A Lattice Computing Extension of the FAM Neural Classifier for Human Facial Expression Recognition

Vassilis G. Kaburlasos ${ }^{a}$, Stelios E. Papadakis ${ }^{a, b}$, and George A. Papakostas ${ }^{a}$
${ }^{a}$ Human-Machines Interaction (HMI) Laboratory
Dept. of Industrial Informatics
TEI of Kavala, 65404 Kavala, Greece
${ }^{b}$ Dept. of Business Planning and Information Systems
TEI of Crete, 72100 Agios Nikolaos, Greece
Emails: vgkabs@teikav.edu.gr, spap@staff.teicrete.gr, gpapak @teikav.edu.gr

Abstract

This paper proposes a fundamentally novel exten- ${ }_{23}$ sion, namely flrFAM, of the fuzzy ARTMAP (FAM) neural classifier for incremental real-time learning and generalization based on fuzzy lattice reasoning (FLR) techniques. FAM is enhanced, first, by a parameter optimization training (sub)phase and, second, by a capacity to process partially ordered (non)numeric data including information granules. The interest here focuses on Intervals' Numbers (INs) data, where an IN represents a distribution of data samples. We describe the proposed flrFAM classifier as a fuzzy neural network that can induce descriptive as well as flexible (i.e., tunable) decision-making knowledge (rules) from the data. This work demonstrates the capacity of the flrFAM classifier for human facial expression recognition on benchmark datasets. A novel feature extraction and knowledgerepresentation is based on orthogonal moments. The reported experimental results compare well with the results by alternative classifiers from the literature. The far reaching potential of FLR in Human-Machine Interaction (HMI) applications is discussed.

Index Terms - Fuzzy ARTMAP, fuzzy lattice reasoning, inclusion measure, intervals' number, the lattice computing paradigm

$$
6
$$

$$
7
$$

[29] in the context of the versatile lattice theory [3] - Recall 24 that "FLR" has been defined as decision-making based on 25 an inclusion measure function [25]. In particular, we extend ${ }_{6}$ FAM's application domain from the unit hypercube in \mathfrak{R}^{N}, where learning is pursued by inducing hyperboxes, to a general (mathematical) lattice. In conclusion, the frFAM classifier 9 emerges here for learning by inducing intervals in a general lattice including the induction of hyperboxes in the unit hypercube as a special case. An implied advantage is the widening of FAM's scope so as to deal with data semantics represented by partial order. Additional advantages for the flrFAM classifier are summarized in the following.

The proposed flrFAM classifier can learn rare patterns by addressing the "stability-plasticity" dilemma the same way as FAM does - Recall that the aforementioned dilemma states that "(a system) must be capable of plasticity in order to learn about significant new events, yet it must also remain stable in response to irrelevant or often repeated events" [4]. Moreover, the flrFAM classifier can carry out granular computing by processing lattice-ordered (information) granules [46] instead of processing merely points in \mathfrak{R}^{N}; the latter (points) are 4 exclusively processed by FAM in the unit hypercube. Furthermore, in every data dimension, only the flrFAM classifier may optimize a tunable positive valuation (weight) function towards improving performance.
The basic "decision-making" instrument of the flrFAM classifier is an inclusion measure function $\sigma(.,$.$) , which cor-$ responds to both FAM's choice (Weber) and match functions as explained below. Note that, historically, inclusion measures of the form $\sigma(A, B)$ have been introduced for computing the degree of inclusion of a hyperbox A into another one B in classification applications [20]. It was then realized that the set of hyperboxes in \mathfrak{R}^{N} is lattice-ordered; this fact has been the motivation to extend the hyperbox based approach for learning/generalization to a general lattice data domain [22].
The interest of this work is in Intervals' Numbers (INs) data, where an IN represents a distribution of samples. An IN may also be thought of as the " α-cuts representation" of a fuzzy number. In all, an IN is a mathematical object which can be interpreted either probabilistically or possibilistically [41]. INs, previously called FINs, have been studied in a series of
publications. In particular, it has been shown that the set $\mathfrak{F}_{1{ }_{121}}$ of INs is a (metric) lattice [21], [31] with cardinality \aleph_{1} [24], where " \aleph_{1} " is the cardinality of the set \Re of real numbers; ${ }_{1}^{122}$ moreover, the space \mathfrak{F}_{1} is a cone in a linear space [26], [41]. INs have already been used in numerous (classification and regression) applications [21], [24], [26], [27], [30], [41] as well as for hybrid intelligence fusion [25]. Our interest here is in an flrFAM classifier application on the lattice $\left(\mathfrak{F}_{2}, \preceq\right)$ of ${ }^{127}$ Type-2 Intervals' Numbers as detailed below.

From an application point of view, this work focuses on a_{1} specific human-machine interaction (HMI) problem, namely human facial expression recognition. Note that a number of learning models have been proposed in human-centered recognition applications [2], [8]. Currently, static/dynamic facial expression recognition is carried out at large by "number crunching" machine learning techniques [39]. The flrFAM classifier here suggests a viable alternative for flexible (i.e., tunable) rule-based classification with a considerable potential for sound (non)numeric data fusion.

An "agglomerative" FLR classifier has been ${ }^{132}$

II. A Hierarchy of Lattices

This section introduces constructively, in six steps, a hierarchy of complete lattices; in particular, each subsection presents an ever enhanced (lattice) hierarchy level. For general lattice theory notions including the definition of an inclusion measure function the reader may refer elsewhere [25], [30].

Assume a positive valuation ${ }^{1}$ function $v: \mathfrak{L} \rightarrow[0, \infty)$ on a complete lattice $(\mathfrak{L}, \sqsubseteq)$ with least and greatest element O and I, respectively, such that $v(O)=0$ and $v(I)<\infty$. Assume functions sigma-meet $\sigma_{\square}: \mathfrak{L} \times \mathfrak{L} \rightarrow[0,1]$ and sigma-join $\sigma_{\sqcup}: \mathfrak{L} \times \mathfrak{L} \rightarrow[0,1]$ defined as follows

$$
\begin{gather*}
\sigma_{\sqcap}(x, y)= \begin{cases}1, & \text { for } x=O \\
\frac{v(x \sqcap y)}{v(x)}, & \text { for } x \sqsupset O\end{cases} \tag{1}\\
\sigma_{\sqcup}(x, y)= \begin{cases}1, & \text { for } x \sqcup y=O \\
\frac{v(y)}{v(x \sqcup y)}, & \text { for } x \sqcup y \sqsupset O\end{cases} \tag{2}
\end{gather*}
$$

Then, both $\sigma_{\square}(.,$.$) and \sigma_{\sqcup}(.,$.$) are inclusion measures. Note$ ${ }_{133}$ that an inclusion measure function $\sigma: \mathfrak{L} \times \mathfrak{L} \rightarrow[0,1]$ can be 4 interpreted as a fuzzy order relation on a lattice $(\mathfrak{L}, \sqsubseteq)$. Hence, notations $\sigma(x, y)$ and $\sigma(x \sqsubseteq y)$ will be used interchangeably.
for human facial expression recognition and applied exclusively on the JAFFE benchmark [42]. Substantial differences with the work here include: First, this work details constructively a six-level hierarchy of mathematical lattices, whereas the work in [42] engages only part of the aforementioned hi-

FLR learning scheme only for structure identification such that one Type-1 IN is induced (unconditionally) per class; whereas, this work details sophisticated extensions of the FAM classifier architecture for structure identification followed by parameter optimization such that multiple Type-2 INs may be induced (conditionally) per class. Third, the work in [42] assumes one 100-dimensional features (moments) vector represented by one (non-trivial) Type-1 IN, furthermore it employs seven random data partitions for training/testing; whereas, this work assumes one 16-dimensional features (moments) vector represented by a (trivial) Type-2 IN, furthermore it employs ten random data partitions for training/testing. Fourth, the work in [42] carries out computational experiments in space \mathfrak{F}_{1}^{1} engaging only two classifiers, namely (agglomerative) FLR and $k N N$; whereas, this work carries out computational experiments in both spaces \mathfrak{F}_{2}^{6} and \mathfrak{F}_{2}^{16} engaging seven classifiers, namely $\operatorname{frFLR}, k N N$, LDA, naive Bayes, classification tree, a neural network and $F A M$ as detailed below; furthermore, the flrFAM classifier here is applied, in addition, on the RADBOUD benchmark; moreover, only this work presents statistical testing results. Fifth, only this work presents an extensive literature review with novel perspectives including an introduction of the lattice computing (LC) paradigm.
The paper is organized as follows. Section II presents a hierarchy of mathematical lattices including Intervals' Numbers ${ }^{160}$ (INs). Section III details the flrFAM extension of the FAM ${ }^{161}$ classifier. Section IV describes the human facial expression ${ }^{16}$ recognition problem in context. Section V presents comparative computational experiments on benchmark datasets and results including a discussion of significance. Section VI concludes by summarizing our contribution and future work.

A. Real Numbers

The set \mathfrak{R} of real numbers is a totally-ordered, non-complete ${ }_{138}$ lattice denoted by (\Re, \leq), where " \leq " is the usual order , ${ }_{139}$ relation of real numbers. Lattice (\mathfrak{R}, \leq) can be extended ${ }_{140}$ to a complete lattice by including both symbols " $-\infty$ " and ${ }_{141}$ " $+\infty$ ". In conclusion, the complete lattice ($\overline{\mathfrak{R}}, \leq$) emerges, ${ }_{2}$ where $\bar{\Re}=\mathfrak{R} \cup\{-\infty,+\infty\}$, with least and greatest elements $O=-\infty$ and $I=+\infty$, respectively.
In the context of this work we will employ, in particular, a reference set $\mathfrak{L} \subseteq \overline{\mathfrak{R}}$ so that the totally ordered lattice (\mathfrak{L}, \leq) is complete. For example, \mathfrak{L} can be either $\overline{\mathfrak{R}}$ itself or a closed interval $[a, b] \subset \bar{\Re}$. In every case, \mathfrak{L} includes a least element denoted by O and a greatest element denoted by I (hence $\mathfrak{L}=[O, I]$). For example, for $\mathfrak{L}=\overline{\mathfrak{R}}$ it is $O=-\infty$ and $I=+\infty ;$ whereas, for $\mathfrak{L}=[a, b]$ it is $O=a$ and $I=b$. The inf and sup operations in the complete lattice (\mathfrak{L}, \leq) are denoted by \wedge and \vee. Any strictly increasing function $v: \mathfrak{L} \rightarrow$ $[0, \infty)$ is a positive valuation on (\mathfrak{L}, \leq), moreover any strictly ${ }_{4}$ decreasing function $\theta: \mathfrak{L} \rightarrow \mathfrak{L}$ is dual isomorphic ${ }^{2}$ on the 5 complete lattice (\mathfrak{L}, \leq). In this work, we consider bijective (one-to-one) functions $\theta: \mathfrak{L} \rightarrow \mathfrak{L}$ such that both $\theta(O)=I$ and $\theta(I)=O$; moreover, we consider positive valuation functions ${ }_{58} v: \mathfrak{L} \rightarrow[0, \infty)$ such that both $v(O)=0$ and $v(I)<\infty$.

B. Type-1 Intervals

Consider the complete lattice ($\mathfrak{I}_{1}, \subseteq$) of Type- 1 intervals $[a, b]$, or intervals for short, on a complete lattice (\mathfrak{L}, \leq) 2 of real numbers with least and greatest elements O and I,

[^0]$$
[a, b] \cap[c, d]=[a \vee c, b \wedge d] \text { and }[a, b] \dot{\cup}[c, d]=[a \wedge c, b \vee d]
$$
${ }_{195}\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right] \dot{\cup}\left[\left[c_{1}, c_{2}\right],\left[d_{1}, d_{2}\right]\right]=$
$$
\left[\left[a_{1}, a_{2}\right] \cap\left[c_{1}, c_{2}\right],\left[b_{1}, b_{2}\right] \dot{\cup}\left[d_{1}, d_{2}\right]\right] .
$$

We remark that a preferable representation for the least ele ment $O_{\mathfrak{J} 2}=\emptyset$ in lattice $\left(\mathfrak{I}_{2}, \subseteq\right)$ is $O_{\mathfrak{J} 2}=[[O, I],[I, O]]$.

Consider a (strictly increasing) positive valuation function $v: \mathfrak{L} \rightarrow[0, \infty)$ as well as a (strictly decreasing) dual ${ }^{247}$ isomorphic function $\theta: \mathfrak{L} \rightarrow \mathfrak{L}$. Recall that function v_{1} : $\mathfrak{L} \times \mathfrak{L} \rightarrow[0, \infty)$ given by $v_{1}(a, b)=v(\theta(a))+v(b)$ is a positive valuation. Furthermore, function $\theta_{1}: \mathfrak{L} \times \mathfrak{L} \rightarrow \mathfrak{L} \times \mathfrak{L}$ given by $\theta_{1}(a, b)=(b, a)$ is dual isomorphic. Therefore, function $v_{2}: \mathfrak{L} \times \mathfrak{L} \times \mathfrak{L} \times \mathfrak{L} \rightarrow[0, \infty)$ given by $v_{2}\left(\left[\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right]\right)=$ $v\left(a_{1}\right)+v\left(\theta\left(a_{2}\right)\right)+v\left(\theta\left(b_{1}\right)\right)+v\left(b_{2}\right)$ is a positive valuation on lattice $(\mathfrak{L} \times \mathfrak{L} \times \mathfrak{L} \times \mathfrak{L}, \leq \times \geq \times \geq \times \leq)$. In conclusion, based on (1) and (2) inclusion measures $\sigma_{\cap}: \mathfrak{I}_{2} \times \mathfrak{I}_{2} \rightarrow[0,1]$ and $\sigma_{\dot{\cup}}: \mathfrak{I}_{2} \times \mathfrak{I}_{2} \rightarrow[0,1]$ can be introduced by $\sigma_{\cap}(x, y)={ }^{251}$

E. Type-2 Intervals' Numbers (INs)

Another information granule of interest is an interval $[U, W]$ of Type-1 INs U and W, where interval $[U, W]$ by definition equals $[U, W] \doteq\left\{X \in \mathfrak{F}_{1}: U \preceq X \preceq W\right\}$. In the latter sense we say that X is encoded in $[U, W]$. Interval $[U, W]$ is called ${ }_{229}$ Type-2 IN. It follows the complete lattice $\left(\mathfrak{F}_{2}, \preceq\right)$ of Type-2

$$
\left[\left[a_{1}, a_{2}\right] \dot{\cup}\left[c_{1}, c_{2}\right],\left[b_{1}, b_{2}\right] \cap\left[d_{1}, d_{2}\right]\right], \text { and }
$$

Fig. 1. Demonstrating the lattice join (\curlyvee) operation between trivial Type-2 INs. (a) Trivial Type-2 INs $\left[C_{1}, C_{1}\right]=\mathbb{C}_{1},\left[C_{2}, C_{2}\right]=\mathbb{C}_{2}$ and $\left[C_{3}, C_{3}\right]=$ \mathbb{C}_{3}. (b) Type-2 IN $\mathbb{C}_{1} \curlyvee \mathbb{C}_{2}=\left[C_{1} \curlywedge C_{2}, C_{1} \curlyvee C_{2}\right]$ is shown in its membership-function-representation. (c) Type-2 IN $\mathbb{C}_{1} \curlyvee \mathbb{C}_{2}=\left[\begin{array}{lll}C_{1} & \wedge & C_{2}, C_{1} \\ & C_{2}\end{array}\right]$ is shown again, this time in its (equivalent) interval-representation for $L=32$ different levels spaced uniformly over the interval $[0,1]$ on the vertical axis. (d) Type-2 IN $\mathbb{C}_{2} \curlyvee \mathbb{C}_{3}=\left[C_{2} \curlywedge C_{3}, C_{2} \curlyvee C_{3}\right]=\left[\emptyset, C_{2} \curlyvee C_{3}\right]$.

254 by $\vec{E}=\left(E_{1}, \ldots, E_{N}\right) \in\left(\mathfrak{F}_{1}^{N}, \preceq\right)$, whereas a Type-2 IN will 255 be denoted by $\overrightarrow{\mathbb{E}}=\left(\mathbb{E}_{1}, \ldots, \mathbb{E}_{N}\right) \in\left(\mathfrak{F}_{2}^{N}, \preceq\right)$.

The previous has shown how to define inclusion measure functions on lattice $\left(\mathfrak{F}_{2}, \preceq\right)$. The latter functions can be extended to the product lattice $\left(\mathfrak{F}_{2}^{N}, \preceq\right)$ by inclusion measure function $\sigma_{\wedge}: \mathfrak{L} \times \mathfrak{L} \rightarrow[0,1]$ given as follows

$$
\sigma_{\wedge}\left(\left(x_{1}, \ldots, x_{N}\right),\left(y_{1}, \ldots, y_{N}\right)\right)=\min _{i \in\{1, \ldots, N\}} \sigma_{i}\left(x_{i}, y_{i}\right)
$$

III. A FuzZy Lattice Reasoning (FLR) Extension of ${ }^{22}$

 the FAM Neural ClassifierThis section details the flrART scheme for clustering fol lowed by the flrFAM scheme for classification. in lattice $\left(\mathfrak{I}_{1}^{N}, \subseteq\right)$ inspired from fuzzy ART [6]. the interval lattice data domain $\left(\mathfrak{I}_{1}^{N}, \subseteq\right)$.

Category Layer F_{2}
Competition: Winner takes all

Fig. 2. The flrART neural architecture for clustering, where an input pattern
\mathbf{X} is in the lattice ($\mathfrak{I}_{1}^{N}, \subseteq$) of intervals.

```
Algorithm 1 flrART Clustering
```

Algorithm 1 flrART Clustering

```
Algorithm 1 flrART Clustering
    Assume a set \(C \subset 2^{\mathfrak{J}_{1}^{N}} ; K=|C|\); a user-defined vigilance
    Assume a set \(C \subset 2^{\mathfrak{J}_{1}^{N}} ; K=|C|\); a user-defined vigilance
    Assume a set \(C \subset 2^{\mathfrak{J}_{1}^{N}} ; K=|C|\); a user-defined vigilance
    parameter \(\rho \in[0,1]\);
    parameter \(\rho \in[0,1]\);
    parameter \(\rho \in[0,1]\);
    for \(i=1\) to \(i=n\) do
    for \(i=1\) to \(i=n\) do
    for \(i=1\) to \(i=n\) do
        Consider the next input datum \(\mathbf{X}_{i} \in \mathfrak{I}_{1}^{N}\);
        Consider the next input datum \(\mathbf{X}_{i} \in \mathfrak{I}_{1}^{N}\);
        Consider the next input datum \(\mathbf{X}_{i} \in \mathfrak{I}_{1}^{N}\);
        \(S \doteq C ;\)
        \(S \doteq C ;\)
        \(S \doteq C ;\)
        \(J \doteq \underset{j \in\{1}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
        \(J \doteq \underset{j \in\{1}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
        \(J \doteq \underset{j \in\{1}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
            \(j \in\{1, \ldots,|S|\}\)
            \(j \in\{1, \ldots,|S|\}\)
            \(j \in\{1, \ldots,|S|\}\)
            \(j \in\{1, \ldots, \mid, S\)
\(\mathbf{W}_{j} \in S\)
            \(j \in\{1, \ldots, \mid, S\)
\(\mathbf{W}_{j} \in S\)
            \(j \in\{1, \ldots, \mid, S\)
\(\mathbf{W}_{j} \in S\)
        while \((S \neq\{ \})\).and. \(\left(\sigma\left(\mathbf{W}_{J} \subseteq \mathbf{X}_{i}\right)<\rho\right)\) do
        while \((S \neq\{ \})\).and. \(\left(\sigma\left(\mathbf{W}_{J} \subseteq \mathbf{X}_{i}\right)<\rho\right)\) do
        while \((S \neq\{ \})\).and. \(\left(\sigma\left(\mathbf{W}_{J} \subseteq \mathbf{X}_{i}\right)<\rho\right)\) do
        \(S \doteq S \backslash\left\{\mathbf{W}_{J}\right\} ;\)
        \(S \doteq S \backslash\left\{\mathbf{W}_{J}\right\} ;\)
        \(S \doteq S \backslash\left\{\mathbf{W}_{J}\right\} ;\)
        \(J=\underset{j \in\{1}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
        \(J=\underset{j \in\{1}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
        \(J=\underset{j \in\{1}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
                \(j \in\{1, \ldots,|S|\}\)
                \(j \in\{1, \ldots,|S|\}\)
                \(j \in\{1, \ldots,|S|\}\)
                \begin{tabular}{l}
\(\mathbf{w}_{j} \in S\) \\
\(\left.\mathbf{w}^{2}, \ldots,|S|\right\}\) \\
\hline
\end{tabular}
                \begin{tabular}{l}
\(\mathbf{w}_{j} \in S\) \\
\(\left.\mathbf{w}^{2}, \ldots,|S|\right\}\) \\
\hline
\end{tabular}
                \begin{tabular}{l}
\(\mathbf{w}_{j} \in S\) \\
\(\left.\mathbf{w}^{2}, \ldots,|S|\right\}\) \\
\hline
\end{tabular}
        end while
        end while
        end while
        if \(S=\{ \}\) then
        if \(S=\{ \}\) then
        if \(S=\{ \}\) then
            \(C \doteq C \cup\left\{\mathbf{X}_{i}\right\} ;\)
            \(C \doteq C \cup\left\{\mathbf{X}_{i}\right\} ;\)
            \(C \doteq C \cup\left\{\mathbf{X}_{i}\right\} ;\)
            \(K \doteq K+1\);
            \(K \doteq K+1\);
            \(K \doteq K+1\);
        else
        else
        else
            \(\mathbf{W}_{J} \doteq \mathbf{W}_{J} \dot{\cup} \mathbf{X}_{i} ;\)
            \(\mathbf{W}_{J} \doteq \mathbf{W}_{J} \dot{\cup} \mathbf{X}_{i} ;\)
            \(\mathbf{W}_{J} \doteq \mathbf{W}_{J} \dot{\cup} \mathbf{X}_{i} ;\)
        end if
        end if
        end if
    end for
    end for
    end for
Algoritm 1 frant Clustering
```

Algoritm 1 frant Clustering

```
Algoritm 1 frant Clustering
```

 -
 ${ }_{269}$ The complexity of Algorithm 1 is determined by its two ${ }_{270}$ (nested) loops: The outer (for) loop repeats exactly n times 271 such that, each time, the inner (while) loop repeats $O(n)$ times. 272 Hence, the complexity of the flrART scheme for clustering is (4) ${ }^{273}$ quadratic $O\left(n^{2}\right)$ in the number n of the input data.

Algorithm 1 is an extension of fuzzy ART [6] as explained 275 in the following. An interval $\mathbf{W}_{i} \in \mathfrak{I}_{1}^{N}$, where $i \in\{1, \ldots, K\}$ 276 corresponds to a "category" of fuzzy ART. Moreover, in fuzzy ${ }_{277} A R T$'s terminology, the set S holds all the "set" categories. ${ }_{278}$ Competition among the "set" categories takes place in step 5, ${ }^{279}$ as well as in step 8 , where the index J of the winner category 280 is computed. In particular, flrART's function $\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)$ ${ }_{281}$ corresponds to fuzzy ART's choice (Weber) function such that Fig. 2 displays the flrART neural architecture for clustering ${ }_{282}$ the flrART calculates, in parallel, the degree of inclusion of ${ }_{283}$ an input datum \mathbf{X}_{i} to each "set" category $\mathbf{W}_{j} \in S$. FurtherAlgorithm 1 describes the flrART scheme for clustering in ${ }_{284}$ more, flrART's match criterion is the following inequality: ${ }_{285} \sigma\left(\mathbf{W}_{J} \subseteq \mathbf{X}_{i}\right) \geq \rho$, implicit in step 6 , where the winner
category \mathbf{W}_{J} calculates its degree of inclusion to the input datum \mathbf{X}_{i}. In conclusion, if the winner category \mathbf{W}_{J} does not satisfy the match criterion then the winner category \mathbf{W}_{J} is "reset" in step 7 by removing it (the \mathbf{W}_{J}) from the set S of the "set" categories. Otherwise, the winner category \mathbf{W}_{J} is enhanced in step 14 by the lattice join operation $\mathbf{W}_{J} \doteq \mathbf{W}_{J} \dot{\cup} \mathbf{X}_{i}$ so as to include the input datum \mathbf{X}_{i}. Note that the set C in step 1 is, typically, empty; nevertheless, it could be $C=\left\{\mathbf{W}_{1}, \ldots, \mathbf{W}_{K}\right\}$, where $\mathbf{W}_{k} \in \mathfrak{I}_{1}^{N}$ for $k \in\{1, \ldots, K\}$. Furthermore, note that $|C|$ denotes the cardinality of set C. We point out that for an empty set $S=\{ \}$ the corresponding input datum $\mathbf{X}_{i} \in \Im_{1}^{N}$ is memorized.
Some technical differences between flrART and fuzzy ART are summarized next. First, fuzzy ART employs, in particular, inclusion measure $\sigma_{\cap}\left(\mathbf{W}_{j} \subseteq \mathbf{X}_{i}\right)$ as choice (Weber) function. In fact, there is also a (small positive) parameter value α in the denominator of fuzzy ART's choice (Weber) function, which has the following form $\frac{v\left(\mathbf{X}_{i} \cap \mathbf{W}_{j}\right)}{\alpha+v\left(\mathbf{W}_{j}\right)}$. Nevertheless, parameter ${ }^{3}$ α can be omitted as detailed in [20], [28]. Second, fuzzy ${ }^{34}$ $A R T$ assumes exclusively (as well as implicitly) the positive ${ }^{34}$ valuation $v(x)=x$ together with the dual isomorphic function ${ }^{345}$ $\theta(x)=1-x$ for normalized input patterns; the latter is ${ }^{346}$ assumed by fuzzy ART's complement coding technique [6], [7]. ${ }^{347}$ Third, fuzzy $A R T$ employs inequality " $\sigma_{\cap}\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{J}\right) \geq \rho$ " as ${ }^{348}$ a match criterion. A critical advantage for inclusion measure ${ }^{349}$ $\sigma_{\dot{\cup}}(.,$.$) over \sigma_{\cap}(.,$.$) is that only \sigma_{\dot{ن}}(.,$.$) is non-zero outside { }^{350}$ a category support; in other words, only $\sigma_{\dot{\cup}}(.,$.$) enables { }^{351}$ generalization beyond category support.

B. The flrFAM Scheme for Classification

Fig. 3. The flrFAM neural architecture for classification, where $\mathbf{X} \in\left(\Im_{1}^{N}, \subseteq\right)$ and $\ell(\mathbf{X})$ is the category label of \mathbf{X}.
number ε (in steps 7 and 13) so as to resolve category contradiction. The set C_{a} in step 1 of Algorithm 2 is, typically, empty; nevertheless, it could be $C_{a}=\left\{\mathbf{W}_{1}, \ldots, \mathbf{W}_{K}\right\}$, where $\mathbf{W}_{k} \in \Im_{1}^{N}$ for $k \in\{1, \ldots, K\}$. The complexity of Algorithm 2 is determined by its two (nested) loops, likewise as the complexity of Algorithm 1 above. In conclusion, the complexity of flrFAM training for structure identification is quadratic $O\left(n_{t r n}^{2}\right)$ in the number $n_{t r n}$ of the training data.

Algorithm 3 describes the parameter optimization subphase of flrFAM training (learning) in lattice $\left(\mathfrak{I}_{1}^{N}, \subseteq\right)$. Such a subphase does not exist in FAM [7]. The objective in this subphase is to optimize the parameters: baseline vigilance $\overline{\rho_{a}}$ and $A_{1}, \lambda_{1}, \mu_{1}, \ldots, A_{N}, \lambda_{N}, \mu_{N}$ in both the (sigmoid) positive valuation and the dual isomorphic function in every data Fig. 3 displays the flrFAM neural architecture for classifi-356 dimension - Apparently, if we assume a different (parametric) cation inspired from the fuzzy-ARTMAP, or FAM for short ${ }^{357}$ positive valuation function then the corresponding parameters [7]. That is, a synergy of two flrART modules for clustering, 358 will have to be optimized. The "heart" of Algorithm 3 is a namely FLR_{a} and FLR_{b}, interconnected via the MAP field ${ }^{359}$ GENETIC optimization (step 30) of all the parameters in each $F^{a b}$ whose operation is described next. During training, аз 36 of the N_{p} individual flrFAM classifiers per genetic algorithm pair $(\mathbf{X}, \ell(\mathbf{X})) \in \Im_{1}^{N} \times B$ is presented, where B is a set ${ }^{361}$ generation. An individual flrFAM classifier in Algorithm 3 of category labels. Module FLR_{a} clusters the input data $\mathbf{X}, 362$ carries out structure identification in step 6 with a single whereas module FLR_{b} clusters the corresponding labels $\ell(\mathbf{X})$. ${ }^{363}$ parameter $\left(\overline{\rho_{a}}\right)$. To avoid overtraining, the fitness Q_{k} of an Since we typically assume $\rho_{b}=1$ it follows that module 364 individual frFAM classifier is computed based on both training FLR_{b} memorizes each label $\ell(\mathbf{X})$. Note that a category label 365 and validation data. The corresponding success rates $S_{t r n}$ and is typically represented by a binary pattern of 0 s and a single $366 S_{v a l}$, computed in steps 11 and 18 , respectively, are jointly 1. The intermediate MAP field $F^{a b}$ implements a function ${ }^{367}$ employed in step 21 towards computing the fitness Q_{k}, where $\ell: \Im_{1}^{N} \rightarrow B$ that maps clusters (intervals) in FLR_{a} to labels ${ }_{368} b_{s} \in[0,1]$ is a user-defined balancing factor for success [30]. in FLR_{b}. A pair $\left(\mathbf{W}_{k}, \ell\left(\mathbf{W}_{k}\right)\right)$, stored in the MAP field $F^{a b}$, ${ }_{369}$ We point out that the categories (clusters) of an individual is interpreted as rule \mathcal{R} : "if \mathbf{W}_{k} then $\ell\left(\mathbf{W}_{k}\right)$ ", symbolically ${ }_{370}$ flrFAM classifier are induced, during the structure identi$\mathcal{R}: \mathbf{W}_{k} \rightarrow \ell\left(\mathbf{W}_{k}\right)$, induced from the training data. $\quad{ }_{371}$ fication subphase, from the training data alone; moreover,
The flrFAM training (learning) phase consists of two ${ }_{372}$ the learned knowledge (categories) remains permanently in subphases, namely structure identification subphase and $p a-373$ the system and may be updated, any time, by a system rameter optimization subphase. Algorithm 2 describes the 374 input (see in Algorithm 2, step 22). There is no pruning structure identification subphase towards computing categories ${ }_{375}$ here. Note that, typically, an flrFAM classifier learns all its (clusters), i.e. hyperboxes in a lattice $\left(\Im_{1}^{N}, \subseteq\right)$. In particular, 376 training data. All the parameter values of an individual flrFAM Algorithm 2 is a staightforward extension of FAM's learning 377 classifier are optimizable, during the parameter optimization algorithm [7] such that fuzzy $A R T$ modules ART_{a} and $\mathrm{ART}_{b 378}$ subphase, using both the training data and the validation data. correspond to modules FLR_{a} and FLR_{b}, respectively. Note ${ }_{379}$ In conclusion, an "optimal" flFAM classifier is computed that there is a single parameter, namely baseline vigilance 3_{38} in the sense that it learns well the training data, moreover $\overline{\rho_{a}} \in[0,1]$, in the header "flrFAMstr$\left(\overline{\rho_{a}}\right)$ " of Algorithm 2.381 it retains a capacity for generalization based on a balanced During training, parameter $\overline{\rho_{a}}$ may increase by a small positive 382 combination of the training data and the validation data.

The capacity of the aforementioned "optimal" flrFAM classifier for generalization is demonstrated by the success rate

```
Algorithm 2 flrFAMstr \(\left(\overline{\rho_{a}}\right)\) : flrFAM Training (Learning) -
Structure Identification subphase
    : Assume, a set \(C_{a} \subset 2^{\mathfrak{J}_{1}^{N}}\) in module \(\mathrm{FLR}_{a} ; K=\left|C_{a}\right|\); a
    baseline vigilance parameter \(\overline{\rho_{a}} \in[0,1]\); a small positive
    number \(\varepsilon\); a set \(B=\left\{b_{1}, \ldots, b_{L}\right\}\) of category labels; the
    vigilance parameter \(\rho_{b}=1\); a map \(\ell: \mathfrak{I}_{1}^{N} \rightarrow B\) on \(C_{a}\);
    for \(i=1\) to \(i=n_{t r n}\) do
        Consider the training datum \(\left(\mathbf{X}_{i}, \ell\left(\mathbf{X}_{i}\right)\right) \in \mathfrak{I}_{1}^{N} \times B\);
        \(S \doteq C_{a}\);
        \(J \doteq \underset{j \in\{1, \ldots,|S|\}}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
                \(\mathbf{W}_{j} \in S\)
        if \(\ell\left(\mathbf{W}_{J}\right) \neq \ell\left(\mathbf{X}_{i}\right)\) then
            \(\overline{\rho_{a}}=\sigma\left(\mathbf{W}_{J} \subseteq \mathbf{X}_{i}\right)+\varepsilon ;\)
        end if
        while \((S \neq\{ \})\).and. \(\left(\sigma\left(\mathbf{W}_{J} \subseteq \mathbf{X}_{i}\right)<\overline{\rho_{a}}\right)\) do
            \(S \doteq S \backslash\left\{\mathbf{W}_{J}\right\} ;\)
            \(J \doteq \underset{j \in\{1, \ldots,|S|\}}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
                \(\mathbf{W}_{j} \in S\)
            if \(\ell\left(\mathbf{W}_{J}\right) \neq \ell\left(\mathbf{X}_{i}\right)\) then
                \(\overline{\rho_{a}}=\sigma\left(\mathbf{W}_{J} \subseteq \mathbf{X}_{i}\right)+\varepsilon ;\)
            end if
        end while
        if \(S=\{ \}\) then
            \(C_{a} \doteq C_{a} \cup\left\{\mathbf{X}_{i}\right\} ; K \doteq K+1 ;\)
            if \(\ell\left(\mathbf{X}_{i}\right) \notin B\) then
                \(B \doteq B \cup\left\{\ell\left(\mathbf{X}_{i}\right)\right\} ; L \doteq L+1 ;\)
            end if
        else
            \(\mathbf{W}_{J} \doteq \mathbf{W}_{J} \dot{\cup} \mathbf{X}_{i} ;\)
        end if
    end for
```

For $\sigma=\sigma_{\cap}, v(x)=x$ and $\theta(x)=1-x$ in the unit hypercube, Algorithms 1, 2 and 4 describe the classic FAM.

The applicability of the flrFAM classifier can be extended to a general product lattice $\mathfrak{L}_{1} \times \cdots \times \mathfrak{L}_{N}$ including the lattice $\left(\mathfrak{F}_{2}^{N}, \preceq\right)$ of Type-2 INs as a special case.

IV. Human Facial Expression Recognition

Human-Machine Interaction (HMI) is an emerging application domain of general interest that includes anthropocentric computing, cognitive robotics, etc. The last decade has witnessed a growing interest in anthropocentric computing, that is computing such that a human is directly involved in the computation, e.g. emotion and/or facial expression recognition, human activity recognition, etc. [10], [40]. Even though an assortment of computational modeling techniques have been proposed, it is recognized that the area lacks general mathematical modeling techniques [1].

A. The Lattice Computing (LC) Paradigm

It has been argued lately that a major reason for the existence of different information processing paradigms is the

```
Algorithm 3 flrFAMpar: flrFAM Training (Learning) - Pa-
rameter Optimization subphase
    A user defines the integers \(N_{G}>0\) and \(N_{p}>0\) as well
    as \(b_{s} \in[0,1]\). Let cntr \(=0, Q_{\text {prev }}=0\);
    Randomize parameters (i) baseline vigilance \(\overline{\rho_{a}} \in[0,1]\)
    and (ii) \(A_{i} \in[0,100], \lambda_{i} \in[0,10]\) and \(\mu_{i} \in[-10,10]\) for
    both one sigmoid positive valuation \(v_{s}\left(x ; A_{i}, \lambda_{i}, \mu_{i}\right)=\)
    \(A_{i} /\left(1+e^{-\lambda_{i}\left(x-\mu_{i}\right)}\right)\) and one dual isomorphic function
    \(\theta_{i}(x)=2 \mu_{i}-x\) per data dimension \(i \in\{1, \ldots, N\}\);
    while cntr \(\leq N_{G}\) do
        for \(k=1\) to \(k=N_{p}\) do
            Let \(S_{t r n}=S_{v a l}=0\);
            flrFAMstr \(\left(\overline{\rho_{a}}\right)\);
            for \(i=1\) to \(i=n_{t r n}\) do
                Consider training datum \(\left(\mathbf{X}_{i}, \ell\left(\mathbf{X}_{i}\right)\right) \in \mathfrak{I}_{1}^{N} \times B\);
                \(J \doteq \underset{j \in\left\{1, \ldots,\left|C_{a}\right|\right\}}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
                    \(\underset{\substack{ \\j \in\left\{1, \ldots,\left|C_{a}\right|\right\} \\ \mathbf{W}_{j} \in C_{a}}}{ }\)
                if \(\ell\left(\mathbf{W}_{J}\right)=\ell\left(\mathbf{X}_{i}\right)\) then
                    Update the training data success rate \(S_{t r n}\);
                end if
            end for
            for \(i=1\) to \(i=n_{v a l}\) do
                Consider validation datum \(\left(\mathbf{X}_{i}, \ell\left(\mathbf{X}_{i}\right)\right) \in \mathfrak{I}_{1}^{N} \times B\);
                \(J \doteq \underset{j \in\left\{1, \ldots,\left|C_{a}\right|\right\}}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
                    \(j \in\left\{1, \ldots,\left|C_{a}\right|\right\}\)
\(\mathbf{W}, C_{j}\)
                    \(\mathbf{W}_{j} \in C_{a}\)
                if \(\ell\left(\mathbf{W}_{J}\right)=\ell\left(\mathbf{X}_{i}\right)\) then
                Update the validation data success rate \(S_{v a l}\);
            end if
        end for
        \(Q_{k} \doteq b_{s} S_{t r n}+\left(1-b_{s}\right) S_{v a l} ;\)
        end for
        \(J \doteq \operatorname{argmax}\left\{Q_{k}\right\} ;\)
            \(k \in\left\{1, \ldots, N_{p}\right\}\)
        if \(Q_{J}=Q_{\text {prev }}\) then
            \(c n t r \doteq c n t r+1 ;\)
        else
            \(c n t r \doteq 0 ;\)
        end if
        \(Q_{\text {prev }} \doteq Q_{J} ;\)
        GENETIC optimization of the \(N_{p}\) individual flrFAM
        classifiers' parameters \(\overline{\rho_{a}}, A_{1}, \lambda_{1}, \mu_{1}, \ldots, A_{N}, \lambda_{N}, \mu_{N}\);
    end while
```

```
Algorithm 4 flrFAMtst: flrFAM Testing (Generalization)
phase
    Assume, a set \(C_{a}=\left\{\mathbf{W}_{1}, \ldots, \mathbf{W}_{K}\right\} \subset 2^{\mathfrak{J}_{1}^{N}}\) in module
    \(\mathrm{FLR}_{a}\); a set \(B=\left\{b_{1}, \ldots, b_{L}\right\}\) of category labels in
    module \(\mathrm{FLR}_{b}\); a map \(\ell: \mathfrak{I}_{1}^{N} \rightarrow B\) on \(C_{a}\);
    for \(i=1\) to \(i=n_{t s t}\) do
        Consider the next testing datum \(\left(\mathbf{X}_{i}, b_{i}\right) \in \mathfrak{I}_{1}^{N} \times B\);
        \(J \doteq \underset{j \in\left\{1, \ldots,\left|C_{a}\right|\right\}}{\operatorname{argmax}}\left\{\sigma\left(\mathbf{X}_{i} \subseteq \mathbf{W}_{j}\right)\right\} ;\)
            \(j \in\left\{1, \ldots,\left|C_{a}\right|\right\}\)
\(\mathbf{W}_{j} \in C_{a}\)
        The testing datum \(\mathbf{X}_{i}\) is classified in category \(\ell\left(\mathbf{W}_{J}\right)\);
    end for
    Compute the overall testing data success rate \(S_{t s t}\);
```

need to cope with disparate types of data including matrices of numbers, (distribution) functions, sets, set partitions, logic values, relations, (strings of) symbols, etc. In conclusion, motivated by the fact that popular types of data (including the aforementioned ones) are lattice-ordered, a unified modeling and knowledge-representation has been proposed based on mathematical lattice theory [22], [23].
The term "Lattice Computing (LC)" has been proposed as a Computational Intelligence branch that develops algorithms in $(\mathfrak{R}, \vee, \wedge,+)$, where \mathfrak{R} is the set of real numbers [14], [15], [16]. This work proposes the term "Lattice Computing (LC) paradigm" for denoting an evolving collection of tools and mathematical modeling methodologies with a capacity to process disparate types of (lattice ordered) data per se including logic values, numbers, sets, symbols, graphs, etc.
In the aforementioned sense HMI, including anthropocentric computing, emerges as a promising application domain for the LC paradigm. More specifically, IN-based LC techniques may combine (numeric) machine learning techniques with (semantic) rule-based interpretations as shown below.

B. The Pattern Recognition Problem

Humans may interact with computers by hand gestures, facial expressions, speech or combinations of them. Among those interactions, facial expressions are especially interesting also because they can fairly easily represent human emotions. Hence, facial expressions have already been used in interactive computer games as indicators of the player's intention and/or satisfaction [49], in patient monitoring for pain detection [18], in sign language communication systems [38], etc.
A critical information-processing module in any electronic system for recognizing facial expressions is a classifier. Facial expression recognition can be cast as a pattern recognition problem, where a facial expression has to be recognized ${ }^{46}$ among a number of known facial expressions including, for example, happiness, sadness, surprise, fear, pain etc. Towards the aforementioned (recognition) objective "feature extraction" ${ }^{47}$ is typically pursued in a data preprocessing step.

Several feature extraction alternatives on digital images have been proposed in the literature including wavelet features [45], facial attributes [19], Gabor features [17] and Zernike moments [32]. Action units (AUs), i.e. the smallest visually discernible facial movements, are especially popular features ${ }^{47}$ [47]. In this work we employ orthogonal moments, that is 476 an invertible image transform [44] known for its effectiveness 477 in potentially rotation-scale-translation (RST) invariant pattern 478 recognition applications [43]. Even though specific moments 479 (Zernike) have already been employed for facial expression 480 recognition [32], to the authors' best knowledge, this is the first ${ }^{481}$ joint/comparative employment of different moments features 482 for human facial expression recognition.

V. Experiments and Results

We carried out a number of human facial and emotional ${ }_{487}$ expression recognition experiments by the flrFAM classifier ${ }_{488}$ as described in this section.
(a)

(b)

(e)

(c)

(f)

(d)

(g)

Fig. 4. Seven different facial expressions, from the JAFFE benchmark data set, including (a) "neutral", (b) "angry", (c) "disgusted", (d) "fear", (e) "happy", (f) "sad", and (g) "surprise".

A. Benchmark Datasets

Two facial expression recognition benchmark datasets were engaged. First, the JAFFE dataset [34] including 213 frontal images (with 256×256 pixels per image) of 10 different ${ }_{3}$ persons corresponding to seven common human facial expressions, namely "neutral" (30), "angry" (30), "disgusted" (29), "fear" (32), "happy" (31), "sad" (31) and "surprise" (30) regarding Japanese female subjects (Fig.4). Second, the RADBOUD dataset [33] including $67 \times 8=536$ frontal images (with 681×1024 pixels per image) corresponding to 8 common emotional expressions, namely "angry" (67), "contemptuous" (67), "disgusted" (67), "fear" (67), "happy" (67), "neutral" 1 (67), "sad" (67) and "surprise" (67) regarding Caucasian and Moroccan subjects both male and female (Fig.5). A number within parentheses above, indicates the number of images per facial/emotional expression.

B. Data Preprocessing and Feature Extraction

In an initial "data preprocessing" step we removed irrelevant image content such as background/hair by, first, applying the Viola-Jones face detector [48] so as to separate the head region from the background and, second, by masking the face with an ellipse so as to remove the hair and include as much facial information as possible. In a final "data preprocessing" step we used the latter (face) segment for feature extraction by 3 the method of orthogonal moments. Six kinds of moments, 4 namely Zernike, Pseudo-Zernike, Fourier-Mellin, Legendre, 5 Tchebichef and Krawtchouk moments [44] were computed up to order 6 and 5 (for order 5 we kept only the first 16 moments) for Zernike and Pseudo-Zernike moments, respectively, and up to order 3 for all other moments. In each case, a 16${ }^{89}$ dimensional feature vector (including 16 moments of a kind)

Fig. 5. Eight different emotional expressions, from the RADBOUD bench- ${ }^{542}$ mark data set, including (a) "Angry", (b) "Contemptuous", (c) "Disgusted", ${ }_{543}$ (d) "Fear", (e) "Happy", (f) "Neutral", (g) "Sad", and (h) "Surprise".
was computed per image. The induction of a Type-1 IN from vector of real numbers was carried out as detailed in [30].

C. Computational Experiments

the aforementioned (random) data partition 10 times. Care was aken so that all different classes be represented fairly in the datasets for training, validation and testing. Every experiment was repeated 10 times using the same (random) data partitions for all classifiers. We point out that three dataset partitions (i.e., for training, validation and testing) were employed only by the Neural Network and the flrFAM classifiers; whereas, the remaining classifiers employed jointly the training dataset and the validation dataset for training

1) Experiments with 96-dimensional feature vectors: All the classifiers were applied in the Euclidean space \mathfrak{R}^{96} but the LDA classifier which could not be applied for numerical reasons due to the large input data dimension (96) comparatively to the total number of the training data. For the Neural Network classifier an optimal number of hidden layer neurons was estimated by "trial-and-error" to 50 . The flrFAM classifier was applied by representing an image by a 6 -dimensional trivial Type-2 IN $\overrightarrow{\mathbb{E}}=[\vec{E}, \vec{E}]$, where a Type-1 IN in $\vec{E} \in \mathfrak{F}_{1}^{6}$ was induced from a 16 -tuple of numeric (feature) data that corresponded to a moment kind.
2) Experiments with 16-dimensional feature vectors: All the classifiers were applied in space \mathfrak{R}^{16}. In particular, a Neural Network classifier was applied with an optimal number of hidden layer neurons estimated by "trial-and-error" to 16 . The flrFAM classifier was applied by representing an image by a 16 -dimensional trivial Type-2 IN $\overrightarrow{\mathbb{E}}=[\vec{E}, \vec{E}]$, where a trivial Type-1 IN $\vec{E} \in \mathfrak{F}_{1}^{16}$ was induced from the corresponding feature vector data. Hence, the flrFAM computed "hyperboxes" for an upper Type-2 IN envelope, whereas the corresponding lower Type-2 IN envelope was the empty set.

In an N-dimensional flrFAM classification experiment (for either $N=6$ or $N=16$), an inclusion measure $\left(~ \sigma=\sigma_{\dot{\cup}}\right)$ was computed in the product lattice $\left(\mathfrak{F}_{2}^{N}, \preceq\right)$ using equations 550 (3) and (4). All descriptor values were normalized. A Type-1 We carried out a number of experiments with different ${ }_{551}$ IN was represented with $L=32$ intervals spaced evenly from classifiers on either 16- or 96- dimensional (feature) vectors ${ }_{552} h=0$ to $h=1$ included.
that represented an image. More specifically, a 16 -dimensional ${ }_{553}$ Regarding parameter optimization by a genetic algorithm, (feature) vector included 16 moments of a kind regarding ei-554 the phenotype of an individual (flrFAM classifier) consisted ther Zernike or Pseudo-Zernike or Fourier-Mellin or Legendre ${ }_{555}$ of specific values for 3 sigmoid function $v_{s}\left(x ; A_{i}, \lambda_{i}, \mu_{i}\right)$ or Tchebichef or Krawtchouk moments, separately; whereas, 556 parameters A_{i}, λ_{i} and μ_{i} per data dimension $i \in\{1, \ldots, N\}$. a $6 \times 16=96$-dimensional (feature) vector was produced by 5_{57} An additional parameter was the baseline vigilance $\overline{\rho_{a}}$. Hence, concatenating six 16-dimensional (feature) vectors for the six 5_{58} a total number of $3 N+1$ parameters was binary-encoded in aforementioned kinds of moments, respectively.

559
We employed a number of classifiers including the $\mathrm{k}-560$ dividuals per generation. The genetic algorithm was enhanced Nearest-Neighbor (kNN) [17] with $k=1$, Linear Discriminant 5_{51} by the microgenetic hill-climbing operator and, in addition, Analysis (LDA) [9], Naive Bayes [32], Classification Trees ${ }_{562}$ both elitism and adaptive crossover/mutation rates were im[11], feedforward Neural Networks [35] and FAM [7], all ${ }_{563}$ plemented [41]. A balancing factor for success $b_{s}=0.5$ (see implemented in the MATLAB 7.8.0 integrated development 564 Algorithm 3, step 21) was employed. The genetic algorithm environment (IDE). Moreover, we employed the flFFAM clas-565 was left to evolve until no improvement was observed in the ifier implemented in the C++ programming language.
In our classification experiments, a different facial/emo-567 a row. Then, the testing data were applied once and the testing tional expression corresponded to a different class. We ran-568 data percentage success rate (or, equivalently, generalization domly partitioned the data in three mutually disjoint sets: one ${ }_{569}$ rate) $S_{t s t}$ was recorded.
for training, one for validation and another one for testing. 570
Table I displays the "minimum (min)", "maximum (Max)", More specifically, for the JAFFE benchmark the datasets for 571 "average (ave)" and "standard deviation (std)" statistics of raining, validation and testing included 184,7 and 22 images, 572 the generalization rate (\%) regarding the JAFFE benchmark respectively; whereas, for the RADBOUD benchmark they ${ }_{573}$ dataset in 10 computational experiments for a number of included 472,10 and 54 images, respectively. We repeated 574 classifiers and the aforementioned six kinds of moments con-

TABLE I
Generalization rate (\%) statistics regarding the JaFFE testing data in 10 computational experiments using several CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, CONCATENATED

Classifier name	min	Max	ave	std
kNN (k=1)	40.91	94.74	67.68	15.82
Naive Bayes	18.18	52.63	36.80	10.03
Classification Tree	31.82	47.37	40.02	5.67
Neural Network (50)	18.18	59.09	37.27	13.52
FAM	50.00	90.00	68.87	13.49
flrFAM	50.00	86.36	69.54	12.31

TABLE II
Generalization rate (\%) statistics regarding the RADBOUD TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, CONCATENATED

Classifier name	min	Max	ave	std
kNN (k=1)	22.22	46.30	35.74	7.51
Naive Bayes	35.19	57.41	48.15	7.04
Classification Tree	27.78	40.74	34.07	4.20
Neural Network (50)	11.11	64.81	45.74	15.81
FAM	27.77	44.44	37.40	6.03
flrFAM	35.18	50.00	43.14	4.86

catenated, whereas Table II displays the corresponding statistics regarding the RADBOUD benchmark dataset. Likewise, Table III displays "min", "Max", "ave" and "std" statistics of the generalization rate (\%) regarding the JAFFE benchmark dataset in 10 experiments using various classifiers and the aforementioned six kinds of moments separately, whereas Table IV displays the corresponding statistics regarding the RADBOUD benchmark dataset.
The computation of any kind of 16 moments took around 0.5 minute per image. A full classification experiment for one mage data partition took around: 1 minute for each one of the kNN, LDA, Naive Bayes and Classification Tree classifiers; 2 minutes for the FAM classifier; 4 minutes for the Neural Network classifier; 61 minutes for the flrFAM classifier due mainly to the computationally expensive genetic algorithm optimization (see in Algorithm 3, step 30). Note that without any optimization, flrFAM was as fast as FAM.

Our computational experiments with the flrFAM on the 96dimensional feature vectors of the JAFFE dataset induced the set of rules shown in Fig.6. In particular, Fig. 6 displays one 6-tuple Type-2 IN per class as follows. The first six columns of the 7×7 Table in Fig. 6 (excluding the header) display Type-2 INs corresponding to Zernike (MOMS_Z), PseudoZernike (MOMS_PZ), Fourier-Mellin (MOMS_FM), Legendre (MOMS_L), Tchebichef (MOMS_T) and Krawtchouk6

TABLE III
Generalization rate (\%) Statistics Regarding the JAFFE TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, SEPARATELY

CLASSIFIER NAME				
Moment Type	min	Max	ave	std
kNN (k=1)				
1) Zernike	50.00	95.45	80.37	13.04
2) Pseudo-Zernike	45.45	90.91	78.57	13.69
3) Fourier-Mellin	45.45	90.91	73.98	14.52
4) Legendre	63.64	100.00	75.91	10.06
5) Tchebichef	63.64	100.00	75.00	11.19
6) Krawtchouk	40.91	95.45	66.24	16.36
LDA				
1) Zernike	40.91	68.18	52.49	9.73
2) Pseudo-Zernike	40.91	59.09	51.24	7.62
3) Fourier-Mellin	31.82	72.73	53.82	11.96
4) Legendre	36.36	77.27	53.18	10.51
5) Tchebichef	36.36	77.27	53.18	10.51
6) Krawtchouk	27.27	54.54	41.46	9.85
NAIVE BAYES				
1) Zernike	22.73	50.00	32.39	8.83
2) Pseudo-Zernike	22.73	45.45	30.89	6.77
3) Fourier-Mellin	27.27	50.00	41.36	7.25
4) Legendre	9.09	40.91	27.18	8.30
5) Tchebichef	9.09	36.36	25.81	7.11
6) Krawtchouk	18.18	54.54	32.61	13.30
CLASSIFICATION TREE				
1) Zernike	27.27	54.55	40.57	8.29
2) Pseudo-Zernike	18.18	50.00	32.18	10.86
3) Fourier-Mellin	13.64	45.45	33.22	10.10
4) Legendre	22.73	45.45	32.90	7.63
5) Tchebichef	13.64	50.00	28.38	11.96
6) Krawtchouk	22.73	45.45	32.61	7.35
NEURAL NETWORK (16)				
1) Zernike	9.09	50.00	29.18	14.54
2) Pseudo-Zernike	4.55	63.64	33.48	19.45
3) Fourier-Mellin	13.63	68.18	37.13	19.06
4) Legendre	9.09	100.00	32.88	25.24
5) Tchebichef	9.09	59.09	39.40	16.58
6) Krawtchouk	4.55	50.00	25.00	15.34
FAM				
1) Zernike	50.00	95.45	79.00	12.14
2) Pseudo-Zernike	50.00	90.90	74.90	12.22
3) Fourier-Mellin	36.36	86.36	63.54	15.19
4) Legendre	45.45	95.45	72.27	12.57
5) Tchebichef	54.54	95.45	72.72	10.71
6) Krawtchouk	40.90	85.00	63.45	16.67
flrFAM				
1) Zernike	59.09	95.45	83.63	10.53
2) Pseudo-Zernike	54.54	90.90	79.08	12.52
3) Fourier-Mellin	50.00	86.36	75.90	13.04
4) Legendre	59.09	95.45	77.72	11.82
5) Tchebichef	63.63	95.45	77.26	10.92
6) Krawtchouk	45.45	95.45	69.54	15.00

${ }_{11}$ D. Significance of the Results

Based on 10 experiments for 10 (random) data partitions, ${ }_{3}$ respectively, we evaluated all classifiers pairwise using the plays the corresponding class name. For instance, the first row614 one-sided "matched pairs" statistical t test with $d f=9$ degrees of the 7×7 Table in Fig. 6 displays a data-induced "Type- 2615 of freedom. The null hypothesis H_{0} : "the two classifiers (in 6-tuple IN" granule for the class (facial expression) ANGRY, 616 a pair) give similar results" was tested versus the alternative the second row displays the corresponding granule for class 617 hypothesis H_{a} : "the second classifier (in a pair) improves DISGUSTED, etc. We point out that the lower/upper envelope 618 classification performance". For each evaluation we computed $U / W \in \mathfrak{F}_{1}$ of a Type-2 IN $\mathbb{E}=[U, W]$ in Fig. 6 is indicated 619 the P-value of the statistic $t=(\bar{x}-0) /(s / \sqrt{n})$ for $n=10$, in bold (black) color, whereas all the encoded Type-1 INs are 620 where \bar{x} is the sample average of differences in generalization indicated in light (red) color within a Type-2 IN. A similar set 621 accuracy and s is the corresponding standard deviation. We of rules was induced by the flrFAM from the 96 -dimensional 622 worked at 5% level of significance.
feature vectors of the RADBOUD benchmark dataset.
${ }_{623}$ Table V presents our results for the JAFFE 96-dimensional

TABLE IV
GEnERALIZATION RATE (\%) Statistics REGARDING THE RADBOUD TESTING DATA IN 10 COMPUTATIONAL EXPERIMENTS USING SEVERAL CLASSIFIERS AND SIX DIFFERENT KINDS OF MOMENTS, SEPARATELY

CLASSIFIER NAME				
Moment Type	min	Max	ave	std
kNN (k=1)				
1) Zernike	33.33	51.85	41.30	6.05
2) Pseudo-Zernike	33.33	50.00	41.30	5.79
3) Fourier-Mellin	35.19	55.56	44.81	5.71
4) Legendre	33.33	48.15	40.37	5.44
5) Tchebichef	31.48	51.85	40.93	6.44
6) Krawtchouk	22.22	46.30	35.56	7.45
LDA				
1) Zernike	37.04	57.41	48.15	7.20
2) Pseudo-Zernike	35.19	59.26	47.59	8.86
3) Fourier-Mellin	46.30	66.67	55.37	6.84
4) Legendre	42.59	59.26	49.26	5.53
5) Tchebichef	42.59	59.26	49.26	5.53
6) Krawtchouk	27.78	50.00	41.30	7.51
NAIVE BAYES				
1) Zernike	37.04	55.56	45.37	7.57
2) Pseudo-Zernike	33.33	61.11	43.89	8.24
3) Fourier-Mellin	37.04	59.26	45.93	7.03
4) Legendre	33.33	53.70	41.67	6.13
5) Tchebichef	33.33	53.70	41.85	6.12
6) Krawtchouk	16.67	40.74	27.22	7.56
CLASSIFICATION TREE				
1) Zernike	22.22	37.04	29.07	5.92
2) Pseudo-Zernike	24.07	40.74	32.04	5.52
3) Fourier-Mellin	24.07	44.44	33.52	6.56
4) Legendre	22.22	42.59	32.59	6.49
5) Tchebichef	12.96	50.00	28.70	10.23
6) Krawtchouk	20.37	44.44	27.96	6.67
NEURAL NETWORK (16)				
1) Zernike	16.67	51.85	29.26	11.41
2) Pseudo-Zernike	5.56	38.89	29.07	9.92
3) Fourier-Mellin	18.52	61.11	46.67	12.52
4) Legendre	24.07	55.56	41.11	10.10
5) Tchebichef	16.67	53.70	35.19	14.48
6) Krawtchouk	16.67	46.30	31.11	11.31
FAM				
1) Zernike	24.07	42.59	34.44	7.20
2) Pseudo-Zernike	31.48	48.14	37.40	5.71
3) Fourier-Mellin	33.33	48.14	40.18	4.36
4) Legendre	31.48	50.00	42.77	6.73
5) Tchebichef	33.33	55.55	43.88	7.20
6) Krawtchouk	22.22	42.59	32.59	6.30
flrFAM				
1) Zernike	35.18	50.00	42.03	5.45
2) Pseudo-Zernike	35.18	48.14	41.84	5.17
3) Fourier-Mellin	37.03	53.70	43.14	5.24
4) Legendre	37.03	48.14	42.21	4.07
5) Tchebichef	33.33	51.85	41.66	5.80
6) Krawtchouk	24.07	48.14	37.40	7.18

Fig. 6. A row of the 7×7 Table above (excluding the header) displays one 6dimensional Type-2 IN induced for each of the seven human facial expressions (classes) of the JAFFE benchmark dataset. One Type-2 IN corresponds to one kind of moments. At the end of a row, the corresponding class name is shown.

TABLE V
P-VALUES OF THE ONE-SIDED "MATCHED PAIRS" STATISTICAL t TEST WITH $d f=9$ DEGREES OF FREEDOM FOR PAIRWISE CLASSIFIER EVALUATION ON THE JAFFE 96-DIMENSIONAL FEATURE VECTORS

Classifier	kNN	NBayes	CTree	NN (50)	FAM	flrFAM
kNN		0	0.0001	0.0003	0.1991	0.3217
NBayes			0.1178	0.4663	0	0
CTree				0.2962	0	0
NN (50)					0.0001	0
FAM						0.4290

${ }_{637}$ Naive Bayes, Neural Network and flrFAM classifiers produced ${ }_{638}$ the best (statistically significant) generalization rates.

641 tion of 16 data, corresponding to a moment kind, was replaced ${ }_{642}$ by its first order statistic, namely its average. We recorded an ${ }_{643}$ average performance drop by up to 40% and 20% for the ${ }_{644}$ JAFFE and the RADBOUD, respectively. We attributed the 62 data. In particular, a comparison of the testing data accuracy ${ }_{645}$ aforementioned drop to the loss of "discriminatory" informa- Hence, the null hypothesis H_{0} could not be rejected; in other ${ }_{649}$ evaluate, pairwise, different kinds of moments for each classiwords, the flrFAM appears to perform as well as either clas-650 fier. For the JAFFE 16-dimensional data, the kNN, FAM and (he Naive Bayes (36.80%), Classification Tree (40.02\%) and 65 the highest generalization rates, Moreover for the RADBOUD ${ }_{632}$ Neural Network (37.27%) classifiers resulted in $t=8.1986$,653 16 -dimensional data, the LDA classifier with Fourier-Mellin ${ }_{633} t=8.2653$ and $t=6.6391$, which practically implied $P=0.654$ moments produced the highest generalization rates followed by ${ }_{634}$ Hence, the null hypothesis H_{0} could not be accepted; in other 655 the kNN, Naive Bayes, Neural Network and flrFAM classifiers ${ }_{635}$ words, the flrFAM appears to improve the generalization rate.656 also with Fourier-Mellin moments as well as by the FAM 636 Furthermore, for the RADBOUD 96-dimensional data, the 657 classifier also with Tchebichef moments. It was confirmed that

TABLE VI

AUC VALUES FOR THREE CLASSIFIERS AND 96-DIM FEATURE VECTORS FOR JAFFE CLASSES "NEUTRAL" (C1), "ANGRY" (C2), "DISGUSTED" (C3), "FEAR" (C4), "HAPPY" (C5), "SAD" (C6) AND "SURPRISE" (C7)

Classifier	c 1	c 2	c 3	c 4	c 5	c 6	c 7
kNN $(\mathrm{k}=1)$	0.87	0.82	0.78	0.87	0.89	0.81	0.78
FAM	0.90	0.82	0.80	0.89	0.90	0.82	0.79
flrFAM	0.80	0.75	0.78	0.92	0.94	0.80	0.77

no specific kind of moments is is globally preferable. The flrFAM classifier application in the JAFFE problem on 16-dimensional vectors produced better generalization rates ${ }_{718}$ than its application on 96 -dimensional vectors; that is, keeping ${ }_{7}$ different moment features in different dimensions improves ${ }_{72}$ flrFAM's generalizability compared to mingling different moment features in a single dimension. The latter improvement was not confirmed in the RADBOUD problem, where no sta- ${ }_{7}$ tistically significant difference was mostly recorded between ${ }_{724}$ the 16 - and 96 -dimensional vector representations.
We studied the confusion of different classifiers. First, we ${ }_{726}$
recognition schemes have been reported in the literature mostly for the JAFFE [17], [32], [45] rather than for the RADBOUD benchmark [19]. More specifically, first, the works in [17], [32] and [45] have reported a maximum classification rate of $89.67 \%, 92.8 \%$ and 95.71%, respectively, using different machine-learning classification schemes, different specific features as well as different training/testing datasets. Second, the work in [19] has reported a maximum classification rate of 93.96% using a Fuzzy Inference System (FIS) with human-defined initial rules, different features and 414 frontal images regarding six basic emotions and two gaze directions. Apparently, the maximum (Max) classification rates reported in Tables I and III for the JAFFE benchmark compare well with the aforementioned results from the literature. Moreover, it appears that all aforementioned 414 frontal images of the RADBOUD benchmark were employed in [19] for testing. Given both the sizes of our data sets for training and testing (i.e. around 90% and 10%, respectively) and the fact that the flrFAM typically learns all its training data, it follows that the frFAM here can outperform the classifier in [19].
The flrFAM classifier performed as good as the FAM or the kNN classifier (for $k=1$) because they operate on the same principle: The kNN decides based on the distance of a testing datum from the nearest (labeled) training datum, whereas the (flr)FAM classifier decides based on the inclusion of a testing datum into a (labeled) category induced from the training data. A unique advantage of the flrFAM classifier is the induction of flexible (i.e., tunable) descriptive decision-making knowledge (rules) as shown in Fig.6, which (Fig.6) also indicates that the flrFAM can be interpreted as a fuzzy neural classifier. Moreover, since Type-2 INs are involved, this work paves the way for sound extensions of FAM to Type-2 FISs [36].

VI. Conclusion

This work has introduced the novel flrFAM neural classifier is the 22.22% confusion of class "sad" with class "surprise". ${ }^{741}$ as a Lattice Computing (LC) extension of the fuzzy ARTMAP The remaining classifiers typically confused a class to over $7_{742}(F A M)$ neural classifier for real-time learning and classification 50%. Second, we confirmed that classification results dete- ${ }_{743}$ of nonstationary data followed by an application to facial exriorated considerably for the RADBOUD benchmark. More ${ }_{744}$ pression recognition. Comparative computational experiments specifically, even though all classifiers recognized class "neu- -745 have demonstrated the viability of our proposed techniques.
tral" well in the range $62 \%-87 \%$, they typically confused any ${ }_{746}$

The work here emphasized an application of the flrFAM classifier to (static) human facial expression recognition. Adwere recorded for all 16 -dimensional feature vector data in_{748} vantages include the induction of flexible (i.e., tunable) rules both the JAFFE and the RADBOUD classification problems. ${ }_{74}$ computable by machine learning techniques as well as the
To further demonstrate a classifier system performance, we e $_{50}$ capacity for granular computing so as to cope with data computed Receiver Operating Characteristics (ROC) curves. 751 uncertainty/ambiguity. An additional advantage is flrFAM's Each ROC curve computation was based on a few tens of ${ }_{752}$ capacity for (non)numeric data fusion based, rigorously, on "false-positive, true-positive" pairs of points. For lack of space, 753 data semantics represented by partial-order.
we display only the corresponding Area Under Curve (AUC) ${ }_{754}$ Future work plans include extensions to dynamic (video) values [13] in Table VI for the three "best performing" classi-755 human recognition applications engaging, as well, additional fiers regarding the 96 -dimensional JAFFE data. In particular, 76 types of data such as voice, etc. a Table VI cell entry is the average of 10 AUC values for 10 random data partitions. Note that the nearest a Table VI entry ${ }^{757}$ is to 1 , the better the corresponding classifier (generalization) 758 performance. Table VI shows that the best performance was ${ }_{75}$ attained by either classifier FAM or flrFAM.
Next, we give a measure of comparison of our techniques 761 Groups in TEI of Athens" project of the "Education \& with alternative ones. Note that a number of facial expression ${ }_{762}$ Lifelong Learning" Operational Programme.

References

[1] D. Aarno and D. Kragic, "Motion intention recognition in robot assisted ${ }_{841}^{840}$ applications," Robotics and Autonomous Systems, vol. 56, no. 8, pp. 842 692-705, 2008.
[2] J. Andreu and P. Angelov, "Real-time human activity recognition from ${ }_{844}^{843}$ wireless sensors using evolving fuzzy systems," in 2010 IEEE Intl. Conf. 845 on Fuzzy Systems (FUZZ), Barcelona, Spain, Jul. 18-23, 2010, pp. 1-8. 846
[3] G. Birkhoff, Lattice Theory. Providence, RI: American Mathematical ${ }_{847}$ Society, 1967, Colloquium Publications, vol. 25.
[4] G.A. Carpenter and S. Grossberg, "A massively parallel architecture for ${ }_{849}^{848}$ a self-organizing neural pattern recognition machine," Computer Vision, 850 Graphics, and Image Processing, vol. 37, no. 1, pp. 54-115, 1987. 851
[5] G.A. Carpenter, S. Grossberg, and J.H. Reynolds, "A fuzzy ARTMAP 852 nonparametric probability estimator for nonstationary pattern recognition ${ }_{853}$ problems," IEEE Transactions on Neural Networks, vol. 6, no. 6, pp. 854 1330-1336, 1995.
[6] G.A. Carpenter, S. Grossberg, and D.B. Rosen, "Fuzzy ART: fast stable ${ }_{856}^{855}$ learning and categorization of analog patterns by an adaptive resonance ${ }_{857}$ system," Neural Networks, vol. 4, no. 6, pp. 759-771, 1991.
[7] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and D.B. 859 Rosen, "Fuzzy ARTMAP: a neural network architecture for incremantal ${ }_{860}$ supervised learning of analog multidimensional maps," IEEE Trans. on 861 Neural Networks, vol. 3, no. 5, pp. 698-713, 1992.
[8] R. Chattopadhyay, S. Chakraborty, V.N. Balasubramanian, and S. Pan- ${ }_{863}$ chanathan, "Optimization-based domain adaptation towards person-864 adaptive classification models," in IEEE Computer Society Proc. 10th 865 Intl. Conf. on Machine Learning and Applications (ICMLA, 2011), 866 Honolulu, HI, Dec. 18-21, 2011, pp. 476-483.
[9] X -W Chen and T. Huang, "Facial expression recognition: a clusterin based approach," Pattern Recognition Letters, vol. 24, no. 9-10, pp. 869 1295-1302, 2003.
10] F. Courtemanche, E. Aïmeur, A. Dufresne, M. Najjar, and F. Mpondo, 871 "Activity recognition using eye-gaze movements and traditional interac- 872 tions," Interacting with Computers, vol. 23, no. 3, pp. 202-213, 2011. 873
11] F. Dornaika, E. Lazkano, and B. Sierra, "Improving dynamic facial ex-874 pression recognition with feature subset selection," Pattern Recognition 875 Letters, vol. 32, no. 5, pp. 740-748, 2011.
12] R. Elwell and R. Polikar, "Incremental learning of concept drift in 877 nonstationary environments," IEEE Transactions on Neural Networks, 878 vol. 22, no. 10, pp. 1517-1531, 2011.
13] T. Fawcett, "An introduction to ROC analysis," Pattern Recognition Letters, vol. 27, no. 8, pp. 861-874, 2006.
14] M. Graña, "A brief review of lattice computing" in Proceedings of the ${ }^{881}$ World Congress on Computational Intelligence (WCCI) 2008, FUZZ-883 IEEE Program, , Hong Kong, China, 1-6 June 2008, pp. 1777-1781. 884
15] M. Graña (Ed.), Special issue on: Lattice computing and natural com- 885 puting, Neurocomputing, vol. 72, no. 10-12, pp. 2065-2066, 2009. 886
16] M. Graña, D. Chyzhyk, M. García-Sebastián, and C. Hernández, "Lattice 887 independent component analysis for functional magnetic resonance 888 imaging," Information Sciences, vol. 181, no. 10, pp. 1910-1928, 2011. 889
17] W. Gu, C. Xiang, Y.V. Venkatesh, D. Huang, and H. Lin, "Facial 890 expression recognition using radial encoding of local Gabor features 891 and classifier synthesis," Patt. Recogn., vol. 45, no. 1, pp. 80-91, 2012.892
18] Z. Hammal and M. Kunz, "Pain monitoring: a dynamic and context-893 sensitive system," Patt. Recogn., vol. 45, no. 4, pp. 1265-1280, 2012. 894
19] M. Ilbeygi and H. Shah-Hosseini, "A novel fuzzy facial expression 895 recognition system based on facial feature extraction from color face 896 images," Eng. Applic. of Artif. Intel., vol. 25, no. 1, pp. 130-146, 2012. 897
20] V.G. Kaburlasos, Adaptive Resonance Theory With Supervised Learning 898 and Large Database Applications. Ph.D. Dissertation, Univ. Nevada, 899 Reno, 1992, USA Library of Congress-Copyright Office.
21] V.G. Kaburlasos, "FINs: lattice theoretic tools for improving prediction 901 of sugar production from populations of measurements," IEEE Trans. 902 on Syst., Man \& Cybern. - B, vol. 34, no. 2, pp. 1017-1030, 2004. 903
22] V.G. Kaburlasos, Towards a Unified Modeling and Knowledge-904 Representation Based on Lattice Theory. Heidelberg, Germany:905 Springer, 2006, ser. Studies in Computational Intelligence, vol. 27.906
$23]$ V.G. Kaburlasos (Ed.), Special issue on: Information engineering appli-907 cations based on lattices, Information Sciences, vol. 181, no. 10, pp. 908 1771-1773, 2011.
24] V.G. Kaburlasos and A. Kehagias, "Novel fuzzy inference system (FIS) 910 analysis and design based on lattice theory," IEEE Transactions on Fuzzy911 Systems, vol. 15, no. 2, pp. 243-260, 2007.

912
25] V.G. Kaburlasos and T. Pachidis, "A lattice-computing ensemble for913 reasoning based on formal fusion of disparate data types, and an industrial dispensing application," Information Fusion, (to be published)
[26] V.G. Kaburlasos and S.E. Papadakis, "Granular self-organizing map (grSOM) for structure identification," Neural Networks, vol. 19, no. 5, pp. 623-643, 2006.
[27] V.G. Kaburlasos and S.E. Papadakis, "A granular extension of the fuzzyARTMAP (FAM) neural classifier based on fuzzy lattice reasoning (FLR)," Neurocomputing, vol. 72, no. 10-12, pp. 2067-2078, 2009.
28] V.G. Kaburlasos and V. Petridis, "Fuzzy lattice neurocomputing (FLN) models," Neural Networks, vol. 13, no. 10, pp. 1145-1169, 2000.
[29] V.G. Kaburlasos, I.N. Athanasiadis, and P.A. Mitkas, "Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation," Intl. J. of Approximate Reasoning, vol. 45, no. 1, pp. 152-188, 2007.
[30] V.G. Kaburlasos, S.E. Papadakis, and A. Amanatiadis, "Binary image 2D shape learning and recognition based on lattice-computing (LC) techniques," J. Math. Imag. \& Vis., vol. 42, no. 2-3, pp. 118-133, 2012.
[31] Ath. Kehagias, "Some remarks on the lattice of fuzzy intervals," Information Sciences, vol. 181, no. 10, pp. 1863-1873, 2011.
[32] S.M. Lajevardi and Z.M. Hussain, "Higher order orthogonal moments for invariant facial expression recognition," Digital Signal Processing, vol. 20, no. 6, pp. 1771-1779, 2010.
[33] O. Langner, R. Dotsch, G. Bijlstra, D.H.J. Wigboldus, S.T. Hawk, and A. van Knippenberg, "Presentation and validation of the Radboud faces database," Cognition \& Emotion, vol. 24, no. 8, pp. 1377-1388, 2010.
[34] M.J. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, "Coding facial expressions with Gabor wavelets," in IEEE Computer Society Proc. 3rd Intl. Conf. on Automatic Face and Gesture Recognition (FG '98), Nara, Japan, April 14-16, 1998, pp. 200-205.
[35] L. Ma and K. Khorasani, "Facial expression recognition using constructive feedforward neural networks," IEEE Transactions on Systems, Man \& Cybernetics - Part B, vol. 34, no. 3, pp. 1588-1595, 2004.
[36] J.M. Mendel, "Type-2 fuzzy sets and systems: an overview," IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 20-29, 2007.
[37] L.L. Minku and X. Yao, "DDD: a new ensemble approach for dealing with concept drift," IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 4, pp. 619-633, 2012.
[38] T.D. Nguyen and S. Ranganath, "Facial expressions in American sign language: tracking and recognition," Pattern Recognition, vol. 45, no. 5, pp. 1877-1891, 2012.
[39] M. Pantic, Keynote Speech on "Machine understanding of human behaviour," 16th Intl. Conf. on Knowledge-Based and Intelligent Information \& Engineering Systems (KES-2012), San Sebastian, Spain, 10-12 September, 2012.
[40] M. Pantic, A. Nijholt, A. Pentland, and T.S. Huang, "Human-centred intelligent human-computer interaction (HCI2): how far are we from attaining it?," International Journal of Autonomous and Adaptive Communications Systems, vol. 1, pp. 168-187, 2008.
41] S.E. Papadakis and V.G. Kaburlasos, "Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals' numbers (INs)," Information Sciences, vol. 180, no. 24, pp. 5060-5076, 2010.
[42] S.E. Papadakis, V.G. Kaburlasos, and G.A. Papakostas, "Fuzzy lattice reasoning (FLR) classifier for human facial expression recognition," in Proc. 10th Intl. Conf. on Uncertainty Modeling in Knowledge Engineering and Decision Making (FLINS), Istanbul, Turkey, 26-29 Aug 2012. World Scientific on Comp. Eng. and Info. Science 7, pp. 633-638.
[43] G.A. Papakostas, E.G. Karakasis, and D.E. Koulouriotis, "Novel moment invariants for improved classification performance in computer vision applications," Pattern Recognition, vol. 43, no. 1, pp. 58-68, 2010.
[44] G.A. Papakostas, D.E. Koulouriotis, and E.G. Karakasis, "A unified methodology for efficient computation of discrete orthogonal image moments," Information Sciences, vol. 179, no. 20, pp. 3619-3633, 2009.
[45] F.Y. Shih, C.-F. Chuang, and P.S.P. Wang, "Performance comparisons of facial expression recognition in JAFFE database," Intl. J. of Pattern Recognition and Artificial Intelligence, vol. 22, no. 3, pp. 445-459, 2008.
[46] P. Sussner and E.L. Esmi, "Morphological perceptrons with competitive learning: Lattice-theoretical framework and constructive learning algorithm," Information Sciences, vol. 181, no. 10, pp. 1929-1950, 2011.
[47] M.F. Valstar, M. Mehu, B. Jiang, M. Pantic, and K. Scherer, "Metaanalysis of the first facial expression recognition challenge," IEEE Transactions on Systems, Man \& Cybernetics - Part B, vol. 42, no. 4, pp. 966-979, 2012.
[48] P. Viola and M.J. Jones, "Robust real-time face detection," Intl. Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.
[49] C. Zhan, W. Li, P. Ogunbona, and F. Safaei, "A real-time facial expression recognition system for online games," International Journal of Computer Games Technology, Article ID 542918, 7 pages, 2008.

[^0]: ${ }^{1}$ Positive valuation on a lattice $(\mathfrak{L}, \sqsubseteq)$ is a real function $v: \mathfrak{L} \rightarrow \mathfrak{R}$ that satisfies both $v(x)+v(y)=v(x \sqcap y)+v(x \sqcup y)$ and $x \sqsubset y \Rightarrow v(x)<v(y)$. ${ }^{2}$ Let $(\mathfrak{K}, \sqsubseteq)$ and $(\mathfrak{L}, \sqsubseteq)$ be lattices. A function $\theta: \mathfrak{K} \rightarrow \mathfrak{L}$ here is called dual isomorphic iff both " $x \sqsubset y \Leftrightarrow \theta(x) \sqsupset \theta(y)$ " and " θ onto \mathfrak{L} ".

