (F1,≼) is a complete lattice whose least element ∅ is218

preferably represented as OF1 = O(h) = [I,O], h ∈ [0, 1].219

Definition 2.1 implies that an IN can be represented by a set220

of intervals; that is, its interval-representation. In addition, an221

IN can, equivalently, be represented by a membership function;222

that is, the membership-function-representation [25].223

E. Type-2 Intervals’ Numbers (INs)224

Another information granule of interest is an interval [U,W ]225

of Type-1 INs U and W , where interval [U,W ] by definition226

equals [U,W ]
.
= {X ∈ F1: U ≼ X ≼ W}. In the latter sense227

we say that X is encoded in [U,W ]. Interval [U,W ] is called228

Type-2 IN. It follows the complete lattice (F2,≼) of Type-2229

INs. We remark that the least (empty) interval ∅ is preferably230

represented in computing as OF2 = O(h) = [[O, I], [I,O]],231

where h ∈ [0, 1]. A Type-2 IN will be denoted by a double-232

line capital letter, e.g. F ∈ F2.233

The lattice (F2,≼) join operation is demonstrated in Fig.1.234

In particular, Fig.1(a) shows trivial Type-2 INs C1 = [C1, C1],235

C2 = [C2, C2] and C3 = [C3, C3]. Fig.1(b) displays the join236

C1 g C2 = [C1 f C2, C1 g C2] in its membership-function-237

representation. Note that, since Type-1 INs C1 and C2 overlap,238

the Type-1 IN C1 f C2 is not empty. More specifically, it239

is (C1 f C2)(h) ̸= ∅, for h ∈ [0, 0.6471]; nevertheless, for240

h ∈ (0.6471, 1], it is (C1 f C2)(h) = ∅. Fig.1(c) displays241

the join C1 g C2 in the (equivalent) interval-representation.242

Fig.1(d) displays the join C2gC3 = [C2fC3, C2gC3] in its243

membership-function-representation. Note that, since Type-1244

INs C2 and C3 do not overlap, the Type-1 IN C2 f C3 is245

empty, that is (C2 f C3)(h) = ∅, for all h ∈ [0, 1].246

We point out that there are similarities as well as differences247

between Type-1/2 INs and Type-1/2 fuzzy sets [30].248

Our interest here focuses on inclusion measure σ .g : F2 ×249

F2 → [0, 1] given as [22]250

σ .g(E1,E2) =

1∫
0

σ .
∪(E1(h),E2(h))dh (3)

F. Extensions to More Dimensions251

An N -tuple IN of Type-1/2 will be indicated by an “over252

right arrow”. More specifically, a Type-1 IN will be denoted253
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Fig. 1. Demonstrating the lattice join (g) operation between trivial Type-2
INs. (a) Trivial Type-2 INs [C1, C1] = C1, [C2, C2] = C2 and [C3, C3] =
C3. (b) Type-2 IN C1gC2 = [C1fC2, C1gC2] is shown in its membership-
function-representation. (c) Type-2 IN C1 g C2 = [C1 f C2, C1 g C2] is
shown again, this time in its (equivalent) interval-representation for L = 32
different levels spaced uniformly over the interval [0, 1] on the vertical axis.
(d) Type-2 IN C2 g C3 = [C2 f C3, C2 g C3] = [∅, C2 g C3].

by
−→
E = (E1, . . . , EN ) ∈ (FN

1 ,≼), whereas a Type-2 IN will254

be denoted by
−→
E = (E1, . . . ,EN ) ∈ (FN

2 ,≼).255

The previous has shown how to define inclusion measure256

functions on lattice (F2,≼). The latter functions can be257

extended to the product lattice (FN
2 ,≼) by inclusion measure258

function σ∧ : L× L →[0, 1] given as follows259

σ∧((x1, . . . , xN ), (y1, . . . , yN )) = min
i∈{1,...,N}

σi(xi, yi) (4)

III. A FUZZY LATTICE REASONING (FLR) EXTENSION OF260

THE FAM NEURAL CLASSIFIER261

This section details the flrART scheme for clustering fol-262

lowed by the flrFAM scheme for classification.263

A. The flrART Scheme for Clustering264

Fig.2 displays the flrART neural architecture for clustering265

in lattice (IN1 ,⊆) inspired from fuzzy ART [6].266

Algorithm 1 describes the flrART scheme for clustering in267

the interval lattice data domain (IN1 ,⊆).268

Input Layer F1

Buffering & Matching 

Category Layer F2

Competition: Winner takes all 

X

(X W1) (X W2) (X W3) (X WK)

W1

W2

WK

reset

1 2 3 K

W3

Fig. 2. The flrART neural architecture for clustering, where an input pattern
X is in the lattice (IN1 ,⊆) of intervals.

Algorithm 1 flrART Clustering

1: Assume a set C ⊂ 2I
N
1 ; K = |C|; a user-defined vigilance

parameter ρ ∈ [0, 1];
2: for i = 1 to i = n do
3: Consider the next input datum Xi ∈ IN1 ;
4: S

.
= C;

5: J
.
= argmax

j∈{1,...,|S|}
Wj∈S

{σ(Xi ⊆ Wj)};

6: while (S ̸= {}).and.(σ(WJ ⊆ Xi) < ρ) do
7: S

.
= S \ {WJ};

8: J = argmax
j∈{1,...,|S|}

Wj∈S

{σ(Xi ⊆ Wj)};

9: end while
10: if S = {} then
11: C

.
= C ∪ {Xi};

12: K
.
= K + 1;

13: else
14: WJ

.
= WJ

.
∪Xi;

15: end if
16: end for

The complexity of Algorithm 1 is determined by its two269

(nested) loops: The outer (for) loop repeats exactly n times270

such that, each time, the inner (while) loop repeats O(n) times.271

Hence, the complexity of the flrART scheme for clustering is272

quadratic O(n2) in the number n of the input data.273

Algorithm 1 is an extension of fuzzy ART [6] as explained274

in the following. An interval Wi ∈ IN1 , where i ∈ {1, . . . ,K}275

corresponds to a “category” of fuzzy ART. Moreover, in fuzzy276

ART’s terminology, the set S holds all the “set” categories.277

Competition among the “set” categories takes place in step 5,278

as well as in step 8, where the index J of the winner category279

is computed. In particular, flrART’s function σ(Xi ⊆ Wj)280

corresponds to fuzzy ART’s choice (Weber) function such that281

the flrART calculates, in parallel, the degree of inclusion of282

an input datum Xi to each “set” category Wj ∈ S. Further-283

more, flrART’s match criterion is the following inequality:284

σ(WJ ⊆ Xi) ≥ ρ, implicit in step 6, where the winner285



5

category WJ calculates its degree of inclusion to the input286

datum Xi. In conclusion, if the winner category WJ does287

not satisfy the match criterion then the winner category WJ288

is “reset” in step 7 by removing it (the WJ ) from the set289

S of the “set” categories. Otherwise, the winner category290

WJ is enhanced in step 14 by the lattice join operation291

WJ
.
= WJ

.
∪Xi so as to include the input datum Xi. Note that292

the set C in step 1 is, typically, empty; nevertheless, it could be293

C = {W1, . . . ,WK}, where Wk ∈ IN1 for k ∈ {1, . . . ,K}.294

Furthermore, note that |C| denotes the cardinality of set C.295

We point out that for an empty set S = {} the corresponding296

input datum Xi ∈ IN1 is memorized.297

Some technical differences between flrART and fuzzy ART298

are summarized next. First, fuzzy ART employs, in particular,299

inclusion measure σ∩(Wj ⊆ Xi) as choice (Weber) function.300

In fact, there is also a (small positive) parameter value α in the301

denominator of fuzzy ART’s choice (Weber) function, which302

has the following form v(Xi∩Wj)
α+v(Wj)

. Nevertheless, parameter303

α can be omitted as detailed in [20], [28]. Second, fuzzy304

ART assumes exclusively (as well as implicitly) the positive305

valuation v(x) = x together with the dual isomorphic function306

θ(x) = 1 − x for normalized input patterns; the latter is307

assumed by fuzzy ART’s complement coding technique [6], [7].308

Third, fuzzy ART employs inequality “σ∩(Xi ⊆ WJ) ≥ ρ” as309

a match criterion. A critical advantage for inclusion measure310

σ .
∪(., .) over σ∩(., .) is that only σ .

∪(., .) is non-zero outside311

a category support; in other words, only σ .
∪(., .) enables312

generalization beyond category support.313

B. The flrFAM Scheme for Classification314

Fig.3 displays the flrFAM neural architecture for classifi-315

cation inspired from the fuzzy-ARTMAP, or FAM for short316

[7]. That is, a synergy of two flrART modules for clustering,317

namely FLRa and FLRb, interconnected via the MAP field318

F ab whose operation is described next. During training, a319

pair (X, ℓ(X)) ∈ IN1 × B is presented, where B is a set320

of category labels. Module FLRa clusters the input data X,321

whereas module FLRb clusters the corresponding labels ℓ(X).322

Since we typically assume ρb = 1 it follows that module323

FLRb memorizes each label ℓ(X). Note that a category label324

is typically represented by a binary pattern of 0s and a single325

1. The intermediate MAP field F ab implements a function326

ℓ : IN1 → B that maps clusters (intervals) in FLRa to labels327

in FLRb. A pair (Wk, ℓ(Wk)), stored in the MAP field F ab,328

is interpreted as rule R : “if Wk then ℓ(Wk)”, symbolically329

R : Wk → ℓ(Wk), induced from the training data.330

The flrFAM training (learning) phase consists of two331

subphases, namely structure identification subphase and pa-332

rameter optimization subphase. Algorithm 2 describes the333

structure identification subphase towards computing categories334

(clusters), i.e. hyperboxes in a lattice (IN1 ,⊆). In particular,335

Algorithm 2 is a staightforward extension of FAM’s learning336

algorithm [7] such that fuzzy ART modules ARTa and ARTb337

correspond to modules FLRa and FLRb, respectively. Note338

that there is a single parameter, namely baseline vigilance339

ρa ∈ [0, 1], in the header “flrFAMstr(ρa)” of Algorithm 2.340

During training, parameter ρa may increase by a small positive341
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Fig. 3. The flrFAM neural architecture for classification, where X ∈ (IN1 ,⊆)
and ℓ(X) is the category label of X.

number ε (in steps 7 and 13) so as to resolve category342

contradiction. The set Ca in step 1 of Algorithm 2 is, typically,343

empty; nevertheless, it could be Ca = {W1, . . . ,WK},344

where Wk ∈ IN1 for k ∈ {1, . . . ,K}. The complexity of345

Algorithm 2 is determined by its two (nested) loops, likewise346

as the complexity of Algorithm 1 above. In conclusion, the347

complexity of flrFAM training for structure identification is348

quadratic O(n2
trn) in the number ntrn of the training data.349

Algorithm 3 describes the parameter optimization subphase350

of flrFAM training (learning) in lattice (IN1 ,⊆). Such a351

subphase does not exist in FAM [7]. The objective in this352

subphase is to optimize the parameters: baseline vigilance ρa353

and A1, λ1, µ1, . . . , AN , λN , µN in both the (sigmoid) positive354

valuation and the dual isomorphic function in every data355

dimension – Apparently, if we assume a different (parametric)356

positive valuation function then the corresponding parameters357

will have to be optimized. The “heart” of Algorithm 3 is a358

GENETIC optimization (step 30) of all the parameters in each359

of the Np individual flrFAM classifiers per genetic algorithm360

generation. An individual flrFAM classifier in Algorithm 3361

carries out structure identification in step 6 with a single362

parameter (ρa). To avoid overtraining, the fitness Qk of an363

individual flrFAM classifier is computed based on both training364

and validation data. The corresponding success rates Strn and365

Sval, computed in steps 11 and 18, respectively, are jointly366

employed in step 21 towards computing the fitness Qk, where367

bs ∈ [0, 1] is a user-defined balancing factor for success [30].368

We point out that the categories (clusters) of an individual369

flrFAM classifier are induced, during the structure identi-370

fication subphase, from the training data alone; moreover,371

the learned knowledge (categories) remains permanently in372

the system and may be updated, any time, by a system373

input (see in Algorithm 2, step 22). There is no pruning374

here. Note that, typically, an flrFAM classifier learns all its375

training data. All the parameter values of an individual flrFAM376

classifier are optimizable, during the parameter optimization377

subphase, using both the training data and the validation data.378

In conclusion, an “optimal” flrFAM classifier is computed379

in the sense that it learns well the training data, moreover380

it retains a capacity for generalization based on a balanced381

combination of the training data and the validation data.382
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The capacity of the aforementioned “optimal” flrFAM clas-383

sifier for generalization is demonstrated by the success rate384

Stst on the testing dataset in Algorithm 4.385

Algorithm 2 flrFAMstr(ρa): flrFAM Training (Learning) –
Structure Identification subphase

1: Assume, a set Ca ⊂ 2I
N
1 in module FLRa; K = |Ca|; a

baseline vigilance parameter ρa ∈ [0, 1]; a small positive
number ε; a set B = {b1, . . . , bL} of category labels; the
vigilance parameter ρb = 1; a map ℓ : IN1 → B on Ca;

2: for i = 1 to i = ntrn do
3: Consider the training datum (Xi, ℓ(Xi)) ∈ IN1 ×B;
4: S

.
= Ca;

5: J
.
= argmax

j∈{1,...,|S|}
Wj∈S

{σ(Xi ⊆ Wj)};

6: if ℓ(WJ ) ̸= ℓ(Xi) then
7: ρa = σ(WJ ⊆ Xi) + ε;
8: end if
9: while (S ̸= {}).and.(σ(WJ ⊆ Xi) < ρa) do

10: S
.
= S \ {WJ};

11: J
.
= argmax

j∈{1,...,|S|}
Wj∈S

{σ(Xi ⊆ Wj)};

12: if ℓ(WJ) ̸= ℓ(Xi) then
13: ρa = σ(WJ ⊆ Xi) + ε;
14: end if
15: end while
16: if S = {} then
17: Ca

.
= Ca ∪ {Xi}; K .

= K + 1;
18: if ℓ(Xi) /∈ B then
19: B

.
= B ∪ {ℓ(Xi)}; L .

= L+ 1;
20: end if
21: else
22: WJ

.
= WJ

.
∪Xi;

23: end if
24: end for

For σ = σ∩, v(x) = x and θ(x) = 1 − x in the unit386

hypercube, Algorithms 1, 2 and 4 describe the classic FAM.387

The applicability of the flrFAM classifier can be extended388

to a general product lattice L1×· · ·×LN including the lattice389

(FN
2 ,≼) of Type-2 INs as a special case.390

IV. HUMAN FACIAL EXPRESSION RECOGNITION391

Human-Machine Interaction (HMI) is an emerging appli-392

cation domain of general interest that includes anthropocen-393

tric computing, cognitive robotics, etc. The last decade has394

witnessed a growing interest in anthropocentric computing,395

that is computing such that a human is directly involved396

in the computation, e.g. emotion and/or facial expression397

recognition, human activity recognition, etc. [10], [40]. Even398

though an assortment of computational modeling techniques399

have been proposed, it is recognized that the area lacks general400

mathematical modeling techniques [1].401

A. The Lattice Computing (LC) Paradigm402

It has been argued lately that a major reason for the403

existence of different information processing paradigms is the404

Algorithm 3 flrFAMpar: flrFAM Training (Learning) – Pa-
rameter Optimization subphase

1: A user defines the integers NG > 0 and Np > 0 as well
as bs ∈ [0, 1]. Let cntr = 0, Qprev = 0;

2: Randomize parameters (i) baseline vigilance ρa ∈ [0, 1]
and (ii) Ai ∈ [0, 100], λi ∈ [0, 10] and µi ∈ [−10, 10] for
both one sigmoid positive valuation vs(x;Ai, λi, µi) =
Ai/

(
1 + e−λi(x−µi)

)
and one dual isomorphic function

θi(x) = 2µi − x per data dimension i ∈ {1, . . . , N};
3: while cntr ≤ NG do
4: for k = 1 to k = Np do
5: Let Strn = Sval = 0;
6: flrFAMstr(ρa);
7: for i = 1 to i = ntrn do
8: Consider training datum (Xi, ℓ(Xi)) ∈ IN1 ×B;
9: J

.
= argmax

j∈{1,...,|Ca|}
Wj∈Ca

{σ(Xi ⊆ Wj)};

10: if ℓ(WJ ) = ℓ(Xi) then
11: Update the training data success rate Strn;
12: end if
13: end for
14: for i = 1 to i = nval do
15: Consider validation datum (Xi, ℓ(Xi)) ∈ IN1 ×B;
16: J

.
= argmax

j∈{1,...,|Ca|}
Wj∈Ca

{σ(Xi ⊆ Wj)};

17: if ℓ(WJ ) = ℓ(Xi) then
18: Update the validation data success rate Sval;
19: end if
20: end for
21: Qk

.
= bsStrn + (1− bs)Sval;

22: end for
23: J

.
= argmax

k∈{1,...,Np}
{Qk};

24: if QJ = Qprev then
25: cntr

.
= cntr + 1;

26: else
27: cntr

.
= 0;

28: end if
29: Qprev

.
= QJ ;

30: GENETIC optimization of the Np individual flrFAM
classifiers’ parameters ρa, A1, λ1, µ1, . . . , AN , λN , µN ;

31: end while

Algorithm 4 flrFAMtst: flrFAM Testing (Generalization)
phase

1: Assume, a set Ca = {W1, . . . ,WK} ⊂ 2I
N
1 in module

FLRa; a set B = {b1, . . . , bL} of category labels in
module FLRb; a map ℓ : IN1 → B on Ca;

2: for i = 1 to i = ntst do
3: Consider the next testing datum (Xi, bi) ∈ IN1 ×B;
4: J

.
= argmax

j∈{1,...,|Ca|}
Wj∈Ca

{σ(Xi ⊆ Wj)};

5: The testing datum Xi is classified in category ℓ(WJ );
6: end for
7: Compute the overall testing data success rate Stst;
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need to cope with disparate types of data including matrices405

of numbers, (distribution) functions, sets, set partitions, logic406

values, relations, (strings of) symbols, etc. In conclusion,407

motivated by the fact that popular types of data (including the408

aforementioned ones) are lattice-ordered, a unified modeling409

and knowledge-representation has been proposed based on410

mathematical lattice theory [22], [23].411

The term “Lattice Computing (LC)” has been proposed as412

a Computational Intelligence branch that develops algorithms413

in (R,∨,∧,+), where R is the set of real numbers [14],414

[15], [16]. This work proposes the term “Lattice Computing415

(LC) paradigm” for denoting an evolving collection of tools416

and mathematical modeling methodologies with a capacity417

to process disparate types of (lattice ordered) data per se418

including logic values, numbers, sets, symbols, graphs, etc.419

In the aforementioned sense HMI, including anthropocentric420

computing, emerges as a promising application domain for421

the LC paradigm. More specifically, IN-based LC techniques422

may combine (numeric) machine learning techniques with423

(semantic) rule-based interpretations as shown below.424

B. The Pattern Recognition Problem425

Humans may interact with computers by hand gestures,426

facial expressions, speech or combinations of them. Among427

those interactions, facial expressions are especially interesting428

also because they can fairly easily represent human emotions.429

Hence, facial expressions have already been used in interactive430

computer games as indicators of the player’s intention and/or431

satisfaction [49], in patient monitoring for pain detection [18],432

in sign language communication systems [38], etc.433

A critical information-processing module in any electronic434

system for recognizing facial expressions is a classifier. Facial435

expression recognition can be cast as a pattern recognition436

problem, where a facial expression has to be recognized437

among a number of known facial expressions including, for438

example, happiness, sadness, surprise, fear, pain etc. Towards439

the aforementioned (recognition) objective “feature extraction”440

is typically pursued in a data preprocessing step.441

Several feature extraction alternatives on digital images have442

been proposed in the literature including wavelet features443

[45], facial attributes [19], Gabor features [17] and Zernike444

moments [32]. Action units (AUs), i.e. the smallest visually445

discernible facial movements, are especially popular features446

[47]. In this work we employ orthogonal moments, that is447

an invertible image transform [44] known for its effectiveness448

in potentially rotation-scale-translation (RST) invariant pattern449

recognition applications [43]. Even though specific moments450

(Zernike) have already been employed for facial expression451

recognition [32], to the authors’ best knowledge, this is the first452

joint/comparative employment of different moments features453

for human facial expression recognition.454

V. EXPERIMENTS AND RESULTS455

We carried out a number of human facial and emotional456

expression recognition experiments by the flrFAM classifier457

as described in this section.458

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 4. Seven different facial expressions, from the JAFFE benchmark
data set, including (a) “neutral”, (b) “angry”, (c) “disgusted”, (d) “fear”, (e)
“happy”, (f) “sad”, and (g) “surprise”.

A. Benchmark Datasets459

Two facial expression recognition benchmark datasets were460

engaged. First, the JAFFE dataset [34] including 213 frontal461

images (with 256 × 256 pixels per image) of 10 different462

persons corresponding to seven common human facial ex-463

pressions, namely “neutral” (30), “angry” (30), “disgusted”464

(29), “fear” (32), “happy” (31), “sad” (31) and “surprise”465

(30) regarding Japanese female subjects (Fig.4). Second, the466

RADBOUD dataset [33] including 67×8 = 536 frontal images467

(with 681×1024 pixels per image) corresponding to 8 common468

emotional expressions, namely “angry” (67), “contemptuous”469

(67), “disgusted” (67), “fear” (67), “happy” (67), “neutral”470

(67), “sad” (67) and “surprise” (67) regarding Caucasian and471

Moroccan subjects both male and female (Fig.5). A number472

within parentheses above, indicates the number of images per473

facial/emotional expression.474

B. Data Preprocessing and Feature Extraction475

In an initial “data preprocessing” step we removed irrelevant476

image content such as background/hair by, first, applying the477

Viola-Jones face detector [48] so as to separate the head region478

from the background and, second, by masking the face with479

an ellipse so as to remove the hair and include as much facial480

information as possible. In a final “data preprocessing” step481

we used the latter (face) segment for feature extraction by482

the method of orthogonal moments. Six kinds of moments,483

namely Zernike, Pseudo-Zernike, Fourier-Mellin, Legendre,484

Tchebichef and Krawtchouk moments [44] were computed up485

to order 6 and 5 (for order 5 we kept only the first 16 moments)486

for Zernike and Pseudo-Zernike moments, respectively, and487

up to order 3 for all other moments. In each case, a 16-488

dimensional feature vector (including 16 moments of a kind)489
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 5. Eight different emotional expressions, from the RADBOUD bench-
mark data set, including (a) “Angry”, (b) “Contemptuous”, (c) “Disgusted”,
(d) “Fear”, (e) “Happy”, (f) “Neutral”, (g) “Sad”, and (h) “Surprise”.

was computed per image. The induction of a Type-1 IN from490

a vector of real numbers was carried out as detailed in [30].491

C. Computational Experiments492

We carried out a number of experiments with different493

classifiers on either 16- or 96- dimensional (feature) vectors494

that represented an image. More specifically, a 16-dimensional495

(feature) vector included 16 moments of a kind regarding ei-496

ther Zernike or Pseudo-Zernike or Fourier-Mellin or Legendre497

or Tchebichef or Krawtchouk moments, separately; whereas,498

a 6 × 16 = 96-dimensional (feature) vector was produced by499

concatenating six 16-dimensional (feature) vectors for the six500

aforementioned kinds of moments, respectively.501

We employed a number of classifiers including the k-502

Nearest-Neighbor (kNN) [17] with k = 1, Linear Discriminant503

Analysis (LDA) [9], Naive Bayes [32], Classification Trees504

[11], feedforward Neural Networks [35] and FAM [7], all505

implemented in the MATLAB 7.8.0 integrated development506

environment (IDE). Moreover, we employed the flrFAM clas-507

sifier implemented in the C++ programming language.508

In our classification experiments, a different facial/emo-509

tional expression corresponded to a different class. We ran-510

domly partitioned the data in three mutually disjoint sets: one511

for training, one for validation and another one for testing.512

More specifically, for the JAFFE benchmark the datasets for513

training, validation and testing included 184, 7 and 22 images,514

respectively; whereas, for the RADBOUD benchmark they515

included 472, 10 and 54 images, respectively. We repeated516

the aforementioned (random) data partition 10 times. Care was517

taken so that all different classes be represented fairly in the518

datasets for training, validation and testing. Every experiment519

was repeated 10 times using the same (random) data partitions520

for all classifiers. We point out that three dataset partitions521

(i.e., for training, validation and testing) were employed only522

by the Neural Network and the flrFAM classifiers; whereas,523

the remaining classifiers employed jointly the training dataset524

and the validation dataset for training.525

1) Experiments with 96-dimensional feature vectors: All526

the classifiers were applied in the Euclidean space R96 but527

the LDA classifier which could not be applied for numerical528

reasons due to the large input data dimension (96) compara-529

tively to the total number of the training data. For the Neural530

Network classifier an optimal number of hidden layer neurons531

was estimated by “trial-and-error” to 50. The flrFAM classifier532

was applied by representing an image by a 6-dimensional533

trivial Type-2 IN
−→
E = [

−→
E ,

−→
E ], where a Type-1 IN in

−→
E ∈ F6

1534

was induced from a 16-tuple of numeric (feature) data that535

corresponded to a moment kind.536

2) Experiments with 16-dimensional feature vectors: All537

the classifiers were applied in space R16. In particular, a538

Neural Network classifier was applied with an optimal number539

of hidden layer neurons estimated by “trial-and-error” to 16.540

The flrFAM classifier was applied by representing an image541

by a 16-dimensional trivial Type-2 IN
−→
E = [

−→
E ,

−→
E ], where542

a trivial Type-1 IN
−→
E ∈ F16

1 was induced from the corre-543

sponding feature vector data. Hence, the flrFAM computed544

“hyperboxes” for an upper Type-2 IN envelope, whereas the545

corresponding lower Type-2 IN envelope was the empty set.546

In an N -dimensional flrFAM classification experiment (for547

either N = 6 or N = 16), an inclusion measure (σ = σ .
∪)548

was computed in the product lattice (FN
2 ,≼) using equations549

(3) and (4). All descriptor values were normalized. A Type-1550

IN was represented with L = 32 intervals spaced evenly from551

h = 0 to h = 1 included.552

Regarding parameter optimization by a genetic algorithm,553

the phenotype of an individual (flrFAM classifier) consisted554

of specific values for 3 sigmoid function vs(x;Ai, λi, µi)555

parameters Ai, λi and µi per data dimension i ∈ {1, . . . , N}.556

An additional parameter was the baseline vigilance ρa. Hence,557

a total number of 3N + 1 parameters was binary-encoded in558

the chromosome of an individual. We included Np = 25 in-559

dividuals per generation. The genetic algorithm was enhanced560

by the microgenetic hill-climbing operator and, in addition,561

both elitism and adaptive crossover/mutation rates were im-562

plemented [41]. A balancing factor for success bs = 0.5 (see563

Algorithm 3, step 21) was employed. The genetic algorithm564

was left to evolve until no improvement was observed in the565

fitness (QJ ) of the best individual for NG = 30 generations in566

a row. Then, the testing data were applied once and the testing567

data percentage success rate (or, equivalently, generalization568

rate) Stst was recorded.569

Table I displays the “minimum (min)”, “maximum (Max)”,570

“average (ave)” and “standard deviation (std)” statistics of571

the generalization rate (%) regarding the JAFFE benchmark572

dataset in 10 computational experiments for a number of573

classifiers and the aforementioned six kinds of moments con-574



9

TABLE I
GENERALIZATION RATE (%) STATISTICS REGARDING THE JAFFE

TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL
CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, CONCATENATED

Classifier name min Max ave std
kNN (k=1) 40.91 94.74 67.68 15.82
Naive Bayes 18.18 52.63 36.80 10.03
Classification Tree 31.82 47.37 40.02 5.67
Neural Network (50) 18.18 59.09 37.27 13.52
FAM 50.00 90.00 68.87 13.49
flrFAM 50.00 86.36 69.54 12.31

TABLE II
GENERALIZATION RATE (%) STATISTICS REGARDING THE RADBOUD
TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL

CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, CONCATENATED

Classifier name min Max ave std
kNN (k=1) 22.22 46.30 35.74 7.51
Naive Bayes 35.19 57.41 48.15 7.04
Classification Tree 27.78 40.74 34.07 4.20
Neural Network (50) 11.11 64.81 45.74 15.81
FAM 27.77 44.44 37.40 6.03
flrFAM 35.18 50.00 43.14 4.86

catenated, whereas Table II displays the corresponding statis-575

tics regarding the RADBOUD benchmark dataset. Likewise,576

Table III displays “min”, “Max”, “ave” and “std” statistics of577

the generalization rate (%) regarding the JAFFE benchmark578

dataset in 10 experiments using various classifiers and the579

aforementioned six kinds of moments separately, whereas580

Table IV displays the corresponding statistics regarding the581

RADBOUD benchmark dataset.582

The computation of any kind of 16 moments took around583

0.5 minute per image. A full classification experiment for one584

image data partition took around: 1 minute for each one of the585

kNN, LDA, Naive Bayes and Classification Tree classifiers;586

2 minutes for the FAM classifier; 4 minutes for the Neural587

Network classifier; 61 minutes for the flrFAM classifier due588

mainly to the computationally expensive genetic algorithm589

optimization (see in Algorithm 3, step 30). Note that without590

any optimization, flrFAM was as fast as FAM.591

Our computational experiments with the flrFAM on the 96-592

dimensional feature vectors of the JAFFE dataset induced the593

set of rules shown in Fig.6. In particular, Fig.6 displays one594

6-tuple Type-2 IN per class as follows. The first six columns595

of the 7 × 7 Table in Fig.6 (excluding the header) display596

Type-2 INs corresponding to Zernike (MOMS Z), Pseudo-597

Zernike (MOMS PZ), Fourier-Mellin (MOMS FM), Legen-598

dre (MOMS L), Tchebichef (MOMS T) and Krawtchouk599

(MOMS K) moments, respectively; the seventh column dis-600

plays the corresponding class name. For instance, the first row601

of the 7 × 7 Table in Fig.6 displays a data-induced “Type-2602

6-tuple IN” granule for the class (facial expression) ANGRY,603

the second row displays the corresponding granule for class604

DISGUSTED, etc. We point out that the lower/upper envelope605

U/W ∈ F1 of a Type-2 IN E = [U,W ] in Fig.6 is indicated606

in bold (black) color, whereas all the encoded Type-1 INs are607

indicated in light (red) color within a Type-2 IN. A similar set608

of rules was induced by the flrFAM from the 96-dimensional609

feature vectors of the RADBOUD benchmark dataset.610

TABLE III
GENERALIZATION RATE (%) STATISTICS REGARDING THE JAFFE

TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL
CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, SEPARATELY

CLASSIFIER NAME
Moment Type min Max ave std
kNN (k=1)
1) Zernike 50.00 95.45 80.37 13.04
2) Pseudo-Zernike 45.45 90.91 78.57 13.69
3) Fourier-Mellin 45.45 90.91 73.98 14.52
4) Legendre 63.64 100.00 75.91 10.06
5) Tchebichef 63.64 100.00 75.00 11.19
6) Krawtchouk 40.91 95.45 66.24 16.36
LDA
1) Zernike 40.91 68.18 52.49 9.73
2) Pseudo-Zernike 40.91 59.09 51.24 7.62
3) Fourier-Mellin 31.82 72.73 53.82 11.96
4) Legendre 36.36 77.27 53.18 10.51
5) Tchebichef 36.36 77.27 53.18 10.51
6) Krawtchouk 27.27 54.54 41.46 9.85
NAIVE BAYES
1) Zernike 22.73 50.00 32.39 8.83
2) Pseudo-Zernike 22.73 45.45 30.89 6.77
3) Fourier-Mellin 27.27 50.00 41.36 7.25
4) Legendre 9.09 40.91 27.18 8.30
5) Tchebichef 9.09 36.36 25.81 7.11
6) Krawtchouk 18.18 54.54 32.61 13.30
CLASSIFICATION TREE
1) Zernike 27.27 54.55 40.57 8.29
2) Pseudo-Zernike 18.18 50.00 32.18 10.86
3) Fourier-Mellin 13.64 45.45 33.22 10.10
4) Legendre 22.73 45.45 32.90 7.63
5) Tchebichef 13.64 50.00 28.38 11.96
6) Krawtchouk 22.73 45.45 32.61 7.35
NEURAL NETWORK (16)
1) Zernike 9.09 50.00 29.18 14.54
2) Pseudo-Zernike 4.55 63.64 33.48 19.45
3) Fourier-Mellin 13.63 68.18 37.13 19.06
4) Legendre 9.09 100.00 32.88 25.24
5) Tchebichef 9.09 59.09 39.40 16.58
6) Krawtchouk 4.55 50.00 25.00 15.34
FAM
1) Zernike 50.00 95.45 79.00 12.14
2) Pseudo-Zernike 50.00 90.90 74.90 12.22
3) Fourier-Mellin 36.36 86.36 63.54 15.19
4) Legendre 45.45 95.45 72.27 12.57
5) Tchebichef 54.54 95.45 72.72 10.71
6) Krawtchouk 40.90 85.00 63.45 16.67
flrFAM
1) Zernike 59.09 95.45 83.63 10.53
2) Pseudo-Zernike 54.54 90.90 79.08 12.52
3) Fourier-Mellin 50.00 86.36 75.90 13.04
4) Legendre 59.09 95.45 77.72 11.82
5) Tchebichef 63.63 95.45 77.26 10.92
6) Krawtchouk 45.45 95.45 69.54 15.00

D. Significance of the Results611

Based on 10 experiments for 10 (random) data partitions,612

respectively, we evaluated all classifiers pairwise using the613

one-sided “matched pairs” statistical t test with df = 9 degrees614

of freedom. The null hypothesis H0: “the two classifiers (in615

a pair) give similar results” was tested versus the alternative616

hypothesis Ha: “the second classifier (in a pair) improves617

classification performance”. For each evaluation we computed618

the P-value of the statistic t = (x − 0)/(s/
√
n) for n = 10,619

where x is the sample average of differences in generalization620

accuracy and s is the corresponding standard deviation. We621

worked at 5% level of significance.622

Table V presents our results for the JAFFE 96-dimensional623
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TABLE IV
GENERALIZATION RATE (%) STATISTICS REGARDING THE RADBOUD
TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL
CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, SEPARATELY

CLASSIFIER NAME
Moment Type min Max ave std
kNN (k=1)
1) Zernike 33.33 51.85 41.30 6.05
2) Pseudo-Zernike 33.33 50.00 41.30 5.79
3) Fourier-Mellin 35.19 55.56 44.81 5.71
4) Legendre 33.33 48.15 40.37 5.44
5) Tchebichef 31.48 51.85 40.93 6.44
6) Krawtchouk 22.22 46.30 35.56 7.45
LDA
1) Zernike 37.04 57.41 48.15 7.20
2) Pseudo-Zernike 35.19 59.26 47.59 8.86
3) Fourier-Mellin 46.30 66.67 55.37 6.84
4) Legendre 42.59 59.26 49.26 5.53
5) Tchebichef 42.59 59.26 49.26 5.53
6) Krawtchouk 27.78 50.00 41.30 7.51
NAIVE BAYES
1) Zernike 37.04 55.56 45.37 7.57
2) Pseudo-Zernike 33.33 61.11 43.89 8.24
3) Fourier-Mellin 37.04 59.26 45.93 7.03
4) Legendre 33.33 53.70 41.67 6.13
5) Tchebichef 33.33 53.70 41.85 6.12
6) Krawtchouk 16.67 40.74 27.22 7.56
CLASSIFICATION TREE
1) Zernike 22.22 37.04 29.07 5.92
2) Pseudo-Zernike 24.07 40.74 32.04 5.52
3) Fourier-Mellin 24.07 44.44 33.52 6.56
4) Legendre 22.22 42.59 32.59 6.49
5) Tchebichef 12.96 50.00 28.70 10.23
6) Krawtchouk 20.37 44.44 27.96 6.67
NEURAL NETWORK (16)
1) Zernike 16.67 51.85 29.26 11.41
2) Pseudo-Zernike 5.56 38.89 29.07 9.92
3) Fourier-Mellin 18.52 61.11 46.67 12.52
4) Legendre 24.07 55.56 41.11 10.10
5) Tchebichef 16.67 53.70 35.19 14.48
6) Krawtchouk 16.67 46.30 31.11 11.31
FAM
1) Zernike 24.07 42.59 34.44 7.20
2) Pseudo-Zernike 31.48 48.14 37.40 5.71
3) Fourier-Mellin 33.33 48.14 40.18 4.36
4) Legendre 31.48 50.00 42.77 6.73
5) Tchebichef 33.33 55.55 43.88 7.20
6) Krawtchouk 22.22 42.59 32.59 6.30
flrFAM
1) Zernike 35.18 50.00 42.03 5.45
2) Pseudo-Zernike 35.18 48.14 41.84 5.17
3) Fourier-Mellin 37.03 53.70 43.14 5.24
4) Legendre 37.03 48.14 42.21 4.07
5) Tchebichef 33.33 51.85 41.66 5.80
6) Krawtchouk 24.07 48.14 37.40 7.18

data. In particular, a comparison of the testing data accuracy624

of the flrFAM (69.54%) with the kNN (67.68%) and FAM625

(68.87%) classifiers resulted in t = 0.4796 and t = 0.1842,626

which implied P = 0.3217 and P = 0.4290, respectively.627

Hence, the null hypothesis H0 could not be rejected; in other628

words, the flrFAM appears to perform as well as either clas-629

sifier kNN or FAM. Moreover, a comparison of flrFAM with630

the Naive Bayes (36.80%), Classification Tree (40.02%) and631

Neural Network (37.27%) classifiers resulted in t = 8.1986,632

t = 8.2653 and t = 6.6391, which practically implied P = 0.633

Hence, the null hypothesis H0 could not be accepted; in other634

words, the flrFAM appears to improve the generalization rate.635

Furthermore, for the RADBOUD 96-dimensional data, the636
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Fig. 6. A row of the 7×7 Table above (excluding the header) displays one 6-
dimensional Type-2 IN induced for each of the seven human facial expressions
(classes) of the JAFFE benchmark dataset. One Type-2 IN corresponds to one
kind of moments. At the end of a row, the corresponding class name is shown.

TABLE V
P-VALUES OF THE ONE-SIDED “MATCHED PAIRS” STATISTICAL t TEST

WITH df = 9 DEGREES OF FREEDOM FOR PAIRWISE CLASSIFIER
EVALUATION ON THE JAFFE 96-DIMENSIONAL FEATURE VECTORS

Classifier kNN NBayes CTree NN (50) FAM flrFAM
kNN 0 0.0001 0.0003 0.1991 0.3217
NBayes 0.1178 0.4663 0 0
CTree 0.2962 0 0
NN (50) 0.0001 0
FAM 0.4290

Naive Bayes, Neural Network and flrFAM classifiers produced637

the best (statistically significant) generalization rates.638

We repeated the previous experiments for both the JAFFE639

and the RADBOUD 96-dimensional data such that a popula-640

tion of 16 data, corresponding to a moment kind, was replaced641

by its first order statistic, namely its average. We recorded an642

average performance drop by up to 40% and 20% for the643

JAFFE and the RADBOUD, respectively. We attributed the644

aforementioned drop to the loss of “discriminatory” informa-645

tion. In particular regarding flrFAM, note that an IN advantage646

is its representation of all order data statistics [24], [25], [26].647

We carried out additional statistical hypothesis testing to648

evaluate, pairwise, different kinds of moments for each classi-649

fier. For the JAFFE 16-dimensional data, the kNN, FAM and650

flrFAM classifiers with (Pseudo-)Zernike moments produced651

the highest generalization rates. Moreover, for the RADBOUD652

16-dimensional data, the LDA classifier with Fourier-Mellin653

moments produced the highest generalization rates followed by654

the kNN, Naive Bayes, Neural Network and flrFAM classifiers655

also with Fourier-Mellin moments as well as by the FAM656

classifier also with Tchebichef moments. It was confirmed that657
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TABLE VI
AUC VALUES FOR THREE CLASSIFIERS AND 96-DIM FEATURE VECTORS

FOR JAFFE CLASSES “NEUTRAL” (C1), “ANGRY” (C2), “DISGUSTED”
(C3), “FEAR” (C4), “HAPPY” (C5), “SAD” (C6) AND “SURPRISE” (C7)

Classifier c1 c2 c3 c4 c5 c6 c7
kNN (k=1) 0.87 0.82 0.78 0.87 0.89 0.81 0.78
FAM 0.90 0.82 0.80 0.89 0.90 0.82 0.79
flrFAM 0.80 0.75 0.78 0.92 0.94 0.80 0.77

no specific kind of moments is is globally preferable.658

The flrFAM classifier application in the JAFFE problem on659

16-dimensional vectors produced better generalization rates660

than its application on 96-dimensional vectors; that is, keeping661

different moment features in different dimensions improves662

flrFAM’s generalizability compared to mingling different mo-663

ment features in a single dimension. The latter improvement664

was not confirmed in the RADBOUD problem, where no sta-665

tistically significant difference was mostly recorded between666

the 16- and 96-dimensional vector representations.667

We studied the confusion of different classifiers. First, we668

present our average (confusion) results in 10 experiments669

on 10 random data partitions regarding the 96-dimensional670

feature vectors of the JAFFE problem. It turned out that the671

kNN classifier learns well the classes “neutral” (61.81%),672

“fear” (60.42%) and “happy” (61.36%), whereas it learns673

the remaining classes in the range 51%-58%; the largest674

error is the 24.31% confusion of class “sad” with class675

“surprise”. The FAM classifier learns well the classes “neu-676

tral” (67.36%), “disgusted” (64.03%), “happy” (67.42%) and677

“surprise” (66.57%), whereas it learns the remaining classes678

in the range 54%-58%; the largest error is the 25% confusion679

of class “angry” with class “disgusted”. The flrFAM classifier680

learns well the classes “neutral” (63.19%), “fear” (71.53%),681

“happy” (76.52%) and “surprise” (65.19%), whereas it learns682

the remaining classes in the range 47%-58%; the largest error683

is the 22.22% confusion of class “sad” with class “surprise”.684

The remaining classifiers typically confused a class to over685

50%. Second, we confirmed that classification results dete-686

riorated considerably for the RADBOUD benchmark. More687

specifically, even though all classifiers recognized class “neu-688

tral” well in the range 62%-87%, they typically confused any689

other class to over 50%. Note that likewise confusion results690

were recorded for all 16-dimensional feature vector data in691

both the JAFFE and the RADBOUD classification problems.692

To further demonstrate a classifier system performance, we693

computed Receiver Operating Characteristics (ROC) curves.694

Each ROC curve computation was based on a few tens of695

“false-positive, true-positive” pairs of points. For lack of space,696

we display only the corresponding Area Under Curve (AUC)697

values [13] in Table VI for the three “best performing” classi-698

fiers regarding the 96-dimensional JAFFE data. In particular,699

a Table VI cell entry is the average of 10 AUC values for 10700

random data partitions. Note that the nearest a Table VI entry701

is to 1, the better the corresponding classifier (generalization)702

performance. Table VI shows that the best performance was703

attained by either classifier FAM or flrFAM.704

Next, we give a measure of comparison of our techniques705

with alternative ones. Note that a number of facial expression706

recognition schemes have been reported in the literature mostly707

for the JAFFE [17], [32], [45] rather than for the RADBOUD708

benchmark [19]. More specifically, first, the works in [17],709

[32] and [45] have reported a maximum classification rate710

of 89.67%, 92.8% and 95.71%, respectively, using different711

machine-learning classification schemes, different specific fea-712

tures as well as different training/testing datasets. Second,713

the work in [19] has reported a maximum classification714

rate of 93.96% using a Fuzzy Inference System (FIS) with715

human-defined initial rules, different features and 414 frontal716

images regarding six basic emotions and two gaze directions.717

Apparently, the maximum (Max) classification rates reported718

in Tables I and III for the JAFFE benchmark compare well719

with the aforementioned results from the literature. Moreover,720

it appears that all aforementioned 414 frontal images of the721

RADBOUD benchmark were employed in [19] for testing.722

Given both the sizes of our data sets for training and testing723

(i.e. around 90% and 10%, respectively) and the fact that the724

flrFAM typically learns all its training data, it follows that the725

flrFAM here can outperform the classifier in [19].726

The flrFAM classifier performed as good as the FAM or the727

kNN classifier (for k = 1) because they operate on the same728

principle: The kNN decides based on the distance of a testing729

datum from the nearest (labeled) training datum, whereas the730

(flr)FAM classifier decides based on the inclusion of a testing731

datum into a (labeled) category induced from the training data.732

A unique advantage of the flrFAM classifier is the induction of733

flexible (i.e., tunable) descriptive decision-making knowledge734

(rules) as shown in Fig.6, which (Fig.6) also indicates that735

the flrFAM can be interpreted as a fuzzy neural classifier.736

Moreover, since Type-2 INs are involved, this work paves the737

way for sound extensions of FAM to Type-2 FISs [36].738

VI. CONCLUSION739

This work has introduced the novel flrFAM neural classifier740

as a Lattice Computing (LC) extension of the fuzzy ARTMAP741

(FAM) neural classifier for real-time learning and classification742

of nonstationary data followed by an application to facial ex-743

pression recognition. Comparative computational experiments744

have demonstrated the viability of our proposed techniques.745

The work here emphasized an application of the flrFAM746

classifier to (static) human facial expression recognition. Ad-747

vantages include the induction of flexible (i.e., tunable) rules748

computable by machine learning techniques as well as the749

capacity for granular computing so as to cope with data750

uncertainty/ambiguity. An additional advantage is flrFAM’s751

capacity for (non)numeric data fusion based, rigorously, on752

data semantics represented by partial-order.753

Future work plans include extensions to dynamic (video)754

human recognition applications engaging, as well, additional755

types of data such as voice, etc.756
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