A Lattice-Computing Ensemble for Reasoning
Based on Formal Fusion of Disparate Data Types, and an Industrial Dispensing Application
Vassilis G. Kaburlasos and Theodore Pachidis
Department of Industrial Informatics
Technological Educational Institution of Kavala
65404 Kavala, Greece
Emails: \{vgkabs,pated\}@teikav.edu.gr

Abstract

By "fusion" this work means integration of disparate types of data including (intervals of) real numbers as well as possibility/probability distributions defined over the totally-ordered lattice (R, \leq) of real numbers. Such data may stem from different sources including (multiple/multimodal) electronic sensors and/or human judgement. The aforementioned types of data are presented here as different interpretations of a single data representation, namely Intervals' Number (IN). It is shown that the set F of INs is a partially-ordered lattice (F, \preceq) originating, hierarchically, from (R, \leq). Two sound, parametric inclusion measure functions $\sigma: \mathrm{F}^{\mathrm{N}} \times \mathrm{F}^{\mathrm{N}} \rightarrow[0,1]$ result in the Cartesian product lattice (F^{N}, \preceq) towards decision-making based on reasoning. In conclusion, the space (F^{N}, \preceq) emerges as a formal framework for the development of hybrid intelligent fusion systems/schemes. A fuzzy lattice reasoning (FLR) ensemble scheme, namely FLR pairwise ensemble, or FLRpe for short, is introduced here for sound decision-making based on descriptive knowledge (rules). Advantages include the sensible employment of a sparse rule base, employment of granular input data (to cope with imprecision/uncertainty/vagueness), and employment of all-order data statistics. The advantages as well as the performance of our proposed techniques are demonstrated, comparatively, by computer simulation experiments regarding an industrial dispensing application.

Index Terms

Disparate Data Fusion, Ensemble of Experts, Fuzzy lattice reasoning (FLR), Granular data, Inclusion measure, Intervals' number (IN), Lattice-computing, Lattice theory, Sparse rules

I. Introduction

In the domain of Soft Computing or, equivalently, Computational Intelligence, the term "hybrid (system/algorithm)" frequently denotes an integration of different techniques/technologies including artificial neural networks, fuzzy systems, evolutionary/swarm computing, etc. towards improving an index of performance in real-world applications [1], [15]; the term "intelligence" is pertinent to decision-making, e.g. in pattern classification/recognition [81]; moreover, the term "(intelligent) fusion" may signify an aggregate intelligence towards improving decisionmaking [47]. In the aforementioned sense, a "hybrid intelligent fusion system" may be a Multiple Classifier System (MCS) [45], [48] also known in the literature as Classifier Ensemble [16], [58], [64], Committee [21], [79], or Voting Consensus [5], [50]. Note that a number of MCS architectures/strategies including applications have been reported [22], [28], [29], [46], [49], [51], [54], [55], [69], [70], [73], [80], [84], [85]. The MCS techniques are, typically, of statistical nature [33] in the Euclidean space R^{N}. Nevertheless, a "hybrid intelligent fusion system" may be defined otherwise, as explained next.

The term "fusion" may, alternatively, denote an integration of data stemming from multiple, even heterogeneous, sources including (multimodal) electronic devices as well as human judgement [6], [9], [13], [17], [20], [26], [52], [56], [63], [65], [67]. In the latter context, there is a keen interest in formal frameworks for unified decision-making based on disparate types of data that may accommodate uncertainty [9], [18], [78]. One such a framework has been proposed lately [35], in an information engineering context, based on mathematical lattice theory as follows.

Different authors have recognized that several types of data of practical interest, including granules [61], [83], are partially(lattice)-ordered [37], [71]. Hence, lattice theory emerged as a formal framework for the fusion of disparate data types [35]. In such context, fuzzy lattice reasoning (FLR) was originally proposed [36], [41], [43] as a specific rule-based scheme for classification in a complete lattice (L, \preceq) data domain including, as a special case, the lattice of hyperboxes in the Euclidean space R^{N}. In this work, FLR (reasoning) is defined, more widely, as any employment of an inclusion measure function $\sigma: \mathrm{L} \times \mathrm{L} \rightarrow[0,1]$ for decision-making. Therefore, in the context of this work, the term "intelligent" is pertinent to "(FLR) reasoning".

Instead of a general mathematical lattice this work considers a specific one originating hierarchically from the totally-ordered lattice (R, \leq) of real numbers. Note that the latter (lattice) has stemmed, historically, from the conventional measurement process of successive comparisons [35], [41]. Our interest in lattice (R, \leq) was motivated by the existence of vast quantities of real number measurements stored worldwide. Therefore, we sought convenient data/information representations based on R. Hence, the complete lattice (F, \preceq) of Intervals’ Numbers (IN) emerged, as detailed below, where a IN is a unified data representation including real numbers, intervals, and probability/possibility distributions [59]. In conclusion, the Cartesian product lattice (F^{N}, \preceq) is introduced here as a formal framework for developing hybrid intelligent fusion systems/schemes, where an element of lattice (F^{N}, \preceq) is interpreted here as either a rule (of a FLR scheme) or as an input to a FLR scheme.

In previous work, a FLR scheme for classification has been implemented on the σ-FLNMAP neural network architecture [35], [42], [44]. Note that the latter (neural network architecture) was introduced as an enhancement of
the fuzzy-ARTMAP, or FAM for short, neural classifier [11]. More specifically, the σ-FLNMAP has extended the applicability domain of FAM from the lattice of hyperboxes in R^{N} to any complete lattice data domain. Moreover, even in the Euclidean space R^{N}, that is FAM's sole "applicability domain", classifier σ-FLNMAP has demonstrated significant improvements including tunable nonlinearities as well as the capacity to deal with both nonoverlapping hyperboxes and granular (hyperbox) input data [35], [42].

Due to the fact that both classifiers σ-FLNMAP and FAM are unstable, in the sense that their testing accuracy depends on the order of presenting the training data [19], [42], it turns out that both of them make good candidates for Voting classification schemes [10], [35], [68]. Indeed, empirical studies have clearly demonstrated an improved testing accuracy as well as a more stable testing accuracy for both FAM [3], [12], [60] and σ-FLNMAP [35], [44] in R^{N}. Later work has extended the applicability of σ-FLNMAP from the lattice of hyperboxes to the lattice (F, \preceq) of INs based on FLR [41]. In all, FLR is a Lattice-Computing scheme as explained next.

Lattice-Computing (LC) is a term introduced by Graña [23] to denote any computation in a mathematical lattice. Graña and colleagues have demonstrated a number of LC techniques in signal/image processing applications [24], [25]. In particular, they have employed mathematical morphology techniques in the totally-ordered lattice of real numbers. It turns out that FLR is also a LC scheme, in particular for reasoning, as shown below.

This paper is based on previously published work on FLR. The novelties of this work include the following. First, it presents a space of INs as a formal information fusion framework including a large number of references as well as pertinent discussions; a novel mathematical proof is also presented here. Second, it includes mathematical notation improvements. Third, it introduces an enhanced definition of FLR. Fourth, it demonstrates the "in principle" accommodation of granular inputs. Fifth, it introduces a novel decision-making scheme, that is a descriptive (rulebased) FLR ensemble of experts. Sixth, it shows a number of illustrative, new examples including figures. Seventh, it demonstrates preliminary (computer simulation) results regarding an industrial application.

The layout of this work is as follows. Section II presents a formal framework for fusion/integration of disparate data types. Section III describes our proposed FLR ensemble scheme. Section IV outlines an industrial application. Section V demonstrates, comparatively, preliminary experimental results. Section VI concludes by summarizing our contribution. The Appendix presents novel mathematical notation as well as a novel mathematical proof.

II. A Formal Information Fusion Framework

This section introduces constructively, in four steps, a formal information fusion framework, namely the Cartesian product lattice $\left(\mathrm{F}^{N}, \preceq\right)$ of Intervals' Numbers (INs). Different interpretations of INs are also presented. Note that the four-level hierarchy of lattices presented here is a novelty of this work. For the interested reader, useful notions and tools regarding lattice theory are summarized in the Appendix.

A. The Complete Lattice (\bar{R}, \leq)

The set R of real numbers is a totally-ordered, non-complete lattice denoted by (R, \leq). It turns out that (R, \leq) can be extended to a complete lattice by including both symbols " $-\infty$ " and " $+\infty$ ". In conclusion, the complete lattice (\bar{R}, \leq) emerges, where $\bar{R}=R \cup\{-\infty,+\infty\}$. Note that previous work has, erroneously, assumed that lattice (R, \leq) is complete [37], [59]. Even though the aforementioned error is not critical, this work considers, instead, the complete lattice $(\overline{\mathrm{R}}, \leq)^{1}$. We remark that complete lattices are important not only in defining an inclusion measure function, as shown in the Appendix, but they are also important in mathematical morphology [57], [66].

On the one hand, any strictly increasing function $v: \overline{\mathrm{R}} \rightarrow \mathrm{R}$ is a positive valuation in the complete lattice $(\overline{\mathrm{R}}, \leq)$. Motivated by the two constraints presented in the Appendix (subsection B), here we consider positive valuation functions $v: \overline{\mathrm{R}} \rightarrow \mathrm{R}^{\geq 0}$ such that both $v(-\infty)=0$ and $v(+\infty)<+\infty$. On the other hand, any bijective (i.e. one-to-one), strictly decreasing function $\theta: \overline{\mathrm{R}} \rightarrow \overline{\mathrm{R}}$ is a dual isomorphic function in lattice ($\overline{\mathrm{R}}, \leq$). We will refer to functions $\theta($.$) and v($.$) simply as dual isomorphic and positive valuation, respectively. Useful extensions$ to the corresponding lattice of intervals are presented next.

A generalized interval is defined in lattice $(\overline{\mathrm{R}}, \leq)$ as follows.

Definition 1: Generalized interval is an element of the product lattice $\left(\bar{R}, \leq^{\partial}\right) \times(\bar{R}, \leq)$.

Recall that \leq^{∂} in Definition 1 denotes the dual (i.e. converse) of order relation \leq in lattice (\bar{R}, \leq), i.e. $\leq^{\partial} \equiv \geq$. Product lattice $\left(\overline{\mathrm{R}}, \leq^{\partial}\right) \times(\overline{\mathrm{R}}, \leq) \equiv(\overline{\mathrm{R}} \times \overline{\mathrm{R}}, \geq \times \leq)$ will be denoted, simply, by (Δ, \preceq).

A generalized interval will be denoted by $[x, y]$, where $x, y \in \overline{\mathrm{R}}$. It follows that the meet (\curlywedge) and join (\curlyvee) in lattice (Δ, \preceq) are given, respectively, by $[a, b] \curlywedge[c, d]=[a \vee c, b \wedge d]$ and $[a, b] \curlyvee[c, d]=[a \wedge c, b \vee d]$.

The set of positive (negative) generalized intervals $[a, b]$, characterized by $a \leq b(a>b)$, is denoted by Δ_{+} $\left(\Delta_{-}\right)$. It turns out that $\left(\Delta_{+}, \preceq\right)$ is a poset, namely poset of positive generalized intervals. Note that poset $\left(\Delta_{+}, \preceq\right)$ is isomorphic to the poset $(\tau(\overline{\mathrm{R}}), \preceq)$ of conventional intervals (sets) in $\overline{\mathrm{R}}$, i.e. $(\tau(\mathrm{R}), \preceq) \cong\left(\Delta_{+}, \preceq\right)$. We augmented poset $(\tau(\overline{\mathrm{R}}), \preceq)$ by a least (empty) interval, denoted by $O=[+\infty,-\infty]$ - We remark that a greatest interval $I=[-\infty,+\infty]$ already exists in $\tau(\overline{\mathrm{R}})$. Hence, the complete lattice $\left(\tau_{O}(\overline{\mathrm{R}})=\tau(\overline{\mathrm{R}}) \cup\{O\}, \preceq\right) \cong\left(\Delta_{+} \cup\{O\}, \preceq\right)$ emerged. In the sequel, we will employ isomorphic lattices $\left(\Delta_{+} \cup\{O\}, \preceq\right)$ and $\left(\tau_{O}(\overline{\mathrm{R}}), \preceq\right)$, interchangeably. We point out that a trivial interval $[x, x]$ is an atom in the complete lattice $\left(\tau_{O}(\overline{\mathrm{R}}), \preceq\right)$, where an atom $[x, x]$ by definition satisfies both $[+\infty,-\infty]=O \prec[x, x]$ and there is no interval $[a, b] \in\left(\tau_{O}(\overline{\mathrm{R}}), \preceq\right)$ such that $O \prec[a, b] \prec[x, x]$.

Consider both a positive valuation function $v: \overline{\mathrm{R}} \rightarrow \mathrm{R}^{\geq 0}$ and a dual isomorphic function $\theta: \overline{\mathrm{R}} \rightarrow \overline{\mathrm{R}}$. Then, proposition 6.2 (in the Appendix) implies that function $v_{\Delta}: \Delta \rightarrow \mathrm{R}$ given by $v_{\Delta}([a, b])=v(\theta(a))+v(b)$ is a

[^0] Conference, 23-25 June 2010, San Sebastian, Spain. It is understood that the authors here assume full responsibility for possible errors.
positive valuation in lattice (Δ, \preceq). There follow both $v_{\Delta}(O=[+\infty,-\infty])=0$ and $v_{\Delta}(O=[-\infty,+\infty])<+\infty$. Therefore, based on Theorem 6.1 (in the Appendix), the following two inclusion measures emerge in lattice (Δ, \preceq).
(1) $\sigma_{\curlywedge}([a, b] \preceq[c, d])=\frac{v(\theta(a \vee c))+v(b \wedge d)}{v(\theta(a))+v(b)}$, and
(2) $\sigma_{\curlyvee}([a, b] \preceq[c, d])=\frac{v(\theta(c))+v(d)}{v(\theta(a \wedge c))+v(b \vee d)}$.

The above inclusion measures are extended to the lattice $\left(\tau_{O}(R), \preceq\right)$ of intervals (sets) as follows.
(1) $\sigma_{\curlywedge}([a, b] \preceq[c, d])=\frac{v(\theta(a \vee c))+v(b \wedge d)}{v(\theta(a))+v(b)}$, if $a \vee c \leq b \wedge d$; otherwise, $\sigma_{\curlywedge}([a, b] \preceq[c, d])=0$, and
(2) $\sigma_{\curlyvee}([a, b] \preceq[c, d])=\frac{v(\theta(c))+v(d)}{v(\theta(a \wedge c))+v(b \vee d)}$.

Functions $\theta($.$) and v($.$) can be selected in different ways; for instance, choosing \theta(x)=-x$ and $v($.$) such that$ $v(x)=-v(-x)$ it follows $v_{\Delta}([a, b])=v(b)-v(a)$. Here, we select a pair of parametric functions $v(x)$ and $\theta(x)$ so as to satisfy equality $v_{\Delta}([x, x])=v(\theta(x))+v(x)=$ Constant required for atoms by a popular FLR algorithm [42], [43]. Eligible pairs of functions $v(x)$ and $\theta(x)$ include, first, $v(x)=\frac{A}{1+e^{-\lambda(x-\mu)}}$ and $\theta(x)=2 \mu-x$, where $A, \lambda \in \mathbf{R}^{\geq 0}, \mu, x \in \mathrm{R}$ and, second, $v(x)=p x$ and $\theta(x)=Q-q x$, where $p, q, Q>0, x \in[0, A]$. Since it was assumed $v(\theta(x))+v(x)=$ Constant, for the latter pair of functions $v(x)$ and $\theta(x)$ it follows $v(\theta(x))+v(x)=p[Q+(1-q) x]=$ Constant; therefore, $q=1$.

C. The Complete Lattice (F, \preceq) Induced from (Δ, \preceq)

Based on generalized interval analysis above, this subsection presents intervals' numbers (INs). A more general number type is defined in the first place, next.

Definition 2: Generalized interval number, or GIN for short, is a function $G:(0,1] \rightarrow \Delta$.

Let G denote the set of GINs. It follows complete lattice (G, \preceq), as the Cartesian product of complete lattices (Δ, \preceq). Our interest here focuses on the sublattice ${ }^{2}$ of intervals' numbers defined next.

Definition 3: An Intervals' Number, or $I N$ for short, is a GIN F such that both $F(h) \in\left(\Delta_{+} \cup\{O\}\right)$ and $h_{1} \leq h_{2} \Rightarrow F\left(h_{1}\right) \succeq F\left(h_{2}\right)$.

Let F denote the set of INs. It follows that (F, \preceq) is a complete lattice with least element $O=O(h)=$ $[+\infty,-\infty], h \in(0,1]$ and greatest element $I=I(h)=[-\infty,+\infty], h \in(0,1]$. Conventionally, a IN will be denoted by a capital letter in italics, e.g. $F \in \mathrm{~F}$.

Definition 3 implies that a IN F is a function from interval $(0,1]$ to the set $\tau(\overline{\mathrm{R}}) \cup\{[+\infty,-\infty]\}$ of intervals, i.e. $F(h)=\left[a_{h}, b_{h}\right], h \in(0,1]$, where both interval-ends a_{h} and b_{h} are functions of $h \in(0,1]$.

The following two inclusion measures emerge, respectively, in the complete lattice ($F, \underline{\text {) of }}$ INs [34], [35]:
(1) $\sigma_{\curlywedge}\left(F_{1} \preceq F_{2}\right)=\int_{0}^{1} \sigma_{\curlywedge}\left(F_{1}(h) \preceq F_{2}(h)\right) d h$.
(2) $\sigma_{\curlyvee}\left(F_{1} \preceq F_{2}\right)=\int_{0}^{1} \sigma_{\curlyvee}\left(F_{1}(h) \preceq F_{2}(h)\right) d h$.
${ }^{2}$ A sublattice of a lattice (L, \preceq) is another lattice (S, \preceq) such that $\mathrm{S} \subseteq \mathrm{L}$.

The following Proposition derives from [37].
Proposition 2.1: Consider a continuous dual isomorphic function $\theta: \overline{\mathrm{R}} \rightarrow \overline{\mathrm{R}}$ and a continuous positive valuation function $v: \overline{\mathrm{R}} \rightarrow \mathrm{R}^{\geq 0}$. Let $X_{0}(h)=\left[x_{0}, x_{0}\right], h \in(0,1]$ be a trivial (point) IN , moreover let $E(h)$, $h \in(0,1]$ be a IN with upper-semicontinuous membership function $m_{E}: \mathrm{R} \rightarrow \mathrm{R}$. Then $\sigma_{\curlywedge}\left(X_{0} \preceq E\right)=m_{E}\left(x_{0}\right)$.

We remark that Proposition 2.1 couples a IN's two different representations, namely the interval-representation and the membership-function-representation. The principal advantage of the former (interval) representation is that it enables useful algebraic operations, whereas the principal advantage of the latter (membership function) representation is that it enables convenient interpretions, e.g. fuzzy logic interpretions, etc.

D. Extensions to More Dimensions

A N-tuple IN will be denoted by a capital letter in bold, e.g. $\mathbf{F}=\left(F_{1}, \ldots, F_{N}\right) \in \mathrm{F}^{N}$. Lattice $\left(\mathrm{F}^{N}, \preceq\right)$ is the "fourth level" in a hierarchy of complete lattices whose "first level", "second level" and "third level" include lattices $(\overline{\mathrm{R}}, \leq),(\Delta, \preceq)$ and (F, \preceq), respectively.

The following Proposition derives from [37].
Proposition 2.2: Consider N complete lattices $\left(\mathrm{L}_{i}, \preceq\right), i \in\{1, \ldots, N\}$ each one equipped with an inclusion measure function $\sigma_{i}: \mathrm{L}_{i} \times \mathrm{L}_{i} \rightarrow[0,1]$, respectively. Consider N-tuples $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$ in $\mathrm{L}=\mathrm{L}_{1} \times \cdots \times \mathrm{L}_{N}$. Furthermore, consider the conventional lattice ordering $\mathbf{x} \preceq \mathbf{y} \Leftrightarrow x_{i} \preceq y_{i}, \forall i \in\{1, \ldots, N\}$. Then, both functions (1) $\sigma_{\wedge}: \mathrm{L} \times \mathrm{L} \rightarrow[0,1]$ given by $\sigma_{\wedge}(\mathbf{x} \preceq \mathbf{y})=\min _{i \in\{1, \ldots, N\}}\left\{\sigma_{i}\left(x_{i} \preceq y_{i}\right)\right\}$, and (2) $\sigma_{\Pi}: \mathrm{L} \times \mathrm{L} \rightarrow[0,1]$ given by $\sigma_{\Pi}(\mathbf{x} \preceq \mathbf{y})=\prod_{i \in\{1, \ldots, N\}} \sigma_{i}\left(x_{i} \preceq y_{i}\right)$, are inclusion measures in lattice (L, \preceq).

We remark that Propositions 2.1 and 2.2 establish that, for trivial inputs, an inclusion measure reduces to standard fuzzy inference system (FIS) practices [37].

E. IN Interpretations, Representation Issues \& More, Useful Results

The complete lattice (F, \preceq) of INs has been studied in a series of publications [34], [38], [40], [41], [59], [62]. In particular, it has been shown that a IN is a mathematical object, which may admit different interpretations as follows. First, based on the "resolution identity theorem" [82], a IN $F(h), h \in(0,1]$ may be interpreted as a fuzzy number, where $F(h)$ is the corresponding α-cut for $\alpha=h$. Hence, a $\mathrm{IN} F:(0,1] \rightarrow \tau_{O}(\mathrm{R})$ may, equivalently, be represented by an upper-semicontinuous membership function $m_{F}: \mathrm{R} \rightarrow(0,1]$ - Note that a number of authors have employed α-cuts and/or intervals in fuzzy logic applications [2], [74], [75], [76], [77]. There follows equivalence $m_{F_{1}}(x) \leq m_{F_{2}}(x) \Leftrightarrow F_{1}(h) \preceq F_{2}(h)$, where $x \in \mathrm{R}, h \in(0,1]$ [59]. Second, a IN $F(h), h \in(0,1]$ may also be interpreted as a probability distribution such that interval $F(h)$ includes $100(1-h) \%$ of the distribution, whereas the remaining $100 h \%$ is split even both below and above interval $F(h)$.

Fig. 1 explains how a IN can be constructed from a population of (real number) data samples using algorithm CALCIN [34], [35], [39], [59], [62]. More specifically, Fig.1(a) displays the data itself. Fig.1(b) displays a histogram of the data in Fig.1(a) in 10 steps of length $\Delta x=0.04$. Hence, the histogram of Fig.1(b) may be thought of as
a probability density function (pdf) approximation, which (histogram) asymptotically tends to the corresponding pdf when both $\Delta x \rightarrow 0$ and the number of data samples tends to infinity. Fig.1(c) displays the corresponding cumulative distribution function (PDF). Finally, Fig.1(d) displays a IN computed from the PDF of Fig.1(c) using the algebraic formulas shown within Fig.1(d); that is, algorithm CALCIN.

Fig. 2 shows the two different representations of the IN (F) computed in Fig.1(d). More specifically, Fig.2(a) displays the membership-function-representation of IN F, whereas Fig.2(b) displays the corresponding intervalrepresentation for $L=32$ different levels spaced evenly over the interval $(0,1]$. Triangular INs are of particular significance in practice, therefore they are studied next.

Consider both the triangular IN F, with membership function $m_{F}(x)$, and the trivial IN V_{0} in Fig.3. IN F is specified by the three parameters m, w_{L} and w_{R}. A horizontal line at height $h \in(0,1]$ intersects IN F at points a_{h} and b_{h}; moreover, it intersects trivial IN V_{0} at points c_{h} and d_{h}, where $c_{h}=d_{h}=V_{0}$. Since the left line of the triangular membership function $m_{F}(x)$ equals $y=\left[x-\left(m-w_{L}\right)\right] / w_{L}$ and the right line of $m_{F}(x)$ equals $y=\left[\left(m+w_{R}\right)-x\right] / w_{R}$, it follows $a_{h}=w_{L} h+\left(m-w_{L}\right)$, moreover $b_{h}=-w_{R} h+\left(m+w_{R}\right)$. Next, we analytically calculate inclusion measure sigma-join $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)=\int_{0}^{1} \frac{v\left(\theta\left(c_{h}\right)\right)+v\left(d_{h}\right)}{v\left(\theta\left(a_{h} \wedge c_{h}\right)\right)+v\left(b_{h} \vee d_{h}\right)} d h$ using $v(x)=p x$ and $\theta(x)=Q-x$. Integral $\int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+C_{0}$ will be useful in the following calculations.
(1) For $m+w_{R} \leq V_{0}$, it follows

$$
\sigma_{\curlyvee}\left(F \preceq V_{0}\right)=\int_{0}^{1} \frac{Q-c_{h}+d_{h}}{Q-a_{h}+d_{h}} d h=-Q \int_{0}^{1} \frac{1}{w_{L} h+\left[\left(m-w_{L}\right)-\left(Q+V_{0}\right)\right]} d h=\frac{Q}{w_{L}} \ln \frac{\left(Q+V_{0}\right)-m+w_{L}}{\left(Q+V_{0}\right)-m} .
$$

(2) For $m \leq V_{0} \leq m+w_{R}$, it follows
$\sigma_{\curlyvee}\left(F \preceq V_{0}\right)=\int_{0}^{h_{0}} \frac{Q-c_{h}+d_{h}}{Q-a_{h}+b_{h}} d h+\int_{h_{0}}^{1} \frac{Q-c_{h}+d_{h}}{Q-a_{h}+d_{h}} d h=-Q \int_{0}^{h_{0}} \frac{1}{\left(w_{L}+w_{R}\right) h-\left(Q+w_{L}+w_{R}\right)} d h-Q \int_{h_{0}}^{1} \frac{1}{w_{L} h-\left[Q-\left(m-w_{L}\right)+V_{0}\right]} d h=$ $\frac{Q}{w_{L}+w_{R}} \ln \frac{Q+w_{L}+w_{R}}{\left(Q+w_{L}+w_{R}\right)-\left(w_{L}+w_{R}\right) h_{0}}+\frac{Q}{w_{L}} \ln \frac{\left[Q-\left(m-w_{L}\right)+V_{0}\right]-w_{L} h_{0}}{\left[Q-\left(m-w_{L}\right)+V_{0}\right]-w_{L}}$, where $h_{0}=m_{F}\left(V_{0}\right)$.
(3) For $m-w_{L} \leq V_{0} \leq m$, it follows
$\sigma_{\curlyvee}\left(F \preceq V_{0}\right)=\int_{0}^{h_{0}} \frac{Q-c_{h}+d_{h}}{Q-a_{h}+b_{h}} d h+\int_{h_{0}}^{1} \frac{Q-c_{h}+d_{h}}{Q-c_{h}+b_{h}} d h=-Q \int_{0}^{h_{0}} \frac{1}{\left(w_{L}+w_{R}\right) h-\left(Q+w_{L}+w_{R}\right)} d h-Q \int_{h_{0}}^{1} \frac{1}{w_{R} h-\left[Q-V_{0}+\left(m+w_{R}\right)\right]} d h=$ $\frac{Q}{w_{L}+w_{R}} \ln \frac{Q+w_{L}+w_{R}}{\left(Q+w_{L}+w_{R}\right)-\left(w_{L}+w_{R}\right) h_{0}}+\frac{Q}{w_{R}} \ln \frac{\left[Q-V_{0}+\left(m+w_{R}\right)\right]-w_{R} h_{0}}{\left[Q-V_{0}+\left(m+w_{R}\right)\right]-w_{R}}$, where $h_{0}=m_{F}\left(V_{0}\right)$.
(4) For $V_{0} \leq m-w_{L}$, it follows
$\sigma_{\curlyvee}\left(F \preceq V_{0}\right)=\int_{0}^{1} \frac{Q-c_{h}+d_{h}}{Q-c_{h}+b_{h}} d h=-Q \int_{0}^{1} \frac{1}{w_{R} h-\left[Q-V_{0}+\left(m+w_{R}\right)\right]} d h=\frac{Q}{w_{R}} \ln \frac{\left(m+Q-V_{0}\right)+w_{R}}{m+Q-V_{0}}$.
A triangular IN's edge corresponds to a uniform pdf as shown in Fig.4(a) as well as in Fig.4(b). Let $p_{1}(x)$ and $p_{2}(x)$ be the latter pdfs corresponding to $\operatorname{INs} F_{1}$ and F_{2}, respectively. More specifically, it is
$p_{i}(x)=\left\{\begin{array}{cl}\frac{1}{2 w_{L}}, & m_{i}-w_{L} \leq x \leq m_{i} \\ \frac{1}{2 w_{R}}, & m_{i} \leq x \leq m_{i}+w_{R}\end{array}\right.$, for $i \in\{1,2\}$,
where w_{L} and w_{R} represent the ranges of the uniform pdf located to the left and to the right, respectively, of the median $m_{i}, i \in\{1,2\}$; hence, in Fig.4(a) it is $w_{L}=r, w_{R}=R$, whereas in Fig.4(b) it is $w_{L}=R$, $w_{R}=r$. Note that the median " m " of a pdf $p(x)$ is defined here such that $\int_{-\infty}^{m} p(x) d x=0.5=\int_{m}^{+\infty} p(x) d x$. Next, we compute the means as well as the variances of pdfs $p_{1}(x)$ and $p_{2}(x)$ corresponding to the INs F_{1} and F_{2}, respectively.

$$
\mu_{1}=\int_{-\infty}^{+\infty} x p_{1}(x) d x=\int_{m_{1}-r}^{m_{1}} x \frac{1}{2 r} d x+\int_{m_{1}}^{m_{1}+R} x \frac{1}{2 R} d x=m_{1}+\frac{R-r}{4} .
$$

$\mu_{2}=\int_{-\infty}^{+\infty} x p_{2}(x) d x=\int_{m_{2}-R}^{m_{2}} x \frac{1}{2 R} d x+\int_{m_{2}}^{m_{2}+r} x \frac{1}{2 r} d x=m_{2}-\frac{R-r}{4}$.
$\sigma_{1}^{2}=\int_{-\infty}^{+\infty}\left(x-\mu_{1}\right)^{2} p_{1}(x) d x=\int_{m_{1}-r}^{m_{1}}\left(x-\mu_{1}\right)^{2} \frac{1}{2 r} d x+\int_{\substack{m_{1} \\ m_{2}}}^{m_{1}+R}\left(x-\mu_{1}\right)^{2} \frac{1}{2 R} d x=\frac{5 r^{2}+5 R^{2}+6 R r}{48}$.
$\sigma_{2}^{2}=\int_{-\infty}^{+\infty}\left(x-\mu_{2}\right)^{2} p_{2}(x) d x=\int_{m_{2}-R}^{m_{2}}\left(x-\mu_{2}\right)^{2} \frac{1}{2 R} d x+\int_{m_{2}}^{m_{2}+r}\left(x-\mu_{2}\right)^{2} \frac{1}{2 r} d x=\frac{5 r^{2}+5 R^{2}+6 R r}{48}$.
We remark that $w_{L}=w_{R}$ implies both $\mu=\int_{-\infty}^{+\infty} x p(x) d x=\int_{m-w_{L}}^{m+w_{R}} x \frac{1}{w_{L}+w_{R}} d x=m$ and $\sigma^{2}=\frac{\left(w_{L}+w_{R}\right)^{2}}{12}$ as expected for a uniform pdf - Recall also that a uniform pdf corresponds to an isosceles triangular IN [34], [35].

In Fig.4(c), pdfs $p_{1}(x)$ and $p_{2}(x)$ were placed such that $\mu_{1}=\mu=\mu_{2}$; the corresponding INs, respectively, F_{1} and F_{2} are also shown in Fig.4(c). On the one hand, note that both the first- and the second- order statistics of pdfs $p_{1}(x)$ and $p_{2}(x)$ are identical, i.e. $\mu_{1}=\mu_{2}$ and $\sigma_{1}=\sigma_{2}$. Nevertheless, pdfs $p_{1}(x)$ and $p_{2}(x)$ differ in their third-order statistic, namely their skewness. More specifically, $p_{1}(x)$ is skewed to the left, whereas $p_{2}(x)$ is skewed to the right. On the other hand, recall that an inclusion measure function can detect all-order statistics [39], [40], [41]. Hence, in Fig.4(c), an inclusion measure can discriminate between INs F_{1} and IN F_{2} induced from pdfs $p_{1}(x)$ and $p_{2}(x)$, respectively, as demonstrated below.

Furthermore, let us define the following two alternative conditions/specifications (S1) $\left|m_{i}-V_{0}\right| \leq T$ and (S2) $\left|\mu_{i}-V_{0}\right| \leq T$, for a user-defined threshold value T, where V_{0} and m_{i}, μ_{i} for $i \in\{1,2\}$ as well as R, r are shown in Fig.4. From both Fig.4(a) and Fig.4(b) it follows that exactly 0.5 of the distribution does not satisfy (S1). Moreover, first, from Fig.4(a) it follows that $0.5+(R-r) / 8 R$ of the distribution does not satisfy (S2) and, second, from Fig.4(b) it follows that $0.5-(R-r) / 8 R$ of the distribution does not satisfy (S2). Note also that the truth of inequality $m_{i}<\mu_{i}\left(m_{i}>\mu_{i}\right)$ indicates that the corresponding pdf is skewed to the left (right).

III. A Fuzzy Lattice Reasoning (FLR) Ensemble Scheme

Fuzzy lattice reasoning (FLR) is a term proposed originally for a concrete classification scheme [43], where an inclusion measure function $\sigma(A \preceq B)$ was employed, in the lattice of hyperboxes in R^{N}, to compute a (fuzzy) degree of inclusion of a hyperbox A to another one B. It was also shown that an inclusion measure $\sigma(.,$. supports two different modes of reasoning, namely Generalized Modus Ponens and Reasoning by Analogy. More specifically, on the one hand, Generalized Modus Ponens is supported as follows: Given both a rule "IF variable V_{0} is E THEN proposition p " and a proposition "variable V_{0} is E_{p} " such that $E_{p} \preceq E$, where both E_{p} and E are elements in a lattice (L, \preceq), it reasonably follows "proposition p ". On the other hand, Reasoning by Analogy is supported as follows: Given both a set of rules "IF variable V_{0} is E_{k} THEN proposition p_{k} ", $k \in\{1, \ldots, K\}$ and a proposition "variable V_{0} is E_{p} " such that $E_{p} \npreceq E_{k}$, for $k \in\{1, \ldots, K\}$, it follows "proposition p_{J} ", where $J \doteq \arg \max _{k \in\{1, \ldots, K\}}\left\{\sigma\left(E_{p} \preceq E_{k}\right)<1\right\}$.

A FLR extension to the lattice of INs has been possible according to the following rationale. We know (see in section II-C) that a IN can, equivalently, be represented either by a membership function or by a set of intervals. Therefore, since an interval is a hyperbox in space R^{1}, it follows that an inclusion measure function can be extended from space R^{1} to the space F of $I N s$ by a single integral operation. Further enhancements are proposed next.

A. FLR Enhancements

Here we propose using the term FLR to denote any decision-making based on an inclusion measure function $\sigma(.,$.$) . Note that advantages of using an inclusion measure \sigma(.,$.$) include, first, accommodation of nontrivial$ (granular) input data, second, activation of a rule by an input outside the rule's support (hence, a sparse rulebase becomes "sensibly" usable) and, third, a capacity to employ alternative positive valuation functions than $v(x)=x$ (the latter positive valuation is exclusively employed in the literature, implicitly). We point out that a parametric positive valuation function may introduce tunable nonlinearities by optimal parameter estimation techniques; likewise, for a parametric dual isomorphic function.

Recent work [37] has demonstrated that conventional fuzzy inference systems (FISs) [27], [30], [53], [72] apply "in principle" FLR, in lattice (F^{N}, \preceq), as follows.

A FIS, typically, includes K rules $R_{k}, k=1, \ldots K$, of the following form
Rule R_{k} : IF (variable V_{1} is $F_{k, 1}$).AND.AND.(variable V_{N} is $F_{k, N}$) THEN proposition p_{k},
where the antecedent of rule R_{k} is the conjunction of N simple propositions "variable V_{i} is $F_{k, i}$ ", $i=1, \ldots N$, moreover the consequent "proposition p_{k} " of rule R_{k} is typically either a likewise proposition (e.g. in a Mamdani type FIS [53]) or a polynomial (e.g. in a Sugeno type FIS [72]). Our interest here focuses on rule antecedents. In particular, we assume that the degree of activation of a simple proposition "variable V_{i} is $F_{k, i}$ ", $i=1, \ldots N$ by another one "variable V_{i} is $F_{0, i}$ " equals $\sigma_{\curlyvee}\left(F_{0, i} \preceq F_{k, i}\right)$. The following examples demonstrate some technical application details.

B. FLR Examples in lattice (F, \preceq)

In this work we employ solely inclusion measure $\sigma_{\curlyvee}(.,$.$) rather than \sigma_{\curlywedge}(.,$.$) because only inclusion measure$ $\sigma_{\curlyvee}(.,$.$) is non-zero for non-overlapping INs; hence, only \sigma_{\curlyvee}(.,$.$) can reason based on a sparse rule base.$

Example - 1

INs F and V_{0} referred to, in this example, are shown in Fig.3.
Fig. 5 plots inclusion measure $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$ versus the median m of IN F from $m=0.5$ to $m=9.5$ using parameter values $w_{L}=w_{R}=0.5$ and $V_{0}=4.6$; moreover, both the linear positive valuation $v(x)=p x$ and dual isomorphic function $\theta(x)=Q-x$ were used with parameter values $p=1, Q=10$. Equality $w_{L}=w_{R}=0.5$ implies that triangular IN F has, in particular, an isosceles triangular shape - Recall that an isosceles triangular IN corresponds to a uniform pdf. Since the median (m) equals the mean (μ) of a uniform pdf it follows that, for an isosceles triangular IN, the x-axis in both Fig. 5 and Fig.6, denotes m as well as μ.

Fig. 6 plots inclusion measure $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$ versus its median m from $m=0.5$ to $m=9.5$ using parameter values $w_{L}=w_{R}=0.5$ and $V_{0}=4.6$. Moreover, both positive valuation $v(x)=\frac{1}{1+e^{-0.5(x-4.6)}}$ and dual isomorphic function $\theta(x)=2(4.6)-x$ were employed.

Notice the similarity of Fig. 5 and Fig.6, where each figure was generated using a different positive valuation function $v(x)$. In particular, Fig. 5 was generated using a linear positive valuation, whereas Fig. 6 was generated using a sigmoid positive valuation. In all our experiments, in the context of this work, we empirically confirmed that for any linear positive valuation $v_{\ell}(x)$ there is a sigmoid positive valuation $v_{s}(x)$, which produces an "identical", for all practical purposes, inclusion measure $\sigma_{\curlyvee}(.,$.$) function. A sigmoid positive valuation is preferable because it$ is defined over the whole set R of real numbers, therefore no truncation/normalization is necessary. In conclusion, unless otherwise specified, in the remaining of this work we employ sigmoid positive valuation functions.

Example - 2

The previous example has dealt with isosceles (triangular) INs. This example considers non-isosceles triangular IN shapes towards demonstrating that an inclusion measure can effectively detect higher-order statistics.

Fig.7(a) displays inclusion measure $\sigma_{\curlyvee}\left(F_{1} \preceq V_{0}\right)$ versus its median m_{1} from $m_{1}=3$ to $m_{1}=90$ using IN F_{1} parameter values $w_{L}=r=3, w_{R}=R=10$ and $V_{0}=65$; Fig.7(b) shows the latter figure in the vicinity of its global maximum at $m_{1}=65$. Likewise, Fig.7(c) displays inclusion measure $\sigma_{\curlyvee}\left(F_{2} \preceq V_{0}\right)$ versus its median m_{2} from $m_{2}=10$ to $m_{2}=97$ using IN F_{2} parameter values $w_{L}=R=10, w_{R}=r=3$ and $V_{0}=65$; Fig.7(d) shows the latter figure in the vicinity of its global maximum at $m_{2}=65$. Where, INs F_{1}, F_{2} and V_{0} are shown in Fig.4. Finally, Fig.7(e) displays both inclusion measures $\sigma_{\curlyvee}\left(F_{1} \preceq V_{0}\right)$ and $\sigma_{\curlyvee}\left(F_{2} \preceq V_{0}\right)$ versus their (identical) mean μ. More specifically, Fig.7(e) demonstrates that $\sigma_{\curlyvee}\left(F_{2} \preceq V_{0}\right)$ reaches its global maximum before $V_{0}=65$, as expected, because IN F_{2} is skewed to the right; whereas, $\sigma_{\curlyvee}\left(F_{1} \preceq V_{0}\right)$ reaches its global maximum after $V_{0}=65$, also as expected, because IN F_{1} is skewed to the left.

C. FLRpe: A Pairwise FLR Ensemble Scheme for Reasoning

Based on an expert-supplied proposition p : "Variable V equals x " the question here is to decide whether another proposition p_{0} : "Variable V equals x_{0} " is true or not, where both x and x_{0} are INs. We responded to the aforementioned question by computing a (fuzzy) degree of fulfillment of implication " $p \rightarrow p_{0}$ " by $\sigma_{\curlyvee}\left(x \preceq x_{0}\right)$. More specifically, if $\sigma_{\curlyvee}\left(x \preceq x_{0}\right) \geq T$, where $T \in[0,1]$ is user-defined, only then proposition p_{0} is accepted.

Since a single expert proposition p may be prone to errors, hence it may be unreliable, we assumed an ensemble of N experts each one of whom supplied one proposition p_{k} : "Variable V equals x_{k} ', $k \in\{1, \ldots, N\}$. Our basic assumption is that at least 2 out of the N experts are reliable. In conclusion, FLR is carried out by considering all different pairs of experts as shown in Algorithm 1, that is the FLRpe scheme.

We remark that the FLRpe scheme accepts proposition p_{0} if and only if the corresponding implications $p_{k} \rightarrow p_{0}$, $k \in\{1, \ldots N\}$ of any two experts $k \in\{i, j\}$ are jointly accepted, in the sense that it is $\sigma_{\curlyvee}\left(x_{k} \preceq x_{0}\right) \geq T$ for two different experts $k \in\{i, j\}$ as indicated in the mathematical expression in the last step of Algorithm 1; the latter (expression) derives from Proposition 2.2. In other words, proposition p_{0} is accepted if and only if the maximum (\bigvee) inclusion measure $\sigma_{\curlyvee}($.$) of all different pairs of experts is above a user-defined threshold T \in[0,1]$. Apparently, the FLRpe is a "collective reasoning" scheme based on an ensemble of experts.

```
Algorithm 1 FLRpe: A Pairwise FLR Ensemble Scheme
    Consider a proposition \(p_{0}\) : "Variable \(V\) equals \(x_{0}\) " and a threshold \(T \in[0,1]\). Furthermore, consider
        \(N\) expert-supplied propositions \(p_{k}\) : "Variable \(V\) equals \(x_{k} ", k \in\{1, \ldots, N\}\), where \(x_{0}, x_{k}\) are INs,
        \(k \in\{1, \ldots, N\}\).
    2: Consider one implication \(r_{k}, k \in\{1, \ldots, N\}\) per expert as follows:
        Implication \(r_{k}\) : IF \(p_{k}\) THEN \(p_{0}\), symbolically \(p_{k} \rightarrow p_{0}\).
    Compute the degree \(\sigma_{\curlyvee}\left(x_{k} \preceq x_{0}\right)\) of fulfillment of each implication \(r_{k}: p_{k} \rightarrow p_{0}, k \in\{1, \ldots, N\}\).
    Accept proposition \(p_{0}\) if and only if
    \(\underset{i, j \in\{1, \ldots, N\}, i \neq j}{ } \sigma_{\wedge}\left(\left[x_{i}, x_{j}\right] \preceq\left[x_{0}, x_{0}\right]\right)=\bigvee\left\{\bigwedge_{i, j \in\{1, \ldots, N\}, i \neq j}\left\{\sigma_{\curlyvee}\left(x_{i} \preceq x_{0}\right), \sigma_{\curlyvee}\left(x_{j} \preceq x_{0}\right)\right\}\right\} \geq T\)
```


IV. An Industrial Dispensing Application

This section outlines an industrial application.

A. The Industrial Problem

Ouzo is a popular Greek liquor, whose final stage production involves dispensing three different liquids, namely water, spirit, and yeast, to a "mixing" tank. More specifically, water is typically supplied by a local utility company, spirit is a commercial product whose $G^{s}=96 \%$ volume is pure ethanol, moreover the yeast, whose G^{y} volume (in the range $40 \%-80 \%$) is pure ethanol, is prepared according to a local recipe.

The Greek law calls for a specific percentage $\left(G_{1}^{b}\right)$ of ethanol in the final (ouzo) product, e.g. $G_{1}^{b}=38 \%$ or $G_{1}^{b}=40 \%$, etc. Furthermore, the law calls for a specific ratio $p_{1}^{y}: p_{1}^{s}$, where p_{1}^{y} denotes the final product's ethanol percentage stemming-from-yeast and p_{1}^{s} denotes the corresponding percentage stemming-from-commercial-spirit; it is $p_{1}^{y}+p_{1}^{s}=1$. In the context of this work, we call pair $\left(G_{1}^{b}, p_{1}^{y}: p_{1}^{s}\right)$ alcoholic identity of the (ouzo) product. Currently, the production of ouzo is largely empirical, therefore it is prone to errors as explained next.

Typically, a skilled worker (manually) calculates the volumes of water $\left(V_{1}^{w}\right)$, spirit $\left(V_{1}^{s}\right)$, and yeast $\left(V_{1}^{y}\right)$ required to produce a specific volume V_{1}^{b} of ouzo of alcoholic identity $\left(G_{1}^{b}, p_{1}^{y}: p_{1}^{s}\right)$. Nevertheless, when a different volume $V_{2}^{b} \neq V_{1}^{b}$ is requested, at the absence of a skilled worker to compute the corresponding volumes V_{2}^{w}, V_{2}^{s}, and V_{2}^{y}, then errors may occur. Another source of errors regards the manual dispensing of volumes V_{1}^{w}, V_{1}^{s}, and V_{1}^{y} to the mixing tank. Hence, the alcoholic identity of the final (ouzo) product might be outside specifications. It is of practical interest to keep, an automated ouzo production, within specifications.

Work is, currently, under way towards automating the production of ouzo for a local beverage company in the Greek Macedonia region. Note that the problem of industrial dispensing has been treated also by other authors [14] using conventional modeling techniques; moreover, fuzzy regression techniques have been employed [32]. We applied the FLRpe scheme via a novel software platform, developed for the needs of this work as described next.

B. A Novel Software Platform

A novel software platform, namely XtraSP.v1 (Fig.8), was developed for the needs of this work using the Labview environment of the National Semiconductors Company. XtraSP.v1 operates as a user-friendly interface for
controlling all the required electromechanical equipment, including four valves and one pump, via a NI USB-6501 device. The latter (USB) is a Universal Serial Bus to digital I/O device which also measures the flow, in the range $6-120 \mathrm{\ell t} / \mathrm{min}$, to the mixing tank by counting pulses generated by a flowmeter using a 32 bit long counter. Mounted (inside) on the upper side of the mixing tank there is an ultrasonic level meter (U.L.M.) device, which measures the liquid level in the mixing tank with accuracy in the range $3-6 \mathrm{~mm}$ by transmitting short ultrasonic pulses to the liquid surface. In addition, there is a transparent communicating tube (C.T.) connected to the side of the mixing tank, which (tube) functions as an indicator of the liquid level (in the mixing tank) by operating on the principle of communicating tubes. The overall physical system architecture is shown in the upper half of Fig.8.

In worksheet cells of XtraSP.v1 a user can specify (a) A label, e.g. for a tank, (b) An initial quantity of a liquid in a tank, (c) The percentage of ethanol in both the (commercial) spirit and the yeast, (d) The total percentage of ethanol in the undisposed ouzo, (e) The percentages of ethanol in the undisposed ouzo stemming, respectively, from (commercial) spirit and yeast, (f) The desired percentage of (pure) ethanol in the mixing tank, (g) The desired percentages of ethanol in the mixing tank stemming, respectively, from (commercial) spirit and yeast. Box "DECISION-SUPPORT \& PARAMETERS" allows the user to specify useful rules \& parameters.

Software platform XtraSP.v1 can automatically carry out any required calculation/action on user demand. Furthermore, a number of safety instructions as well as warning messages can be issued. Note also that software platform XtraSP.v1 can operate either in a SIMULATION mode or in a real-world OPERATION mode, where the latter (mode) can be either MANUAL or AUTOMATIC.

C. Implementation of the FLRpe Scheme

An expert-based reasoning scheme, which may also accommodate uncertainty/ambiguity, is of particular interest in an industrial application. Furthermore, the capacity to effectively cope with an unreliable expert is a specification of critical importance because an unreliable expert may result in a final product outside specifications. The proposed FLRpe scheme appears to satisfy the aforementioned specifications, therefore it was applied as described next.

The volume of a liquid being dispensed to the mixing tank was estimated simultaneously by three different "experts" including, first, a flowmeter measurement device, second, an ultrasonic level meter measurement device and, third, a human expert who visually consults the transparent tube connected to the side of the mixing tank. We employed the following (binary) decision rule.

Rule R : IF volume v (of the liquid being dispensed) equals V_{0} THEN stop dispensing,
We assumed that the degree of truth of a Rule R equals the degree of truth of its antecedent. Hence, we "stop dispensing" if the antecedent proposition p_{0} : "volume v (of the liquid being dispensed) equals V_{0} " is true. The latter (antecedent) degree of truth was calculated from the degrees of fulfillment $\sigma_{\curlyvee}\left(V_{i} \preceq V_{0}\right)$ of implications

$$
r_{k}: \text { IF "volume } v \text { is } V_{k} \text { " THEN "volume } v \text { is } V_{0} \text { ", }
$$

where one implication $r_{k}, k \in\{1,2,3\}$ was supplied per expert.

Therefore, the FLRpe scheme was applied as described in Algorithm 1. We point out that dispensing stops if and only if at least two volume IN estimates, supplied by two different experts, approximate volume V_{0} in an inclusion measure " $\sigma_{\curlyvee}(.,) \geq$.$T " sense for a user-defined threshold T$.

V. Experiments and Results

We carried out comparative simulation experiments as described in this section.

A. Disparate Data Representation and Fusion

Recall that the FLRpe scheme here consists of an ensemble of three experts including Expert-1, that is a flowmeter measurement device, Expert-2, that is an ultrasonic level meter device and, Expert-3, that is a human expert supervisor of the industrial dispensing procedure.

First, a dispensed (liquid) volume estimate supplied by Expert-1 was represented by a triangular IN (Fig.9) as follows. Even though our flowmeter device supplies a precise measurement, there is uncertainty regarding the dispensed volume due to both time-delays and the storage capacity of the pipes used to drive a fluid to the mixing tank. The latter uncertainty was modeled by two adjacent uniform pdfs, respectively, one above- and the other belowan obtained flowmeter measurement. For instance, let a flowmeter measurement be either m_{1} (Fig.4(a)) or m_{2} (Fig.4(b)). The aforementioned two adjacent uniform pdfs are shown in Fig.4(a) as well as Fig.4(b). In conclusion, an estimate for a dispensed liquid volume by Expert-1 had a triangular shape as in Fig.9. The corresponding inclusion measure function $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$, for $V_{0}=65$, is plotted in Fig. 10 versus the median m.

Second, a dispensed (liquid) volume estimate supplied by Expert-2 was represented by an irregularly shaped IN (Fig.11) as follows. In a short sequence, we obtained a number of $N=9$ successive measurements of the liquid level in the mixing tank resulting in a population of $N=9$ estimates of the dispensed liquid volume. In conclusion, from the aforementioned population, we induced a IN (Fig.11) using algorithm CALCIN. The corresponding inclusion measure function $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$, for $V_{0}=65$, is plotted in Fig. 12 versus the median m.

Third, a dispensed (liquid) volume estimate supplied by Expert-3 was represented by a trapezoidal IN (Fig.13) as follows. A human supervisor of the industrial procedure, based on visual inspection of the transparent tube connected to the side of the mixing tank (Fig.8) as well as based on personal judgement, supplied a numeric estimate m of the middle of an interval $[m-w, m+w]$ which (interval) is the core of a trapezoidal fuzzy set. Furthermore, both trapezoidal tails w_{L} and w_{R} in Fig. 13 were suggested by Expert-3. Fig. 14 displays a typical estimate for a dispensed liquid volume given by Expert-3, where $w=1, w_{L}=5$ and $w_{R}=2$. The corresponding inclusion measure function $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$, for $V_{0}=65$, is plotted in Fig. 15 versus the median m.

We remark that both curves in Fig. 10 and Fig. 15 are smooth because they have been computed analytically using equations in section II-E; whereas, the curve in Fig. 12 is not smooth due to the irregularly shaped IN of Fig.11. Furthermore note that, first, the triangular IN (Fig.4) supplied by Expert-1 represents a probability distribution including a priori information; in particular, the two adjacent iniform pdfs in either Fig.4(a) or Fig.4(b) represent a
priori information supplied by the user. Second, the irregularly shaped IN (Fig.11) supplied by Expert-2 represents a distribution of measurements and, third, the trapezoidal IN (Fig.14) supplied by Expert-3 represents a fuzzy set. Hence, each expert interprets differently the IN it supplies. In the latter sense, disparate data fussion takes place.

B. Comparative Experimental Results and Discussion

We carried out, comparatively, preliminary computer simulation experiments, using a standard commercial software package (MATLAB), as described in the following.

First, we compared an employment of the mean μ versus the median m of a distribution. Note that a standard practice in the industry is to employ the average/mean value μ of a population of measurements instead of the corresponding median value m as it was demonstrated above (see in section III-B, Example-2). However, the theoretical discussion above (see in the last paragraph of section II-E) has shown that an employment of inequality $m<\mu$, for skewed pdfs, can increase the probability of a dispensed liquid volume "being inside the specifications". In a series of Monte-Carlo computer experiments we confirmed, for both Expert-1 and Expert-2, that a combined employment of m and μ results in fewer violations of the specifications. The latter is significant for our industrial application. Nevertheless, a conceptual problem arises regarding the employment of a median m computed for the fuzzy set supplied by Expert- 3 because a median m is meaningless for a fuzzy set. However, due to the one-toone correspondence between INs and pdfs [34], [35], [39], [40], it follows that for any IN a median equivalent (parameter) m can be defined. Moreover, compared with the median m of a pdf, inclusion measure $\sigma_{\curlyvee}($.$) has the$ advantage that only $\sigma_{\curlyvee}($.$) can capture higher-order data statistics; in fact, \sigma_{\curlyvee}($.$) can capture all-order data statistics$ [39], [40], [41].

Second, we comparatively evaluated the performance of our proposed FLRpe scheme. The latter (scheme) was tested in a number of computer simulation experiments assuming a single unreliable expert. More specifically, we assumed that two experts were able to supply accurate (dispensed) liquid volume INs, whereas the third expert supplied a IN either at random or lagging/leading the correct volume. In other words, we used "intact" two of the three inclusion measures $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$ curves shown in Fig.10, Fig. 12 and Fig.15, whereas we used either random samples of the third curve or a left/right-translated version of the third curve. In conclusion, an alternative decision scheme has employed the average of the three inclusion measures values supplied by the three experts.

Each one of the three inclusion measures $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$ curves shown in Fig.10, Fig. 12 and Fig. 15 was sampled at specific values of the parameter m - Note that successive parameter m samples correspond to successive time instances. Then, both the FLRpe and the aforementioned alternative decision scheme were applied at every (data) sampling instance. We confirmed, using threshold $T=0.93$, that the FLRpe scheme always accurately stops dispensing, whereas the alternative decision scheme may fail even at all (data) sampling instances. Note also that a single expert never performed better than the FLRpe scheme. Such reliable decision-making, as the FLRpe can provide, can be of critical importance in our industrial application due to the fact that one of the three experts may, occasionally, fail as it will be detailed in a future publication.

VI. Conclusion

Automated as well as accurate dispensing towards retaining a competitive product quality is of interest in a wide range of industrial applications including plastics, chemicals, dyeing, pharmaceuticals, and foods. This work has demonstrated a novel scheme, namely Fuzzy Lattice Reasoning pairwise ensemble, or FLRpe for short, for industrial dispensing based on (FLR) reasoning, which may accommodate imprecision/uncertainty/vagueness in the data. The FLRpe operates by considering, pairwise, all combinations of a number of expert implications based on the sigma-join $\sigma_{\curlyvee}(.,$.$) inclusion measure. Preliminary experimental results have been encouraging.$

This work has also presented a formal information fusion framework, namely the Cartesian product lattice (F^{N}, \preceq) of Intervals'Numbers (INs), towards an integration of disparate types of data including (intervals of) real numbers as well as probability/possibility distributions. Furthermore, a number of mathematical improvements were presented. Several illustrative examples have demonstrated practical advantages of the proposed techniques including the employment of granular input data as well as the sensible employment of a sparse rule base.

Future plans include, first, a study of implication $p \rightarrow q$ based on both inclusion measures $\sigma_{\curlywedge}(.,$.$) and \sigma_{\curlyvee}(.,$. and, second, an industrial application of the FLRpe scheme for automated ouzo production. The mathematical instruments presented here may also be especially useful for the design of dynamically evolving fuzzy systems [4], as well as for fuzzy regression analysis [8].

APPENDIX

This Appendix summarizes useful notions and tools regarding lattice theory [7], [35], [43], [59] using an improved mathematical notation [31], [37].

A. Mathematical Background

Given a set P, a binary relation (\preceq) in P is called partial order if and only if it satisfies the following conditions: $x \preceq x$ (reflexivity), $x \preceq y$ and $y \preceq x \Rightarrow x=y$ (antisymmetry), and $x \preceq y$ and $y \preceq z \Rightarrow x \preceq z$ (transitivity) - We remark that the antisymmetry condition may be replaced by the following equivalent condition: $x \preceq y$ and $x \neq y \Rightarrow y \npreceq x$. If both $x \preceq y$ and $x \neq y$ then we write $x \prec y$. A partially ordered set, or poset for short, is a pair (P, \preceq), where P is a set and \preceq is a partial order relation in P. Note that, in this work, we employ an improved mathematical notation using, first, "curly" symbols $\curlyvee, \curlywedge, \preceq, \prec$, etc. for general poset/lattice elements and, second, "straight" symbols such as $\vee, \wedge, \leq,<$, etc. for real numbers, i.e. elements of the totally-ordered lattice (R, \leq).

A lattice is a poset (L, \preceq) any two of whose elements $x, y \in \mathrm{~L}$ have both a greatest lower bound, or meet for short, and a least upper bound, or join for short, denoted by $x \curlywedge y$ and $x \curlyvee y$, respectively. Two elements $x, y \in \mathrm{~L}$ in a lattice (L, \preceq) are called comparable, symbolically $x \sim y$, if and only if it is either $x \preceq y$ or $x \succ y$. A lattice (L, \preceq) is called totally-ordered if and only if $x \sim y$ for any $x, y \in \mathrm{~L}$. If $x \nsim y$ holds for two elements $x, y \in \mathrm{~L}$ of a lattice (L, \preceq) then x and y are called incomparable or, equivalently, parallel, symbolically $x \| y$.

Given a lattice (L, \preceq) it is known that $\left(\mathrm{L}, \preceq^{\partial}\right) \equiv(\mathrm{L}, \succeq)$ is also a lattice, namely dual (lattice), where $\preceq^{\text {² }}$ denotes the dual (i.e. converse) of order relation \preceq. Furthermore, it is known that the Cartesian product $\left(\mathrm{L}_{1}, \preceq\right) \times\left(\mathrm{L}_{2}, \preceq\right)$, of two lattices $\left(\mathrm{L}_{1}, \preceq\right)$ and $\left(\mathrm{L}_{2}, \preceq\right)$, is a lattice with order $\left(x_{1}, x_{2}\right) \preceq\left(y_{1}, y_{2}\right) \Leftrightarrow x_{1} \preceq y_{1}$ and $x_{2} \preceq y_{2}$. In the latter Cartesian product lattice it holds both $\left(x_{1}, x_{2}\right) \curlywedge\left(y_{1}, y_{2}\right)=\left(x_{1} \curlywedge y_{1}, x_{2} \curlywedge y_{2}\right)$ and $\left(x_{1}, x_{2}\right) \curlyvee\left(y_{1}, y_{2}\right)=$ $\left(x_{1} \curlyvee y_{1}, x_{2} \curlyvee y_{2}\right)$. It follows that the Cartesian product $(\mathrm{L}, \succeq) \times(\mathrm{L}, \preceq) \equiv(\mathrm{L} \times \mathrm{L}, \succeq \times \preceq)$ is a lattice with order $\left(x_{1}, x_{2}\right) \preceq\left(y_{1}, y_{2}\right) \Leftrightarrow x_{1} \succeq y_{1}$ and $x_{2} \preceq y_{2}$; moreover, $\left(x_{1}, x_{2}\right) \curlywedge\left(y_{1}, y_{2}\right)=\left(x_{1} \curlyvee y_{1}, x_{2} \curlywedge y_{2}\right)$ and $\left(x_{1}, x_{2}\right) \curlyvee\left(y_{1}, y_{2}\right)=\left(x_{1} \curlywedge y_{1}, x_{2} \curlyvee y_{2}\right)$. An element of lattice $(\mathrm{L} \times \mathrm{L}, \succeq \times \preceq)$ will be denoted by a pair of L elements within square brackets, e.g. $[a, b]$.

Our interest, here, is in complete lattices. Recall that a lattice (L, \preceq) is called complete when each of its subsets X has both a greatest lower bound and a least upper bound in L ; hence, for $X=\mathrm{L}$ it follows that a complete lattice has both a least and a greatest element. In the interest of simplicity, here we use the same symbols O and I to denote the least and the greatest element, respectively, in any complete lattice. Likewise, we use the same symbol \preceq to denote the partial order relation in any (complete) lattice. Consider the following definition.

Definition 4: Let (L, \preceq) be a complete lattice with least and greatest elements O and I, respectively. An inclusion measure in (L, \preceq) is a function $\sigma: \mathrm{L} \times \mathrm{L} \rightarrow[0,1]$, which satisfies the following conditions

I0. $\sigma(x, O)=0, \forall x \neq O$.
I1. $\sigma(x, x)=1, \forall x \in \mathrm{~L}$.
I2. $x \curlywedge y \prec x \Rightarrow \sigma(x, y)<1$.
I3. $u \preceq w \Rightarrow \sigma(x, u) \leq \sigma(x, w)$.

We remark that an inclusion measure $\sigma(x, y)$ can be interpreted as the fuzzy degree to which x is less than y; therefore notation $\sigma(x \preceq y)$ may be used instead of $\sigma(x, y)$.

B. Useful Mathematical Instruments

Two different inclusion measures are presented next, based on a positive valuation ${ }^{3}$ function.

Theorem 6.1: Let function $v: \mathrm{L} \rightarrow \mathrm{R}$ be a positive valuation in a complete lattice (L, \preceq) such that $v(O)=0$; then both functions sigma-meet $\sigma_{\curlywedge}(x, y)=\frac{v(x \curlywedge y)}{v(x)}$ and sigma-join $\sigma_{\curlyvee}(x, y)=\frac{v(y)}{v(x \curlyvee y)}$ are inclusion measures.

Due to practical restrictions, we introduce two constraints on positive valuation functions, next. First, in order to satisfy condition I0 of Definition 4, our interest is in positive valuation functions such that " $v(O)=0$ ". Second, since a positive valuation function $v: \mathrm{L} \rightarrow \mathrm{R}$ implies a metric (distance) function $d: \mathrm{L} \times \mathrm{L} \rightarrow \mathrm{R}^{\geq 0}$ given by $d(a, b)=v(a \curlyvee b)-v(a \curlywedge b)$, furthermore infinite distances between lattice elements are not desired, our second constraint is " $v(I)<+\infty$ ". Our interest, in the context of this work, focuses solely on inclusion measure functions.
${ }^{3}$ Positive valuation in a general lattice (L, \preceq) is a real function $v: \mathrm{L} \times \mathrm{L} \rightarrow \mathrm{R}$ that satisfies both $v(x)+v(y)=v(x \curlywedge y)+v(x \curlyvee y)$ and $x \prec y \Rightarrow v(x)<v(y)$.

A bijective (i.e. one-to-one) dual isomorphic ${ }^{4}$ function $\theta: \mathbf{L} \rightarrow \mathbf{L}$ such that $x \prec y \Leftrightarrow \theta(x) \succ \theta(y)$, in a lattice (L, \preceq), can be used for extending an inclusion measure from a lattice (L, \preceq) to the corresponding lattice of intervals. Given a dual isomorphic function $\theta: \mathrm{L} \rightarrow \mathrm{L}$ there follow, by definition, both $\theta(x \curlywedge y)=\theta(x) \curlyvee \theta(y)$ and $\theta(x \curlyvee y)=\theta(x) \curlywedge \theta(y)$. The latter equalities are handy in the proof of the following Proposition.

Proposition 6.2: Let real function $v: \mathrm{L} \rightarrow \mathrm{R}$ be a positive valuation in a lattice (L, \preceq); moreover, let bijective function $\theta: \mathbf{L} \rightarrow \mathbf{L}$ be dual isomorphic in (L, \preceq), i.e. $x \prec y \Leftrightarrow \theta(x) \succ \theta(y)$. Then, function $v_{\Delta}: \mathbf{L} \times \mathbf{L} \rightarrow \mathbf{R}$ given by $v_{\Delta}(a, b)=v(\theta(a))+v(b)$ is a positive valuation in lattice $(\mathrm{L} \times \mathrm{L}, \succeq \times \preceq)$.

Proof

1. First, we show that $v_{\Delta}(a, b)+v_{\Delta}(c, d)=v_{\Delta}((a, b) \curlywedge(c, d))+v_{\Delta}((a, b) \curlyvee(c, d))$ as follows.
$v_{\Delta}(a, b)+v_{\Delta}(c, d)=[v(\theta(a))+v(b)]+[v(\theta(c))+v(d)]=[v(\theta(a))+v(\theta(c))]+[v(b)+v(d)]=[v(\theta(a) \curlywedge$
$\theta(c))+v(\theta(a) \curlyvee \theta(c))]+[v(b \curlywedge d)+v(b \curlyvee d)]=[v(\theta(a \curlyvee c))+v(\theta(a \curlywedge c))]+[v(b \curlywedge d)+v(b \curlyvee d)]=[v(\theta(a \curlyvee c))+$ $\left.v(b \curlywedge d)]+[v(\theta(a \curlywedge c))+v(b \curlyvee d)]=v_{\Delta}(a \curlyvee c, b \curlywedge d)\right)+v_{\Delta}(a \curlywedge c, b \curlyvee d)=v_{\Delta}((a, b) \curlywedge(c, d))+v_{\Delta}((a, b) \curlyvee(c, d))$.
2. Second, we show that $(a, b) \prec(c, d) \Rightarrow v_{\Delta}(a, b)<v_{\Delta}(c, d)$ as follows.
$(a, b) \prec(c, d) \Rightarrow$ either $(a \succ c$ and $b \preceq d)$ or $(a \succeq c$ and $b \prec d) \Rightarrow$ either $(\theta(a) \prec \theta(c)$ and $b \preceq d)$ or $(\theta(a) \preceq \theta(c)$ and $b \prec d) \Rightarrow$ either $(v(\theta(a))<v(\theta(c))$ and $v(b) \leq v(d))$ or $(v(\theta(a)) \leq v(\theta(c))$ and $v(b)<v(d)) \Rightarrow v(\theta(a))+v(b)<v(\theta(c))+v(d) \Rightarrow v_{\Delta}(a, b)<v_{\Delta}(c, d)$.

The latter completes the proof of Proposition 6.2.

We remark that Proposition 6.2 has been proven, quite restrictively, for a totally-ordered lattice (L, \preceq) in [43].

Acknowledgement

This work has been supported, in part, by a project Archimedes-III contract.

REFERENCES

[1] A. Abraham, E. Corchado, J.M. Corchado, Hybrid learning machines - Guest Editorial, Neurocomputing 72 (13-15) (2009) 2729-2730.
[2] C. Alcalde, A. Burusco, R. Fuentes-González, A constructive method for the definition of interval-valued fuzzy implication operators, Fuzzy Sets and Systems 153 (2) (2005) 211-227.
[3] G.P. Amis, G.A. Carpenter, Self-supervised ARTMAP, Neural Networks 23 (2) (2010) 265-282.
[4] P. Angelov, D. Filev, N. Kasabov, Evolving Fuzzy Systems - Guest Editorial, IEEE Transactions on Fuzzy Systems 16 (6) (2008) 1390-1392.
[5] H.G. Ayad, M.S. Kamel, On voting-based consensus of cluster ensembles, Pattern Recognition 43 (5) (2010) 1943-1953.
${ }^{4}$ A function $\psi:(P, \preceq) \rightarrow(Q, \preceq)$, between posets (P, \preceq) and (Q, \preceq), is called (order) isomorphic iff both " $x \preceq y \Leftrightarrow \psi(x) \preceq \psi(y)$ " and " ψ is onto Q "; then, posets (P, \preceq) and (Q, \preceq) are called isomorphic, symbolically $(P, \preceq) \cong(Q, \preceq)$.
[6] S. Binsaeid, S. Asfour, S. Cho, A. Onar, Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion, Journal of Materials Processing Technology 209 (10) (2009) 47284738.
[7] G. Birkhoff, Lattice Theory, American Mathematical Society, 1967, Colloquium Publications 25.
[8] A. Bisserier, R. Boukezzoula, S. Galichet, A revisited approach to linear fuzzy regression using trapezoidal fuzzy intervals, Information Sciences 180 (19) (2010) 3653-3673.
[9] É. Bossé, From sensing to making sense to decision support, plenary speech delivered in the Hybrid Artificial Intelligence Systems (HAIS '2010) International Conference, 23-25 June 2010, San Sebastian, Spain.
[10] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123-140.
[11] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, D.B. Rosen, Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps, IEEE Transactions on Neural Networks 3 (5) (1992) 698-713.
[12] G.A. Carpenter, S. Martens, O.J. Ogas, Self-organizing information fusion and hierarchical knowledge discovery: a new framework using ARTMAP neural networks, Neural Networks 18 (3) (2005) 287-295.
[13] M.C. Casey, R.I. Damper, Biologically-inspired information fusion - Guest Editorial, Information Fusion 11 (1) (2010) 2-3.
[14] X.B. Chen, Modeling and control of fluid dispensing processes: a state-of-the-art review, The International Journal of Advanced Manufacturing Technology 43 (3-4) (2009) 276-286.
[15] E. Corchado, A. Abraham, A. de Carvalho, Hybrid intelligent algorithms and applications - Guest Editorial, Information Sciences 180 (14) (2010) 2633-2634.
[16] E.M. Dos Santos, R. Sabourin, P. Maupin, Overfitting cautious selection of classifier ensembles with genetic algorithms, Information Fusion 10 (2) (2009) 150-162.
[17] N.-E. El Faouzi, H. Leung, A. Kurian, Data fusion in intelligent transportation systems: progress and challenges - a survey, Information Fusion (in press).
[18] M.C. Florea, A.-L. Jousselme, É. Bossé, D. Grenier, Robust combination rules for evidence theory, Information Fusion 10 (2) (2009) 183-197.
[19] M. Georgiopoulos, H. Fernlund, G. Bebis, G.L. Heileman, Order of search in fuzzy ART and fuzzy ARTMAP: effect of the choice parameter, Neural Networks 9 (9) (1996) 1541-1559.
[20] G. Gigli, É. Bossé, G.A. Lampropoulos, An optimized architecture for classification combining data fusion and data-mining, Information Fusion 8 (4) (2007) 366-378.
[21] V. Gómez-Verdejo, J. Arenas-García, A.R. Figueiras-Vidal, Committees of Adaboost ensembles with modified emphasis functions, Neurocomputing 73 (7-9) (2010) 1289-1292.
[22] S.K. Goumas, I.N. Dimou, M.E. Zervakis, Combination of multiple classifiers for post-placement quality inspection of components: a comparative study, Information Fusion 11 (2) (2010) 149-162.
[23] M. Graña, Lattice computing and natural computing - Guest Editorial, Neurocomputing 72 (10-12) (2009) 2065-2066.
[24] M. Graña, I, Villaverde, J.O. Maldonado, C. Hernandez, Two lattice computing approaches for the unsupervised segmentation of hyperspectral images, Neurocomputing 72 (10-12) (2009) 2111-2120.
[25] M. Graña, A.M. Savio, M. García-Sebastián, E. Fernandez, A lattice computing approach for on-line fMRI analysis, Image and Vision Computing 28 (7) (2010) 1155-1161.
[26] A.M. Green, D.E. Angelaki, Multisensory integration: resolving sensory ambiguities to build novel representations, Current Opinion in Neurobiology 20 (3) (2010) 353-360.
[27] S. Guillaume, Designing fuzzy inference systems from data: an interpretability-oriented review, IEEE Transactions on Fuzzy Systems 9 (3) (2001) 426-443.
[28] A.P.M. Henriques, A.D. Dória Neto, R.F. Amaral, Classification of multispectral images in coral environments using a hybrid of classifier ensembles, Neurocomputing 73 (7-9) (2010) 1256-1264.
[29] E. Hüllermeier, S. Vanderlooy, Combining predictions in pairwise classification: an optimal adaptive voting strategy and its relation to weighted voting, Pattern Recognition 43 (1) (2010) 128-142.
[30] J.-S.R. Jang, C.-T. Sun, Neuro-fuzzy modeling and control, Proceedings of the IEEE 83 (3) (1995) 378-406.
[31] C. Joslyn, Order metrics for semantic knowledge systems, in: E. Corchado, M. Graña, A.M. Savio (eds.) Proc., Part II, 5th Intl. Conf. Hybrid Artificial Intelligence Systems (HAIS '10), San Sebastián, Spain, 23-25 June 2010, Springer, 2010, ser. LNAI, vol. 6077, pp. 399-409.
[32] C.K.W. Ip, C.K. Kwong, H. Bai, Y.C. Tsim, The process modelling of epoxy dispensing for microchip encapsulation using fuzzy linear regression with fuzzy intervals, The International Journal of Advanced Manufacturing Technology 22 (5-6) (2003) 417-423.
[33] M.I. Jordan, L. Xu, Convergence results for the EM approach to mixtures of experts architectures, Neural Networks 8 (9) (1995) 1409-1431.
[34] V.G. Kaburlasos, FINs: lattice theoretic tools for improving prediction of sugar production from populations of measurements, IEEE Transactions on Systems, Man \& Cybernetics - Part B 34 (2) (2004) 1017-1030.
[35] V.G. Kaburlasos, Towards a Unified Modeling and Knowledge-Representation Based on Lattice Theory, Springer, 2006, ser. Studies in Computational Intelligence 27.
[36] V.G. Kaburlasos, Granular enhancement of fuzzy-ART/SOM neural classifiers based on lattice theory, in: V.G. Kaburlasos, G.X. Ritter (eds.) Computational Intelligence Based on Lattice Theory, Springer, 2007, ser. Studies in Computational Intelligence 67, pp. 3-23.
[37] V.G. Kaburlasos, Granular fuzzy inference system (FIS) design by lattice computing, in: E. Corchado, M. Graña, A.M. Savio (eds.) Proc., Part II, 5th Intl. Conf. Hybrid Artificial Intelligence Systems (HAIS '10), San Sebastián, Spain, 23-25 June 2010, Springer, 2010, ser. LNAI 6077, pp. 410-417.
[38] V.G. Kaburlasos and A. Kehagias, Novel fuzzy inference system (FIS) analysis and design based on lattice theory. part I: working principles, International Journal of General Systems 35 (1) (2006) 45-67.
[39] V.G. Kaburlasos, A. Kehagias, Novel fuzzy inference system (FIS) analysis and design based on lattice theory, IEEE Transactions on Fuzzy Systems 15(2) (2007) 243-260.
[40] V.G. Kaburlasos, S.E. Papadakis, Granular self-organizing map (grSOM) for structure identification, Neural Networks 19 (5) (2006) 623-643.
[41] V.G. Kaburlasos, S.E. Papadakis, A granular extension of the fuzzy-ARTMAP (FAM) neural classifier based on fuzzy lattice reasoning (FLR), Neurocomputing 72 (10-12) (2009) 2067-2078.
[42] V.G. Kaburlasos, V. Petridis, Fuzzy lattice neurocomputing (FLN) models, Neural Networks 13 (10) (2000) 1145-1169.
[43] V.G. Kaburlasos, I.N. Athanasiadis, P.A. Mitkas, Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation, International Journal of Approximate Reasoning 45 (1) (2007) 152-188.
[44] A. Kehagias, V. Petridis, V.G. Kaburlasos, P. Fragkou, A comparison of word- and sense-based text categorization using several classification algorithms, Journal of Intelligent Information Systems 21 (3) (2003) 227-247.
[45] J. Kittler, F.M. Alkoot, Sum versus vote fusion in multiple classifier systems, IEEE Transactions on Pattern Analysis \& Machine Intelligence 25 (1) (2003) 110-115.
[46] R.L. Kodell, B.A. Pearce, S. Baek, H. Moon, H. Ahn, J.F. Young, J.J. Chen, A model-free ensemble method for class prediction with application to biomedical decision making, Artificial Intelligence in Medicine 46 (3) (2009) 267-276.
[47] L.I. Kuncheva, Switching between selection and fusion in combining classifiers: an experiment, IEEE Transactions on Systems, Man \& Cybernetics - Part B 32 (2) (2002) 146-156.
[48] L.I. Kuncheva, Diversity in multiple classifier systems - Guest Editorial, Information Fusion 6 (1) (2005) 3-4.
[49] L.I. Kuncheva, J.J. Rodríguez, Classifier ensembles for fMRI data analysis: an experiment, Magnetic Resonance Imaging 28 (4) (2010) 583-593.
[50] D.-J. Lee, S. Antani, Y. Chang, K. Gledhill, L.R. Long, P. Christensen, CBIR of spine X-ray images on inter-vertebral disc space and shape profiles using feature ranking and voting consensus, Data \& Knowledge Engineering 68 (12) (2009) 1359-1369.
[51] H. Li, J. Sun, Majority voting combination of multiple case-based reasoning for financial distress prediction, Expert Systems with Applications 36 (3, Part 1) (2009) 4363-4373.
[52] E. Magosso, C. Cuppini, A. Serino, G. Di Pellegrino, M. Ursino, A theoretical study of multisensory integration in the superior colliculus by a neural network model, Neural Networks 21 (6) (2008) 817-829.
[53] E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies 7 (1) (1975) 1-13.
[54] G. Martinez-Muñoz, D. Hernandez-Lobato, A. Suarez, An analysis of ensemble pruning techniques based on ordered aggregation, IEEE Transactions on Pattern Analysis \& Machine Intelligence 31 (2) (2009) 245-259.
[55] M.-H. Masson, T. Denoeux, Ensemble clustering in the belief functions framework, International Journal of Approximate Reasoning (in press).
[56] L. McCowan, D. Gatica-Perez, S. Bengio, G. Lathoud, M. Barnard, D. Zhang, Automatic analysis of multimodal group actions in meetings, IEEE Transactions on Pattern Analysis \& Machine Intelligence 27 (3) (2005) 305-317.
[57] M. Nachtegael, P. Sussner, T. Mélange, E.E. Kerre, On the role of complete lattices in mathematical morphology: From tool to uncertainty model, Information Sciences (in press).
[58] N.C. Oza, K. Tumer, Applications of ensemble methods - Guest Editorial, Information Fusion 9 (1) (2008) 2-3.
[59] S.E. Papadakis, V.G. Kaburlasos, Piecewise-linear approximation of nonlinear models based on probabilistically/possibilistically interpreted intervals' numbers (INs), Information Sciences (in press).
[60] O. Parsons and G.A. Carpenter, ARTMAP neural networks for information fusion and data mining: map production and target recognition methodologies, Neural Networks 16 (7) (2003) 1075-1089.
[61] W. Pedrycz, A. Skowron, V. Kreinovich (eds.), Handbook of Granular Computing, John Wiley \& Sons, 2008.
[62] V. Petridis, V.G. Kaburlasos, FINkNN: a fuzzy interval number k-nearest neighbor classifier for prediction of sugar production from populations of samples, Journal of Machine Learning Research 4 (2003) 17-37.
[63] N. Poh, T. Bourlai, J. Kittler, L. Allano, F. Alonso-Fernandez, O. Ambekar, J. Baker, B. Dorizzi, O. Fatukasi, J. Fierrez, H. Ganster, J. Ortega-Garcia, D. Maurer, A.A. Salah, T. Scheidat, C. Vielhauer, Benchmarking quality-dependent and costsensitive score-level multimodal biometric fusion algorithms, IEEE Transactions on Information Forensics and Security 4 (4) (2009) 849-866.
[64] R. Polikar, Ensemble based systems in decision making, IEEE Circuits \& Systems Magazine 6 (3) (2006) 21-45.
[65] M. Re, G. Valentini, Integration of heterogeneous data sources for gene function prediction using decision templates and ensembles of learning machines, Neurocomputing 73 (7-9) (2010) 1533-1537.
[66] C. Ronse, Why mathematical morphology needs complete lattices, Signal Processing 21 (2) (1990) 129-154.
[67] K. Sambhoos, C. Bowman, J. Llinas, A case study with design of experiments: Performance evaluation methodology for Level 1 distributed data fusion processes, Information Fusion (in press).
[68] R.E. Schapire, The strength of weak learnability, Machine Learning 5 (2) (1990) 197-227.
[69] M. Shi, A. Bermak, S.B. Belhouari, P.C.H. Chan, Gas identification based on committee machine for microelectronic gas sensor, IEEE Transactions on Instrumentation and Measurement 55 (5) (2006) 1786-1793.
[70] C. Silva, U. Lotric, B. Ribeiro, A. Dobnikar, Distributed text classification with an ensemble kernel-based learning approach, IEEE Transactions on Systems, Man \& Cybernetics - Part C 40 (3) (2010) 287-297.
[71] P. Sussner, E.L. Esmi, Morphological perceptrons with competitive learning: Lattice-theoretical framework and constructive learning algorithm, Information Sciences (in press).
[72] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man \& Cybernetics 15 (1) (1985) 116-132.
[73] H.-X. Tian, Z.-Z. Mao, An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace, IEEE Transactions on Automation Science \& Engineering 7 (1) (2010) 73-80.
[74] K. Uehara, M. Fujise, Fuzzy inference based on families of α-level sets, IEEE Transactions on Fuzzy Systems 1 (2) (1993) 111-124.
[75] K. Uehara, K. Hirota, Parallel and multistage fuzzy inference based on families of α-level sets, Information Sciences 106 (1-2) (1998) 159-195.
[76] K. Uehara, T. Koyama, K. Hirota, Inference based on α-cut and generalized mean with fuzzy tautological rules, Journal of Advanced Computational Intelligence and Intelligent Informatics 14 (1) (2010) 76-88.
[77] K. Uehara, T. Koyama, K. Hirota, Suppression effect of α-cut based inference on consequence deviations, Journal of Advanced Computational Intelligence and Intelligent Informatics 14 (3) (2010) 256-271.
[78] P.P. Wang, Mathematics of uncertainty - Guest Editorial, Information Sciences, 177 (23) (2007) 5141-5142.
[79] X. Wang, S. Wang, D. Bi, Compacted probabilistic visual target classification with committee decision in wireless multimedia sensor networks, IEEE Sensors Journal 9 (4) (2009) 346-353.
[80] M.A. Wiering, H. van Hasselt, Ensemble algorithms in reinforcement learning, IEEE Transactions on Systems, Man \& Cybernetics - Part B 38 (4) (2008) 930-936.
[81] M. Wozniak, Proposition of common classifier construction for pattern recognition with context task, Knowledge-Based Systems 19 (8) (2006) 617-624.
[82] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning - I, Information Sciences 8 (3) (1975) 199-249.
[83] L.A. Zadeh, From computing with numbers to computing with words - from manipulation of measurements to manipulation of perceptions, IEEE Transactions on Circuits and Systems - I: Fundamental Theory and Applications 45 (1) (1999) 105119.
[84] P. Zhong, R. Wang, A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images, IEEE Transactions on Geoscience and Remote Sensing 45 (12) (2007) 3978-3988.
[85] X. Zhu, P. Zhang, X. Lin, Y. Shi, Active learning from stream data using optimal weight classifier ensemble, IEEE Transactions on Systems, Man \& Cybernetics - Part B (in press).

Fig. 1. Calculation of a IN from a population of data samples. (a) The data samples with median $m=1.484$. (b) A histogram of the data. (c) The corresponding cumulative distribution function (PDF). (d) Computation of a IN from the corresponding PDF; that is, algorithm CALCIN.

Fig. 2. The two different representations of a IN F from Fig.1(d). (a) The membership-function-representation $m_{F}(x)$. (b) The intervalrepresentation for $L=32$ different levels spaced evenly over the interval $(0,1]$.

Fig. 3. Two INs including a triangular IN F with membership function m_{F}, specified by the three numbers $m-w_{L}, m, m+w_{R}$, and a trivial IN V_{0}. A horizontal line at height $h \in(0,1]$ intersects IN F at points a_{h} and b_{h}, moreover it intersects trivial IN V_{0} at $c_{h}=d_{h}=V_{0}$.

Fig. 4. Triangular INs F_{1}, F_{2} and trivial IN V_{0}. (a) IN F_{1} corresponds to a piecewise-uniform $p_{1}(x)$ pdf such that $p_{1}(x)=\frac{1}{2 r}$ for $m_{1}-r \leq x \leq m_{1}$, whereas $p_{1}(x)=\frac{1}{2 R}$ for $m_{1} \leq x \leq m_{1}+R$. (b) IN F_{2} corresponds to a piecewise-uniform $p_{2}(x)$ pdf such that $p_{2}(x)=\frac{1}{2 R}$ for $m_{2}-R \leq x \leq m_{2}$, whereas $p_{2}(x)=\frac{1}{2 r}$ for $m_{2} \leq x \leq m_{2}+r$. (c) INs F_{1} and F_{2} were placed so as the corresponding pdfs $p_{1}(x)$ and $p_{2}(x)$, respectively, have identical means, i.e. $\mu_{1}=\mu=\mu_{2}$. Note that the standard deviations of $p_{1}(x)$ and $p_{2}(x)$ are also identical, i.e. $\sigma_{1}=\sigma_{2}$.

Fig. 5. (a) Inclusion measure $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$ is plotted versus its median m, where INs F and V_{0} are shown in Fig.3, using parameter values $w_{L}=w_{R}=0.5$ and $V_{0}=4.6$; moreover, both the linear positive valuation $v(x)=x$ and the dual isomorphic function $\theta(x)=10-x$ were used. (b) The above figure is shown in the vicinity of its global maximum at $m=4.6$.

Fig. 6. (a) Inclusion measure $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$ is plotted versus its median m, where INs F and V_{0} are shown in Fig. 3 using parameter values $w_{L}=w_{R}=0.5$ and $V_{0}=4.6$; moreover, both the sigmoid positive valuation $v(x)=\frac{1}{1+e^{-0.5(x-4.6)}}$ and the dual isomorphic function $\theta(x)=2(4.6)-x$ were used. (b) The above figure is shown in the vicinity of its global maximum at $m=4.6$.

Fig. 7. INs F_{1}, F_{2} and V_{0} are shown in Fig. 4 with $r=3$ and $R=10$, moreover trivial $\mathrm{IN} V_{0}$ is located at 65 . (a) Inclusion measure $\sigma_{\curlyvee}\left(F_{1} \preceq V_{0}\right)$ is plotted versus its median m_{1}. (b) The latter figure is shown in the vicinity of its global maximum at $m_{1}=65$. (c) Inclusion measure $\sigma_{\curlyvee}\left(F_{2} \preceq V_{0}\right)$ is plotted versus its median m_{2}. (d) The latter figure is shown in the vicinity of its global maximum at $m_{2}=65$. (e) Inclusion measures $\sigma_{\curlyvee}\left(F_{1} \preceq V_{0}\right)$ and $\sigma_{\curlyvee}\left(F_{2} \preceq V_{0}\right)$ are shown, comparatively, in the vicinity of their global maximum versus their identical mean μ.

Fig. 8. A fully functional software platform, namely XtraSP.v1, has been developed, in the context of this work, towards an industrial production of ouzo (alcoholic) beverage by automating the corresponding liquid dispensing application. Cell label "U.L.M." stands for Ultrasonic Level Meter, moreover cell label "C.T." stands for Communicating Tube.

Fig. 9. Expert-1, that is a flowmeter measurement device, supplied a triangular IN estimate of a dispensed volume as detailed in the text. (a) The membership-function-representation of a dispensed volume estimate. (b) The corresponding interval-representation.

(b)

Fig. 10. (a) Inclusion measure $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$ is plotted versus its median m, where IN F is shown in Fig.9, moreover $V_{0}=65$. (b) The above figure is shown in the vicinity of its global maximum at $m=65$.

Fig. 11. Expert-2, that is a ultrasonic level meter measurement (U.L.M.) device, supplied a population of measurements resulting in a IN of irregular shape as an estimate of a dispensed volume as detailed in the text. (a) The membership-function-representation of a dispensed volume estimate. (b) The corresponding interval-representation.

Fig. 12. (a) Inclusion measure $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$ is plotted versus its median m, where $\mathrm{IN} F$ is shown in Fig.11, moreover $V_{0}=65$. (b) The above figure is shown in the vicinity of its global maximum at $m=65$.

Fig. 13. Two INs including a trapezoidal $\operatorname{IN} F$, specified by the four numbers $m-w-w_{L}, m-w, m+w, m+w+w_{R}$ (note that m is the average of numbers $m-w$ and $m+w)$, and a trivial IN V_{0}. A horizontal line at height $h \in(0,1]$ intersects IN F at points a_{h} and b_{h}, moreover it intersects trivial IN V_{0} at point $c_{h}=d_{h}=V_{0}$.

Fig. 14. Expert-3, that is a human expert, supplied a trapezoidal IN estimate of a dispensed volume as detailed in the text. (a) The membership-function-representation of a dispensed volume estimate. (b) The corresponding interval-representation.

Fig. 15. (a) Inclusion measure $\sigma_{\curlyvee}\left(F \preceq V_{0}\right)$ is plotted versus its corresponding median parameter m, where IN F is shown in Fig.14, moreover $V_{0}=65$. (b) The above figure is shown in the vicinity of its global maximum at $m=65$.

[^0]: ${ }^{1}$ Personal communication with Peter Sussner in the context of the Hybrid Artificial Intelligence Systems (HAIS '2010) International

