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Abstract

By “fusion” this work means integration of disparate types of data including (intervals of) real numbers as
well as possibility/probability distributions defined over the totally-ordered laifRe<) of real numbers. Such
data may stem from different sources including (multiple/multimodal) electronic sensors and/or human judgement.
The aforementioned types of data are presented here as different interpretations of a single data representation,
namely Intervals’ Number (IN). It is shown that the $ebf INs is a partially-ordered latticéF, <) originating,
hierarchically, from(R, <). Two sound, parametrimclusion measurdunctionso : FN x FN — [0, 1] result in the
Cartesian product IatticéFN, =) towards decision-making based on reasoning. In conclusion, the (sE%(cej)
emerges as a formal framework for the development of hybrid intelligent fusion systems/schemes. A fuzzy lattice
reasoning (FLR) ensemble scheme, nank&lR pairwise ensembler FLRpefor short, is introduced here for sound
decision-making based on descriptive knowledge (rules). Advantages include the sensible employment of a sparse
rule base, employment of granular input data (to cope with imprecision/uncertainty/vagueness), and employment of
all-order data statistics. The advantages as well as the performance of our proposed techniques are demonstrated,

comparatively, by computer simulation experiments regarding an industrial dispensing application.

Index Terms

Disparate Data Fusion, Ensemble of Experts, Fuzzy lattice reasoning (FLR), Granular data, Inclusion measure,

Intervals’ number (IN), Lattice-computing, Lattice theory, Sparse rules
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I. INTRODUCTION

In the domain ofSoft Computingr, equivalently,Computational Intelligencethe term “hybrid (system/algo-
rithm)” frequently denotes an integration of different techniques/technologies including artificial neural networks,
fuzzy systems, evolutionary/swarm computing, etc. towards improving an index of performance in real-world
applications [1], [15]; the term “intelligence” is pertinent to decision-making, e.g. in pattern classification/recognition
[81]; moreover, the term “(intelligent) fusion” may signify an aggregate intelligence towards improving decision-
making [47]. In the aforementioned sense, a “hybrid intelligent fusion system” may be a Multiple Classifier System
(MCS) [45], [48] also known in the literature aSlassifier Ensembl§l6], [58], [64], Committee[21], [79], or
Voting Consensufb], [50]. Note that a number of MCS architectures/strategies including applications have been
reported [22], [28], [29], [46], [49], [51], [54], [55], [69], [70], [73], [80], [84], [85]. The MCS techniques are,
typically, of statistical nature [33] in the Euclidean spR@ . Nevertheless, a “hybrid intelligent fusion system”
may be defined otherwise, as explained next.

The term “fusion” may, alternatively, denote an integration of data stemming from multiple, even heterogeneous,
sources including (multimodal) electronic devices as well as human judgement [6], [9], [13], [17], [20], [26], [52],
[56], [63], [65], [67]. In the latter context, there is a keen interest in formal frameworks for unified decision-making
based on disparate types of data that may accommodate uncertainty [9], [18], [78]. One such a framework has
been proposed lately [35], in an information engineering context, based on mathenadtioaltheoryas follows.

Different authors have recognized that several types of data of practical interest, incjuaimdes[61], [83],
are partially(lattice)-ordered [37], [71]. Hence, lattice theory emerged as a formal framework for the fusion of
disparate data types [35]. In such contduizzy lattice reasoningFLR) was originally proposed [36], [41], [43]
as a specific rule-based scheme for classification in a complete Idttie§ data domain including, as a special
case, the lattice of hyperboxes in the Euclidean sfiteIn this work, FLR (reasoning) is defined, more widely,
as any employment of amclusion measurdunctiono : L x L — [0, 1] for decision-making. Therefore, in the
context of this work, the term “intelligent” is pertinent to “(FLR) reasoning”.

Instead of a general mathematical lattice this work considers a specific one originating hierarchically from
the totally-ordered latticéR, <) of real numbers. Note that the latter (lattice) has stemmed, historically, from
the conventional measurement process of successive comparisons [35], [41]. Our interest ifRatticevas
motivated by the existence of vast quantities of real number measurements stored worldwide. Therefore, we sought
convenient data/information representations base®.oHence, the complete lattiq¢, <) of Intervals’ Numbers
(IN) emerged, as detailed below, where a IN is a unified data representation including real numbers, intervals, and
probability/possibility distributions [59]. In conclusion, the Cartesian product Ia(ﬁé\é =) is introduced here as
a formal framework for developing hybrid intelligent fusion systems/schemes, where an element O(H-'é\ftie_e)
is interpreted here as either a rule (of a FLR scheme) or as an input to a FLR scheme.

In previous work, a FLR scheme for classification has been implemented anFh& MAP neural network

architecture [35], [42], [44]. Note that the latter (neural network architecture) was introduced as an enhancement of
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the fuzzy-ARTMAP, or FAM for short, neural classifier [11]. More specifically, thELNMAP has extended the
applicability domain of FAM from the lattice of hyperboxesR’ to any complete lattice data domain. Moreover,
even in the Euclidean spaéév, that is FAM's sole “applicability domain”, classifie-FLNMAP has demonstrated
significant improvements including tunable nonlinearities as well as the capacity to deal with both nonoverlapping
hyperboxes and granular (hyperbox) input data [35], [42].

Due to the fact that both classifiessFLNMAP and FAM areunstable in the sense that their testing accuracy
depends on the order of presenting the training data [19], [42], it turns out that both of them make good candidates
for Voting classification schemes [10], [35], [68]. Indeed, empirical studies have clearly demonstrated an improved
testing accuracy as well as a more stable testing accuracy for both FAM [3], [12], [60¢-&hdNMAP [35],

[44] in RY. Later work has extended the applicability ®FLNMAP from the lattice of hyperboxes to the lattice
(F, <) of INs based on FLR [41]. In all, FLR is hattice-Computingscheme as explained next.

Lattice-Computing (LC) is a term introduced by @eg[23] to denote any computation in a mathematical lattice.
Graha and colleagues have demonstrated a number of LC techniques in signal/image processing applications [24],
[25]. In particular, they have employed mathematical morphology techniques in the totally-ordered lattice of real
numbers. It turns out that FLR is also a LC scheme, in particular for reasoning, as shown below.

This paper is based on previously published work on FLR. The novelties of this work include the following.
First, it presents a space of INs as a formal information fusion framework including a large number of references as
well as pertinent discussions; a novel mathematical proof is also presented here. Second, it includes mathematical
notation improvements. Third, it introduces an enhanced definition of FLR. Fourth, it demonstrates the “in principle”
accommodation of granular inputs. Fifth, it introduces a novel decision-making scheme, that is a descriptive (rule-
based) FLR ensemble of experts. Sixth, it shows a number of illustrative, new examples including figures. Seventh,
it demonstrates preliminary (computer simulation) results regarding an industrial application.

The layout of this work is as follows. Section Il presents a formal framework for fusion/integration of disparate
data types. Section Il describes our proposed FLR ensemble scheme. Section IV outlines an industrial application.
Section V demonstrates, comparatively, preliminary experimental results. Section VI concludes by summarizing

our contribution. The Appendix presents novel mathematical notation as well as a novel mathematical proof.

[I. A FORMAL INFORMATION FUSION FRAMEWORK

This section introduces constructively, in four steps, a formal information fusion framework, namely the
Cartesian product IatticéFN, <) of Intervals’ Numbers (INs). Different interpretations of INs are also presented.
Note that the four-level hierarchy of lattices presented here is a novelty of this work. For the interested reader,

useful notions and tools regarding lattice theory are summarized in the Appendix.
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A. The Complete LatticeR(<)

The setR of real numbers is a totally-ordered, non-complete lattice denotd@by). It turns out that R, <)

can be extended to a complete lattice by including both symbels™ and “+oc0”. In conclusion, the complete
lattice (R, <) emerges, wher® = RU{—o0, +c0}. Note that previous work has, erroneously, assumed that lattice
(R, <) is complete [37], [59]. Even though the aforementioned error is not critical, this work considers, instead,
the complete latticdR,<) . We remark that complete lattices are important not only in definingnalusion
measurefunction, as shown in the Appendix, but they are also importamha@hematical morphologb7], [66].

On the one hand, any strictly increasing function R — R is a positive valuation in the complete lattice
(R, <). Motivated by the two constraints presented in the Appendix (subsection B), here we consider positive
valuation functionsy : R — R=" such that both)(—c0) = 0 andv(+00) < +co. On the other hand, arlyijective
(i.e. one-to-one), strictly decreasing functién R — R is a dual isomorphic function in latticeR, <). We will

refer to functionsd(.) andv(.) simply asdual isomorphicand positive valuation respectively. Useful extensions

to the corresponding lattice of intervals are presented next.

B. The Complete Lattice’,<) Induced from R,<)

A generalized intervals defined in latticeR, <) as follows.
Definition 1: Generalized intervals an element of the product latti¢®, <?) x (R, <).

Recall that<? in Definition 1 denotes thdual (i.e. converse) of order relation in lattice (R, <), i.e. <9=>.
Product lattice(R, <?) x (R, <) = (R x R, > x <) will be denoted, simply, byA, <).

A generalized interval will be denoted Wy, y], wherez, y € R. It follows that themeet(.) andjoin (Y) in
lattice (A, <) are given, respectively, by, b] A [¢,d] = [aV ¢,bAd] and[a,b] Y [¢,d] = [a A¢,bV d].

The set ofpositive (negative generalized interval&, b], characterized by, < b (a > b), is denoted byA |
(A_). It turns out that A, <) is a poset, namelposet of positive generalized intervaldote that posefA, <)
is isomorphicto the pose{r(R), <) of conventional intervals (sets) R, i.e. (*(R),<) = (A, ,=<). We augmented
poset(7(R), <) by aleast (empty) interval, denoted by) = [+oc0, —oc] — We remark that areatestinterval
I = [~o0, +0o0] already exists inr(R). Hence, the complete latticed(R) = 7(R) U {0},%)~ (A, U{0}, =)
emerged. In the sequel, we will employ isomorphic latticas. U {O}, <) and (7o (R), <), interchangeably. We
point out that a trivial intervale, z] is anatomin the complete latticéro (R), <), where an atonfz, ] by definition
satisfies bott+oco, —oo] = O < [z, z] and there is no intervdh, b] € (70(R), <) such thatO < [a,b] < [z, z].

Consider both a positive valuation functien: R — R=° and a dual isomorphic functiofi: R — R. Then,

proposition 6.2 (in the Appendix) implies that functien : A — R given by va([a,b]) = v(6(a)) + v(b) is a

!Personal communication with Peter Sussner in the context of the Hybrid Artificial Intelligence Systems (HAIS '2010) International
Conference, 23-25 June 2010, San Sebastian, Spain. It is understood that the authors here assume full responsibility for possible errors.
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positive valuation in latticé A, <). There follow bothva (O = [+00, —c0]) = 0 andva (O = [—o0, +0]) < +0o0.
Therefore, based on Theorem 6.1 (in the Appendix), the following two inclusion measures emerge i(Aattige
v(6(aVe v
(1) o ([a,b] < [e, d]) = “CEEreRead) and

v(0(c))+v(d
(2) o ([a,b] = [e,d]) = %'
The above inclusion measures are extended to the Iqttig€R), <) of intervals (sets) as follows.
(1) o ([a,b] = [e,d]) = 2CEFDHCAD if o v ¢ < b A d; otherwise .o, ([a, b] < [¢,d]) = 0, and

(@) o ([a,b] X [e,d) = srayentm

Functionsf(.) andwv(.) can be selected in different ways; for instance, choo8ing = —z andwv(.) such that
v(z) = —v(—x) it follows va([a,b]) = v(b) — v(a). Here, we select a pair of parametric functiar{s) andf(x)
so as to satisfy equalitya ([z, ]) = v(6(z)) + v(x) = Constant required for atoms by a popular FLR algorithm
[42], [43]. Eligible pairs of functionsv(z) and 0(x) include, first,v(z) = ﬁ and 6(z) = 2u — z,
where A, A € R=Y, i,z € R and, secondyp(z) = pz and 0(z) = Q — qx, wherep,q,Q > 0, z € [0, A].
Since it was assumed(6(z)) + v(z) = Constant, for the latter pair of functions)(x) and 6(z) it follows

v(0(x)) +v(z) = pl@Q + (1 — ¢)x] = Constant; therefore,q = 1.

C. The Complete LatticéF, <) Induced from {,=)

Based on generalized interval analysis above, this subsection préstmals’ numbers(INs). A more

general number type is defined in the first place, next.
Definition 2: Generalized interval numbeor GIN for short, is a functior : (0,1] — A.

Let G denote the set of GINSs. It follows complete latti@®, <), as the Cartesian product of complete lattices

(A, =). Our interest here focuses on theblatticé of intervals’ numbersdefined next.

Definition 3: An Intervals’ Numbey or IN for short, is a GINF' such that bothF'(h) € (AL U{0O}) and
hl < hg = F(hl) = F(hg)

Let F denote the set of INs. It follows thdfF, <) is a complete lattice with least eleme@t = O(h) =
[+00,—0¢], h € (0,1] and greatest elemerdt = I(h) = [—o0,+o0], h € (0,1]. Conventionally, a IN will be
denoted by a capital letter in italics, ef.€ F.

Definition 3 implies that a INF' is a function from interval0, 1] to the setr(R) U {[+o0, —oc]} of intervals,
i.e. F'(h) = [an,by], h € (0,1], where both interval-ends;, andb;, are functions of. € (0, 1].

The following two inclusion measures emerge, respectively, in the complete Id#ie® ¢f INs [34], [35]:

Q) o, (FL < Fy) = floA(Fl(h) < Fy(h))dh.
0

(2) Uy(Fl j FQ) = J‘Jy(Fl(h) j FQ(h))dh

2A sublatticeof a lattice (L, <) is another latticg(S, <) such thatS C L.
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The following Proposition derives from [37].

Proposition 2.1: Consider a continuouslual isomorphicfunction ¢ : R — R and a continuougpositive
valuation function v : R — R=°. Let Xo(h) = [x0,z0], h € (0,1] be a trivial (point) IN, moreover lef(h),
h € (0,1] be a IN withupper-semicontinuousiembership functiomng : R — R. Theno, (Xo < E) = mg(zo).

We remark that Proposition 2.1 couples a IN’s two different representations, naméfyethal-representation
and the membership-function-representatiofhe principal advantage of the former (interval) representation is
that it enables useful algebraic operations, whereas the principal advantage of the latter (membership function)

representation is that it enables convenient interpretions, e.g. fuzzy logic interpretions, etc.

D. Extensions to More Dimensions

A N-tuple IN will be denoted by a capital letter in bold, el.= (Fi, ..., Fy) € FY. Lattice (F", <) is
the “fourth level” in a hierarchy of complete lattices whose “first level”, “second level” and “third level” include
lattices R,<), (A,=) and (F, <), respectively.

The following Proposition derives from [37].

Proposition 2.2: ConsiderN complete latticegL;, <), ¢ € {1,..., N} each one equipped with an inclusion
measure functiow; : L; x L, — [0, 1], respectively. ConsideN-tuplesx = (z1,...,2y) andy = (y1,...,yn) in
L =L; x---xLy. Furthermore, consider the conventional lattice ordexingy < z; < y;, Vi € {1,..., N}. Then,
both functions (1ps : L x L — [0,1] given byoa(x < y) = ie{rpirlN}{ai(:z:,; <yi)}, and (2)op : Lx L — [0, 1]
given byon(x 2 y) = ie{l?.,N}Ui(xi =< y;), are inclusion measures in latti¢e, <).

We remark that Propositions 2.1 and 2.2 establish that, for trivial inputs, an inclusion measure reduces to

standard fuzzy inference system (FIS) practices [37].

E. IN Interpretations, Representation Issues & More, Useful Results

The complete latticdF, <) of INs has been studied in a series of publications [34], [38], [40], [41], [59],
[62]. In particular, it has been shown that a IN is a mathematical object, which may admit different interpretations
as follows. First, based on the “resolution identity theorem” [82], aAN:), h € (0,1] may be interpreted as
a fuzzy number, wherd’(h) is the correspondingv-cut for a = h. Hence, a INF : (0,1] — 70(R) may,
equivalently, be represented by apper-semicontinuousiembership functionnr : R — (0,1] — Note that a
number of authors have employedcuts and/or intervals in fuzzy logic applications [2], [74], [75], [76], [77].
There follows equivalencenr, () < mp,(z) < Fi(h) 2 Fy(h), wherez € R, h € (0,1] [59]. Second, a IN
F(h), h € (0,1] may also be interpreted as a probability distribution such that intérya) includes100(1 — k)%
of the distribution, whereas the remainit@0~% is split even both below and above intenza(h).

Fig.1 explains how a IN can be constructed from a population of (real number) data samples using algorithm
CALCIN [34], [35], [39], [59], [62]. More specifically, Fig.1(a) displays the data itself. Fig.1(b) displays a histogram
of the data in Fig.1(a) in0 steps of lengttAx = 0.04. Hence, the histogram of Fig.1(b) may be thought of as
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a probability density functior(pdf) approximation, which (histogram) asymptotically tends to the corresponding

pdf when bothAz — 0 and the number of data samples tends to infinity. Fig.1(c) displays the corresponding
cumulative distribution function (PDF). Finally, Fig.1(d) displays a IN computed from the PDF of Fig.1(c) using
the algebraic formulas shown within Fig.1(d); that is, algorithm CALCIN.

Fig.2 shows the two different representations of the Iy ¢omputed in Fig.1(d). More specifically, Fig.2(a)
displays the membership-function-representation ofANwhereas Fig.2(b) displays the corresponding interval-
representation fol. = 32 different levels spaced evenly over the inter¢@)1]. Triangular INs are of particular
significance in practice, therefore they are studied next.

Consider both the triangular IN', with membership functiom:z(x), and the trivial INV; in Fig.3. IN F' is
specified by the three parameters w;, andwg. A horizontal line at height € (0, 1] intersects INF' at points
ap and by,; moreover, it intersects trivial INj at pointsc, andd;,, wherec, = d;, = Vp. Since the left line of
the triangular membership functionr(z) equalsy = [r — (m — wy)]/wy and the right line ofmr(z) equals

y = [(m + wr) — z]/wg, it follows a, = wph + (m — wr), moreoverb, = —wrh + (m + wg). Next, we

1
analytically calculate inclusion measwsigma-joino (F < Vo) = [ 1}(9(Z§0A(Zf’))))i’:}§i:)vdh)dh usingv(z) = pr and
0 v 3

6(z) = Q — z. Integral [ = Linlaz + b| + Co will be useful in the following calculations.

aerb

(1) Form + wR <V, it follows

fentd 1 _ Q. (Q+Vi)—m+w
v(F 2 V) = fQ arar = =Q ) s -@ra P = W e

(2) Form < VO < m+ wg, it follows

Q—cp+d Q—cp+d 1 1 _
v(F = Vo) = f Q—a? +b: dh+f Q- a7+d7 dh = —-Q f wL+wR)h—(Q+wL+wR)dh’_th wrh—[Q—(m—wL)+Vo] dh =
0
Q Q+w +w [Q—(m—wr)+Vo] thg
witwn M QFwitwn) —(wiFoks T l” = m—w ) TV—w , Whereho = mp (Vo).
(3) Form —wp, < Vo <m, it foIIows
ho 1
_ Q—cp+d Q—cp+d
Gy(Fj%)_ f Q—a?-ﬁ‘bzdh_'_f Q— cil-i-b}hd Qf (wr,+wgr)h— (Q+'w1,+wR) dh— Qf wrh—[Q— Vg+(m+wR)]dh

Q Q+w +w [Q—Vo+(m+wr)]|—wrh
wL+le (Q+u;L+wR)L (wf—‘rwR)ho le Q- UVQ+(77L+£R)] e Whereho mF(VO)'

(4) ForVy < m — wy, it follows

1
_ [ Q—=cn+dp _ 1 _ (m+Q—Vp)+w
Oy (F = VO) - i{ Q—Zi,—i—b; dh = 7Qg‘ wrh—[Q—Vo+(m+wr)] dh = le m+Q OVO 2.

A triangular IN’s edge corresponds to a uniform pdf as shown in Fig.4(a) as well as in Fig.4(ly); (kgt

andp»(x) be the latter pdfs corresponding to IM% and Fy, respectively. More specifically, it is
o, mi —wp <z < m;
pi(z) = v , fori e {1,2},
ﬁa m; <& < m; + W

wherewy andwg represent the ranges of the uniform pdf located to the left and to the right, respectively,
of the medianm;, i € {1,2}; hence, in Fig.4(a) it isv;, = r, wg = R, whereas in Fig.4(b) it isv;, = R,

m +oo
wg = r. Note that themedian“m” of a pdf p(z) is defined here such thaf' p(z)dz =0.5= [ p(x)dz. Next,

m
we compute the means as well as the variances of pdfs) and p,(z) corresponding to the INg; and F,

respectively.
+oo mi1+R
= [ api(x)de = f rodr+ [ xQRdx—ml—i—R r

—0 mi—r miy
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+oo mo mo+tr -
o= [ om(aids = | apdos T e = my - B2
- mo—R ma
2 +o0 2 miy 91 mi1+R )1 e S GRr
oi= [ (x—m)P’pi(e)de= [ (z—m)gde+ [ (z—m) Sdg = SEASIE AR
> mi—r ma
2 +oo 2 ma - ma+r 51 5r2 4 5R216R
o3 = | (@— )’ pe(a)de = [ (z—pa)?spde+ [ (z—po)?grde = g0,
— 00 mz—R o
. . +oo m+wpr ,
We remark thatv;, = wg implies bothy = [ zp(x)dz = [ xwﬁlrwfc der — m ando? — % as
—0o0 m—wry,

expected for a uniform pdf — Recall also that a uniform pdf corresponds to an isosceles triangular IN [34], [35].
In Fig.4(c), pdfsp;(x) and p2(x) were placed such that; = u = us; the corresponding INs, respectively,
Fy and F; are also shown in Fig.4(c). On the one hand, note that both the first- and the second- order statistics
of pdfs p;(x) andpy(z) are identical, i.ey; = po and oy = o2. Nevertheless, pdfg; () and ps(z) differ in
their third-order statistic, namely theskewnessMore specifically,p; (x) is skewed to the left, whereas(z) is
skewed to the right. On the other hand, recall that an inclusion measure function can detect all-order statistics [39],
[40], [41]. Hence, in Fig.4(c), an inclusion measure can discriminate betweeh}lidad IN F; induced from pdfs
p1(x) andps(x), respectively, as demonstrated below.
Furthermore, let us define the following two alternative conditions/specificationg{8H V5| < T and (S2)
|pwi — Vo| < T, for a user-defined threshold valdg whereV, andm;, p; for ¢ € {1,2} as well asR, r are
shown in Fig.4. From both Fig.4(a) and Fig.4(b) it follows that exaéthyof the distribution does not satisfy (S1).
Moreover, first, from Fig.4(a) it follows that.5+ (R —r)/8R of the distribution does not satisfy (S2) and, second,
from Fig.4(b) it follows that0.5 — (R — r)/8R of the distribution does not satisfy (S2). Note also that the truth of

inequalitym; < u; (m; > u;) indicates that the corresponding pdf is skewed to the left (right).

lIl. A Fuzzy LATTICE REASONING (FLR) ENSEMBLE SCHEME

Fuzzy lattice reasoning (FLR) is a term proposed originally for a concrete classification scheme [43], where
an inclusion measure functionA < B) was employed, in the lattice of hyperboxesRﬁV, to compute a (fuzzy)
degree of inclusion of a hyperboA to another oneB. It was also shown that an inclusion measureg, .)
supports two different modes of reasoning, nant@bneralized Modus Ponem@sd Reasoning by AnalogyMore
specifically, on the one han@Generalized Modus Ponens supported as follows: Given both a rule “Variable
W is E THEN propositionp” and a proposition Variable V; is E,” such thatE, < E, where bothE, and E
are elements in a lattice_, <), it reasonably follows fPropositionp”. On the other handReasoning by Analogy
is supported as follows: Given both a set of rules ti&iable V; is Ex, THEN propositionp,”, k € {1,..., K}
and a propositionvariable V5 is E,” such thatE, £ Ej, for k € {1,..., K}, it follows “propositionp;”, where

J = max E, < E.) <1}
arg, 1,...,K}{U( p = Ey) <1}

€{
A FLR extension to the lattice of INs has been possible according to the following rationale. We know (see in

section II-C) that a IN can, equivalently, be represented either by a membership function or by a set of intervals.

Therefore, since an interval is a hyperbox in spBéeit follows that an inclusion measure function can be extended

from spaceR’ to the spacd= of INs by a single integral operation. Further enhancements are proposed next.
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A. FLR Enhancements

Here we propose using the term FLR to denote any decision-making based on an inclusion measure function
o(.,.). Note that advantages of using an inclusion meast(re.) include, first, accommodation of nontrivial
(granular) input data, second, activation of a rule by an input outside the rule’s support (hespaeserule-
base becomes “sensibly” usable) and, third, a capacity to employ alternative positive valuation functions than
v(xz) = z (the latter positive valuation is exclusively employed in the literature, implicitly). We point out that
a parametric positive valuation function may introduce tunable nonlinearities by optimal parameter estimation
techniques; likewise, for parametricdual isomorphic function.

Recent work [37] has demonstrated that conventional fuzzy inference systems (FISs) [27], [30], [53], [72]
apply “in principle” FLR, in lattice(F"¥, <), as follows.

A FIS, typically, includesK rules Ry, k =1, ... K, of the following form

Rule Ry, : IF (variable V; is Fy 1).AND. ... .AND.(variable Vy is F} n) THEN propositionpy,

where the antecedent of rulg, is the conjunction ofV simple propositionsvariable V; is Fy, ;”, i =1,... N,
moreover the consequenpropositionp,” of rule Ry is typically either a likewise proposition (e.g. in a Mamdani
type FIS [53]) or a polynomial (e.g. in a Sugeno type FIS [72]). Our interest here focuses on rule antecedents.
In particular, we assume that the degree of activation of a simple propositaiable V; is F;", i =1,... N
by another oneVariable V; is F; ;" equalso (Fy,; < Fy;). The following examples demonstrate some technical

application details.

B. FLR Examples in latticéF, <)

In this work we employ solely inclusion measure (., .) rather tharo, (.,.) because only inclusion measure

ov(.,.) is non-zero for non-overlapping INs; hence, only(.,.) can reason based onsparserule base.

Example - 1

INs F' and V; referred to, in this example, are shown in Fig.3.

Fig.5 plots inclusion measure, (F < V) versus the mediam of IN F from m = 0.5 to m = 9.5 using
parameter values);, = wr = 0.5 and Vy = 4.6; moreover, both the linear positive valuatiofw) = pz and dual
isomorphic functiond(z) = Q — = were used with parameter valugs= 1, Q = 10. Equality w, = wr = 0.5
implies that triangular INF' has, in particular, an isosceles triangular shape — Recall that an isosceles triangular
IN corresponds to a uniform pdf. Since the mediat) gquals the meanuj of a uniform pdf it follows that, for
an isosceles triangular IN, the-axis in both Fig.5 and Fig.6, denotes as well asp.

Fig.6 plots inclusion measure, (F' < V}) versus its mediam» from m = 0.5 to m = 9.5 using parameter
valuesw;, = wgr = 0.5 andV, = 4.6. Moreover, both positive valuationz) = ﬁ and dual isomorphic

1+e
function 6(z) = 2(4.6) — « were employed.
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Notice the similarity of Fig.5 and Fig.6, where each figure was generated using a different positive valuation
function v(z). In particular, Fig.5 was generated usindireear positive valuation, whereas Fig.6 was generated
using asigmoidpositive valuation. In all our experiments, in the context of this work, we empirically confirmed that
for any linear positive valuation,(z) there is a sigmoid positive valuation(«), which produces an “identical”,
for all practical purposes, inclusion measurg(., .) function. A sigmoid positive valuation is preferable because it
is defined over the whole s& of real numbers, therefore no truncation/normalization is necessary. In conclusion,

unless otherwise specified, in the remaining of this work we employ sigmoid positive valuation functions.

Example - 2

The previous example has dealt with isosceles (triangular) INs. This example considers non-isosceles triangular
IN shapes towards demonstrating that an inclusion measure can effectively detect higher-order statistics.

Fig.7(a) displays inclusion measuss (F; < Vp) versus its mediam; from m; = 3 to m; = 90 using IN
Fy parameter values);, = r = 3, wg = R = 10 and V = 65; Fig.7(b) shows the latter figure in the vicinity of
its global maximum atn, = 65. Likewise, Fig.7(c) displays inclusion measure (F> < V) versus its median
meo from ms = 10 to mo = 97 using IN F; parameter values);, = R = 10, wg = r = 3 and Vy = 65; Fig.7(d)
shows the latter figure in the vicinity of its global maximummat = 65. Where, INsF;, F, andV; are shown in
Fig.4. Finally, Fig.7(e) displays both inclusion measusgg F; < V;) ando (F> =< Vy) versus their (identical)
meanu. More specifically, Fig.7(e) demonstrates that( F; < V5) reaches its global maximubeforeV, = 65, as
expected, because IR, is skewed to the right; whereas, (F; < Vj) reaches its global maximuatfter 1 = 65,

also as expected, because W is skewed to the left.

C. FLRpe: A Pairwise FLR Ensemble Scheme for Reasoning

Based on an expert-supplied propositipn “Variable V' equalsz” the question here is to decide whether
another propositiop, : “Variable V' equalsx” is true or not, where both: andz, are INs. We responded to the
aforementioned question by computing a (fuzzy) degree of fulfillment of implicatior>“py” by o (x = ).

More specifically, ifoy (x < x9) > T, whereT € [0, 1] is user-defined, only then propositigy is accepted.

Since a single expert propositigrmay be prone to errors, hence it may be unreliable, we assumed an ensemble
of N experts each one of whom supplied one propositipn “Variable V' equalszy’, k € {1,..., N}. Our basic
assumption is that at least 2 out of theexperts are reliable. In conclusion, FLR is carried out by considering all
different pairs of experts as shown in Algorithm 1, that is the FLRpe scheme.

We remark that the FLRpe scheme accepts propositjghand only if the corresponding implicationg — po,
ke {1,... N} of any two expertss € {3, j} are jointly accepted, in the sense that ivis(x, < x¢) > T for two
different expertsk € {i,;} as indicated in the mathematical expression in the last step of Algorithm 1; the latter
(expression) derives from Proposition 2.2. In other words, propositiois accepted if and only if the maximum
(\/) inclusion measure (.) of all different pairs of experts is above a user-defined thresFaid[0, 1]. Apparently,

the FLRpe is a “collective reasoning” scheme based on an ensemble of experts.
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Algorithm 1 FLRpe: A Pairwise FLR Ensemble Scheme

1: Consider a propositiop, : “Variable V' equalsx,” and a threshold” € [0, 1]. Furthermore, consider
N expert-supplied propositions, : “Variable V' equalsz,”, k € {1,..., N}, wherexg, z; are INs,
kEe{l,...,N}.

2. Consider one implicatiom;, k € {1,..., N} per expert as follows:

Implication r;, : IF p, THEN py, symbolicallyp, — po.
3: Compute the degree. (z; = xo) of fulfilment of each implicatiorv, : p, — po, kK € {1,...,N}.
4: Accept propositiorp, if and only if
% onllwi, z;] = [0, x0]) =V { A {ov(zi 2 @o),0v(x; 2 wo)} } =T

i,§€{1,....N},i#j i,5€{1,...N},ij
310 IV. AN INDUSTRIAL DISPENSINGAPPLICATION
311 This section outlines an industrial application.
312 A. The Industrial Problem
313 Ouzois a popular Greek liquor, whose final stage production involves dispensing three different liquids, namely
314 water, spirit, andyeast to a “mixing” tank. More specificallywateris typically supplied by a local utility company,
315 spirit is a commercial product whosg® = 96% volume is pure ethanol, moreover teast whoseGY volume
316 (in the ranget0% — 80%) is pure ethanol, is prepared according to a local recipe.
317 The Greek law calls for a specific percentagg) of ethanol in the final (ouzo) product, e g% = 38% or
318 G = 40%, etc. Furthermore, the law calls for a specific ratfo: pj, wherep? denotes the final product’s ethanol
319 percentage stemming-from-yeast gmddenotes the corresponding percentage stemming-from-commercial-spirit;
320 itis py + p§ = 1. In the context of this work, we call paiiG%, p¥ : p5) alcoholic identityof the (ouzo) product.
321 Currently, the production of ouzo is largely empirical, therefore it is prone to errors as explained next.
322 Typically, a skilled worker (manually) calculates the volumes of walgt); spirit (V;*), and yeast¥(;Y) required
323 to produce a specific volumig® of ouzo ofalcoholic identity(G%, p? : p$). Nevertheless, when a different volume
324 V¥ + V7 is requested, at the absence of a skilled worker to compute the corresponding vblfimes, and V.,
325 then errors may occur. Another source of errors regards the manual dispensing of vdlimes, and V¥ to
326 the mixing tank. Hence, thalcoholic identityof the final (ouzo) product might be outside specifications. It is of
327 practical interest to keep, an automated ouzo production, within specifications.
328 Work is, currently, under way towards automating the production of ouzo for a local beverage company in
329 the Greek Macedonia region. Note that the problem of industrial dispensing has been treated also by other authors
330 [14] using conventional modeling techniques; moreover, fuzzy regression techniques have been employed [32]. We
331 applied the FLRpe scheme via a novel software platform, developed for the needs of this work as described next.
332 B. A Novel Software Platform
333 A novel software platform, namely XtraSP.v1l (Fig.8), was developed for the needs of this work using the

334 Labview environment of the National Semiconductors Company. XtraSP.v1 operates as a user-friendly interface for
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controlling all the required electromechanical equipment, including four valves and one pump, via a NI USB-6501
device. The latter (USB) is a Universal Serial Bus to digital 1/O device which also measures the flow, in the range
6 — 120 ¢t/min, to the mixing tank by counting pulses generated bffowmeterusing a 32 bit long counter.
Mounted (inside) on the upper side of the mixing tank there isiltnasonic level metefU.L.M.) device, which
measures the liquid level in the mixing tank with accuracy in the rang& mm by transmitting short ultrasonic
pulses to the liquid surface. In addition, there is a transparemmunicating tub€C.T.) connected to the side of
the mixing tank, which (tube) functions as an indicator of the liquid level (in the mixing tank) by operating on the
principle of communicating tubes. The overall physical system architecture is shown in the upper half of Fig.8.
In worksheet cells of XtraSP.v1l a user can specify (a) A label, e.g. for a tank, (b) An initial quantity of
a liquid in a tank, (c) The percentage of ethanol in both the (commercial) spirit and the yeast, (d) The total
percentage of ethanol in the undisposed ouzo, (e) The percentages of ethanol in the undisposed ouzo stemming,
respectively, from (commercial) spirit and yeast, (f) The desired percentage of (pure) ethanol in the mixing tank,
(g9) The desired percentages of ethanol in the mixing tank stemming, respectively, from (commercial) spirit and
yeast. Box “DECISION-SUPPORT & PARAMETERS” allows the user to specify useful rules & parameters.
Software platform XtraSP.v1l can automatically carry out any required calculation/action on user demand.
Furthermore, a number of safety instructions as well as warning messages can be issued. Note also that software
platform XtraSP.v1 can operate either in a SIMULATION mode or in a real-world OPERATION mode, where the
latter (mode) can be either MANUAL or AUTOMATIC.

C. Implementation of the FLRpe Scheme

An expert-based reasoning scheme, which may also accommodate uncertainty/ambiguity, is of particular interest
in an industrial application. Furthermore, the capacity to effectively cope with an unreliable expert is a specification
of critical importance because an unreliable expert may result in a final product outside specifications. The proposed
FLRpe scheme appears to satisfy the aforementioned specifications, therefore it was applied as described next.

The volume of a liquid being dispensed to the mixing tank was estimated simultaneously by three different
“experts” including, first, a flowmeter measurement device, second, an ultrasonic level meter measurement device
and, third, a human expert who visually consults the transparent tube connected to the side of the mixing tank. We
employed the following (binary) decision rule.

Rule R : IF volume v (of the liquid being dispensed) equdls THEN stop dispensing

We assumed that the degree of truth of a Rlequals the degree of truth of its antecedent. Hence,step“
dispensing if the antecedent propositiopy: “volume v (of the liquid being dispensed) equdlg” is true. The
latter (antecedent) degree of truth was calculated from the degrees of fulfiltméht < V5) of implications

7, . IF “volume v is V,,” THEN “volume v is V",

where one implication, k& € {1,2,3} was supplied per expert.
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Therefore, the FLRpe scheme was applied as described in Algorithm 1. We point out that dispensing stops
if and only if at least two volume IN estimates, supplied by two different experts, approximate véfymean

inclusion measured’, (.,.) > T" sense for a user-defined threshdld

V. EXPERIMENTS AND RESULTS

We carried out comparative simulation experiments as described in this section.

A. Disparate Data Representation and Fusion

Recall that the FLRpe scheme here consists of an ensemble of three experts including Expert-1, that is a
flowmeter measurement device, Expert-2, that is an ultrasonic level meter device and, Expert-3, that is a human
expert supervisor of the industrial dispensing procedure.

First, a dispensed (liquid) volume estimate supplied by Expert-1 was represented by a triangular IN (Fig.9)
as follows. Even though our flowmeter device supplies a precise measurement, there is uncertainty regarding the
dispensed volume due to both time-delays and the storage capacity of the pipes used to drive a fluid to the mixing
tank. The latter uncertainty was modeled by two adjacent uniform pdfs, respectively, one above- and the other below-
an obtained flowmeter measurement. For instance, let a flowmeter measurement beneifféy.4(a)) orms
(Fig.4(b)). The aforementioned two adjacent uniform pdfs are shown in Fig.4(a) as well as Fig.4(b). In conclusion,
an estimate for a dispensed liquid volume by Expert-1 had a triangular shape as in Fig.9. The corresponding
inclusion measure functioa (F < V}), for V = 65, is plotted in Fig.10 versus the median

Second, a dispensed (liquid) volume estimate supplied by Expert-2 was represented by an irregularly shaped IN
(Fig.11) as follows. In a short sequence, we obtained a numh¥r-6f9 successive measurements of the liquid level
in the mixing tank resulting in a population &f = 9 estimates of the dispensed liquid volume. In conclusion, from
the aforementioned population, we induced a IN (Fig.11) using algorithm CALCIN. The corresponding inclusion
measure functiom (F < Vp), for V = 65, is plotted in Fig.12 versus the median

Third, a dispensed (liquid) volume estimate supplied by Expert-3 was represented by a trapezoidal IN (Fig.13)
as follows. A human supervisor of the industrial procedure, based on visual inspection of the transparent tube
connected to the side of the mixing tank (Fig.8) as well as based on personal judgement, supplied a numeric
estimatemn of the middle of an intervajm — w, m + w] which (interval) is the core of a trapezoidal fuzzy set.
Furthermore, both trapezoidal tails; andwg in Fig.13 were suggested by Expert-3. Fig.14 displays a typical
estimate for a dispensed liquid volume given by Expert-3, where 1, wy, =5 andwr = 2. The corresponding
inclusion measure functioa (F < V;), for V; = 65, is plotted in Fig.15 versus the median

We remark that both curves in Fig.10 and Fig.15 are smooth because they have been computed analytically using
equations in section II-E; whereas, the curve in Fig.12 is not smooth due to the irregularly shaped IN of Fig.11.
Furthermore note that, first, the triangular IN (Fig.4) supplied by Expert-1 represents a probability distribution

including a priori information; in particular, the two adjacent iniform pdfs in either Fig.4(a) or Fig.4(b) reprasent
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priori information supplied by the user. Second, the irregularly shaped IN (Fig.11) supplied by Expert-2 represents
a distribution of measurements and, third, the trapezoidal IN (Fig.14) supplied by Expert-3 represents a fuzzy set.

Hence, each expert interprets differently the IN it supplies. In the latter sense, disparate data fussion takes place.

B. Comparative Experimental Results and Discussion

We carried out, comparatively, preliminary computer simulation experiments, using a standard commercial
software package (MATLAB), as described in the following.

First, we compared an employment of the meaversus the mediam of a distribution. Note that a standard
practice in the industry is to employ the average/mean valug a population of measurements instead of the
corresponding median value as it was demonstrated above (see in section IlI-B, Example-2). However, the
theoretical discussion above (see in the last paragraph of section II-E) has shown that an employment of inequality
m < u, for skewed pdfs, can increase the probability of a dispensed liquid volume “being inside the specifications”.
In a series of Monte-Carlo computer experiments we confirmed, for both Expert-1 and Expert-2, that a combined
employment ofm and p results in fewer violations of the specifications. The latter is significant for our industrial
application. Nevertheless, a conceptual problem arises regarding the employment of amediaputed for the
fuzzy set supplied by Expert-3 because a mediais meaningless for a fuzzy set. However, due to the one-to-
one correspondence between INs and pdfs [34], [35], [39], [40], it follows that for any idian equivalent
(parameter)m can be defined. Moreover, compared with the medianf a pdf, inclusion measurey (.) has the
advantage that only (.) can capture higher-order data statistics; in fagt(.) can capture all-order data statistics
[39], [40], [41].

Second, we comparatively evaluated the performance of our proposed FLRpe scheme. The latter (scheme) was
tested in a number of computer simulation experiments assuming a single unreliable expert. More specifically, we
assumed that two experts were able to supply accurate (dispensed) liquid volume INs, whereas the third expert
supplied a IN either at random or lagging/leading the correct volume. In other words, we used “intact” two of the
three inclusion measures, (F' < V) curves shown in Fig.10, Fig.12 and Fig.15, whereas we used either random
samples of the third curve or a left/right-translated version of the third curve. In conclusiaiteamative decision
schemehas employed the average of the three inclusion measures values supplied by the three experts.

Each one of the three inclusion measwgg F' < V;) curves shown in Fig.10, Fig.12 and Fig.15 was sampled
at specific values of the parameter— Note that successive parametersamples correspond to successive time
instances. Then, both the FLRpe and the aforementiaitechative decision schemeere applied at every (data)
sampling instance. We confirmed, using thresh®ld= 0.93, that the FLRpe scheme always accurately stops
dispensing, whereas the alternative decision scheme may fail even at all (data) sampling instances. Note also that
a single expert never performed better than the FLRpe scheme. Such reliable decision-making, as the FLRpe can
provide, can be of critical importance in our industrial application due to the fact that one of the three experts may,

occasionally, fail as it will be detailed in a future publication.
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VI. CONCLUSION

Automated as well as accurate dispensing towards retaining a competitive product quality is of interest in a
wide range of industrial applications including plastics, chemicals, dyeing, pharmaceuticals, and foods. This work
has demonstrated a novel scheme, nanfelgzy Lattice Reasoning pairwise ensemlole FLRpe for short, for
industrial dispensing based on (FLR) reasoning, which may accommodate imprecision/uncertainty/vagueness in the
data. The FLRpe operates by considering, pairwise, all combinations of a humber of expert implications based on
the sigma-joino (.,.) inclusion measure. Preliminary experimental results have been encouraging.

This work has also presented a formal information fusion framework, namely the Cartesian product lattice
(FN,j) of Intervals’Numbers (INs), towards an integration of disparate types of data including (intervals of)
real numbers as well as probability/possibility distributions. Furthermore, a number of mathematical improvements
were presented. Several illustrative examples have demonstrated practical advantages of the proposed techniques
including the employment of granular input data as well as the sensible employment of a sparse rule base.

Future plans include, first, a study of implicatipn— ¢ based on both inclusion measuees(.,.) ando (., .)
and, second, an industrial application of the FLRpe scheme for automated ouzo production. The mathematical
instruments presented here may also be especially useful for the design of dynamically evolving fuzzy systems [4],

as well as for fuzzy regression analysis [8].

APPENDIX

This Appendix summarizes useful notions and tools regarding lattice theory [7], [35], [43], [59] using an

improved mathematical notation [31], [37].

A. Mathematical Background

Given a setP, a binary relation €) in P is called partial order if and only if it satisfies the following
conditions:z < z (reflexivity), x < y andy <X x = = = y (antisymmetry, andz <y andy < z = = < 2
(transitivity) — We remark that thantisymmetrycondition may be replaced by the following equivalent condition:
r=<yandz #y =y £z If bothz <y andz # y then we writez < y. A partially ordered setor posetfor
short, is a pai P, <), whereP is a set and< is a partial order relation i®. Note that, in this work, we employ
an improved mathematical notation using, first, “curly” symbwolsix, <, <, etc. for general poset/lattice elements
and, second, “straight” symbols such d@s A, <, <, etc. for real numbers, i.e. elements of the totally-ordered
lattice (R, <).

A lattice is a poset(L, <) any two of whose elements y € L have both areatest lower boundor meetfor
short, and deast upper boundor join for short, denoted by: A y andx Y y, respectively. Two elements y € L
in a lattice(L, <) are calledcomparable symbolicallyz ~ y, if and only if it is eitherz <y or z >~ y. A lattice
(L, <) is calledtotally-orderedif and only if © ~ y for any x,y € L. If x ~ y holds for two elements, y € L of

a lattice (L, =) thenz andy are calledincomparableor, equivalentlyparallel, symbolically z||y.
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468 Given a lattice(L, <) it is known that(L, <?) = (L, >) is also a lattice, namelgual (lattice), where<? denotes

469 the dual (i.e. converse) of order relatiod. Furthermore, it is known that the Cartesian prodigt <) x (Lo, <),

470 of two lattices(L;, <) and (L,, <), is a lattice with order(x1,z2) < (y1,y2) © x1 < y; andzy < yo. In the

471 latter Cartesian product lattice it holds bath,, z2) A (y1,y2) = (21 A y1,22 A y2) @and (z1,22) Y (y1,y2) =

472 (x1 Y y1,22 Y y2). It follows that the Cartesian product,>) x (L,<) = (L x L,> x =) is a lattice with

473 order (z1,22) =X (y1,¥2) < x1 = y1 and xs < yo; moreover,(z1,22) A (y1,y2) = (1 Y y1,22 A y2) and

474 (x1,22) Y (y1,92) = (1 A y1,22 Y y2). An element of latticelL x L, = x =) will be denoted by a pair ot

475 elements within square brackets, €@.b].

476 Our interest, here, is inompletdattices. Recall that a latticg., <) is calledcompletewhen each of its subsets

477 X has both a greatest lower bound and a least upper bouhd lience, forX = L it follows that a complete

478 lattice has both deastand agreatestelement. In the interest of simplicity, here we use the same synibalad

479 1 to denote the least and the greatest element, respectively, in any complete lattice. Likewise, we use the same
480 symbol < to denote the partial order relation in any (complete) lattice. Consider the following definition.

481 Definition 4: Let (L, <) be a complete lattice with least and greatest eleméhtand I, respectively. An

482 inclusion measurén (L, <) is a functiono : L x L — [0, 1], which satisfies the following conditions

483 0. o(z,0) =0,V #O.

484 1. o(z,z) =1,Vz € L.

485 2. z Ay <z=o0(z,y) < 1.

486 3. uxw=o(x,u) <olx,w).

487 We remark that an inclusion measurér, y) can be interpreted as the fuzzy degree to whidh less thany;

488 therefore notatiow (z < y) may be used instead of(z, y).

489 B. Useful Mathematical Instruments

490 Two different inclusion measures are presented next, basedpositive valuatiod function.

401 Theorem 6.1:Let functionv : L — R be a positive valuation in a complete lattife, <) such that(O) = 0;

492 then both functionsigma-meet, (z,y) = ”(f(;‘)y) andsigma-joino (z,y) = v(’;(g)y) are inclusion measures.

493 Due to practical restrictions, we introduce two constraints on positive valuation functions, next. First, in order
494 to satisfy condition 10 of Definition 4, our interest is in positive valuation functions such t{&)*= 0. Second,

405 since a positive valuation function : L — R implies a metric (distance) functiod : L x L — R=? given by

496 d(a,b) = v(a Y b) —v(a A b), furthermore infinite distances between lattice elements are not desired, our second
497 constraint is (1) < 4+o00”. Our interest, in the context of this work, focuses solely on inclusion measure functions.

3positive valuatiorin a general latticéL, <) is a real functionv : L x L — R that satisfies both(z) + v(y) = v(z A y) +v(z Y y) and
z <y=v(z) <v(y).
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A bijective (i.e. one-to-onejlual isomorphié function # : L — L such thatr < y < 6(z) = 6(y), in a
lattice (L, <), can be used for extending an inclusion measure from a Igftice) to the corresponding lattice of
intervals. Given a dual isomorphic functien L — L there follow, by definition, botl#(z A y) = 6(z) Y 8(y) and

O(z Y y) =6(z) A 0(y). The latter equalities are handy in the proof of the following Proposition.

Proposition 6.2: Let real functionv : L — R be apositive valuatiorin a lattice(L, <); moreover, let bijective
functiond : L — L be dual isomorphiadn (L, <), i.e.x < y < 6(z) = 6(y). Then, functionva : L x L — R given

by va(a,b) = v(6(a)) + v(b) is a positive valuation in lattic€L x L, > x <).

Proof
1. First, we show thaba(a,b) +va(c,d) = va((a,b) A (¢,d)) +va((a,b) Y (c,d)) as follows.
va(a,b) +valc, d) = [v(0(a)) + v(b)] + [v(0(c)) + v(d)] = [v(0(a)) +v(0(c)] + [v(b) +v(d)] = [v(6(a) A
0(c))+v(0(a)YO(c))]+[vbAd)+v(bYd)] = [v(B(aYe))+v(B(aic))+[vbAd)+v(bYd)] = [v(0(aYc))+
v(bAd)]+[v(0(arc))+v(bYd)] = valaYe,bid))+valare,bYd) =va((a,b)A(c,d))+va((a, b)Y (c,d)).
2. Second, we show thdt, b) < (¢,d) = va(a,b) < va(c,d) as follows.
(a,b) < (c,d) = either(a > candb < d) or (a > c andb < d) = either (6(a) < 0(c) andb < d)
or (f(a) < 6(c) andb < d) = either (v(f(a)) < v(0(c)) andv(b) < wv(d)) or (v(f(a)) < v(f(c)) and
v(b) < v(d)) = v(8(a)) +v(b) < v(0(c)) +v(d) = va(a,b) < va(c,d).

The latter completes the proof of Proposition 6.2.

We remark that Proposition 6.2 has been proven, quite restrictively, for a totally-ordered (atticein [43].
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Fig. 1. Calculation of a IN from a population of data samples. (a) The data samples with mediar1.484. (b) A histogram of the
data. (c) The corresponding cumulative distribution function (PDF). (d) Computation of a IN from the corresponding PDF; that is, algorithm
CALCIN.
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Fig. 2. The two different representations of a IN F from Fig.1(d). (a) The membership-function-representaiioh (b) The interval-
representation fol. = 32 different levels spaced evenly over the inter¢@)1].

m-wr, an m by, m+wr c,=d, R X

\ 4

Fig. 3. Two INs including a triangular INF with membership functionn r, specified by the three numbens — wr, m, m + wr, and a
trivial IN V4. A horizontal line at height € (0, 1] intersects INF' at pointsa;, andby,, moreover it intersects trivial INy atc, = dp, = V.
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Fig. 4. Triangular INsFy, F> and trivial IN Vo. (a) IN Fy corresponds to a piecewise-uniform(z) pdf such thatp (z) = 5 for
m1 —r < x < my, whereasp: (z) = 5 for mi < = < mq + R. (b) IN F, corresponds to a piecewise-uniforpa(z) pdf such that
p2(x) = 55 for mo — R < @ < ma, Whereag(z) = 5= for me < o < ma + 7. (c) INs Fi and F, were placed so as the corresponding

pdfs p1 (z) andp2(z), respectively, have identical means, i.g8. = u = p2. Note that the standard deviations mf(z) and p2(z) are also
identical, i.e.c1 = o2.
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(@) Inclusion measure, (F' < V) is plotted versus its mediam, where INSF' andV; are shown in Fig.3, using parameter values
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wr = wg = 0.5 andVy = 4.6; moreover, both the linear positive valuatiofiz) = = and the dual isomorphic functiof(z) = 10 — x
were used. (b) The above figure is shown in the vicinity of its global maximum at 4.6.
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Fig. 6. (a) Inclusion measure, (F' < V}) is plotted versus its mediam, where INSF andV; are shown in Fig.3 using parameter values
wr = wr = 0.5 and V, = 4.6; moreover, both the sigmoid positive valuatiofi) = W and the dual isomorphic function
6(z) = 2(4.6) — = were used. (b) The above figure is shown in the vicinity of its global maximum &t 4.6.
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(e)
INs Fy, F> andV, are shown in Fig.4 withr = 3 and R = 10, moreover trivial INV} is located at65. (a) Inclusion measure

ov (F1 X V) is plotted versus its mediam. (b) The latter figure is shown in the vicinity of its global maximunmat = 65. (c) Inclusion
Inclusion measuresy (F1 < Vp) ando (F> < Vp) are shown, comparatively, in the vicinity of their global maximum versus their identical

measurery (F> < Vp) is plotted versus its mediam.. (d) The latter figure is shown in the vicinity of its global maximumnas = 65. (e)
meanj.

Fig. 7.
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SEPTEMPER 2010 SOFTWARE PLATFORM XtraSP.vl FOR AUTOMATED OUZO PRODUCTION
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Fig. 8. A fully functional software platform, namely XtraSP.v1, has been developed, in the context of this work, towards an industrial
production of ouzo (alcoholic) beverage by automating the corresponding liquid dispensing application. Cell label “U.L.M.” stands for
Ultrasonic Level Meter, moreover cell label “C.T.” stands for Communicating Tube.
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m [It]

(b)

Fig. 9. Expert-1, that is a flowmeter measurement device, supplied a triangular IN estimate of a dispensed volume as detailed in the text.
(@) The membership-function-representation of a dispensed volume estimate. (b) The corresponding interval-representation.
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Fig. 10. (a) Inclusion measure, (F' < Vp) is plotted versus its mediam, where IN F' is shown in Fig.9, moreovey, = 65. (b) The
above figure is shown in the vicinity of its global maximumrat= 65.
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Fig. 11. Expert-2, that is a ultrasonic level meter measurement (U.L.M.) device, supplied a population of measurements resulting in a IN
of irregular shape as an estimate of a dispensed volume as detailed in the text. (a) The membership-function-representation of a dispensec
volume estimate. (b) The corresponding interval-representation.
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Fig. 12. (a) Inclusion measure, (F' < V) is plotted versus its mediam, where IN F' is shown in Fig.11, moreovér, = 65. (b) The
above figure is shown in the vicinity of its global maximumrat= 65.
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Fig. 13. Two INs including a trapezoidal IN, specified by the four numbers — w — wr, m — w, m + w, m + w + wg (nNote thatm
is the average of numbers — w andm + w), and a trivial INV;. A horizontal line at height. € (0, 1] intersects INF' at pointsa;, and
br, moreover it intersects trivial INg at pointc, = dn, = Vo.

Fig. 14. Expert-3, that is a human expert, supplied a trapezoidal IN estimate of a dispensed volume as detailed in the text. () The
membership-function-representation of a dispensed volume estimate. (b) The corresponding interval-representation.
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Fig. 15. (a) Inclusion measure, (F < V) is plotted versus its corresponding median parametewhere IN F' is shown in Fig.14,
moreoverVy = 65. (b) The above figure is shown in the vicinity of its global maximumrat= 65.



