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Abstract 

 

A novel distance measure between two intuitionistic fuzzy sets (IFSs) is proposed in 

this paper. The introduced measure formulates the information of each set in matrix 

structure, where matrix norms in conjunction with fuzzy implications can be applied 

to measure the distance between the IFSs. The advantage of this novel distance 

measure is its flexibility, which permits different fuzzy implications to be 

incorporated by extending its applicability to several applications where the most 

appropriate implication is used. Moreover, the proposed distance might be expressed 

equivalently by using either intuitionistic fuzzy sets or interval-valued fuzzy sets. 

Appropriate experimental configurations have taken place in order to compare the 

proposed distance measure with similar distance measures from the literature, by 

applying them to several pattern recognition problems. The results are very promising, 

since the performance of the new distance measure outperforms the corresponding 

performance of well-known IFSs measures, by recognizing the patterns correctly and 

with high degree of confidence. 

 

Keywords: Intuitionistic fuzzy sets; interval-valued fuzzy sets; L-fuzzy sets; distance 

measure; fuzzy implication; pattern recognition; classification. 

 

 

 

 



 

 2

1. Introduction 

 

Intuitionistic fuzzy sets (IFSs) have been proposed by Atanassov [1-5] as a 

generalization mathematical framework of the traditional fuzzy sets (FSs) originated 

from an early work of Zadeh [6,7]. The main advantage of the IFSs is their property to 

cope with the hesitancy that may exist due to information impression. This is achieved 

by incorporating a second function, along with the membership function of the 

conventional FSs, called non-membership function. In this way, apart from the degree 

of the belongingness, the IFSs also combine the notation of the non-belongingness in 

order to better describe the real status of the information. 

Since the first introduction of the IFSs and the consequent study on the 

fundamentals of the IFSs, a lot of attention has been paid on developing distance or 

similarity measures between the IFSs, as a way to apply them on several problems of 

the engineering life. 

As a result, a lot of measures have been proposed in the past [8-17], each one 

presenting specific properties and behaviour in real life decision making and pattern 

recognition application fields. 

In this work, an extension of the normalized metric distances suggested in [18] for 

FSs, on intuitionistic fuzzy sets, based on matrix norms and fuzzy implications, is 

introduced. It is remarked that there is a strong connection between intuitionistic 

fuzzy sets (IFSs), interval-valued fuzzy sets (IVFS) and L-fuzzy sets [19-22]. Also, 

Wang and He in [22] have proved that the concepts of IFSs and intuitionistic L-fuzzy 

set and the concept of L-fuzzy sets are equivalent. So, the metric distance in IFSs that 

is presented in this paper might be expressed equivalently by using either IFSs or 

IVFS or L-fuzzy sets.  

Considering the main properties of the resulted distance measure, the measure is 

used to classify known patterns in several pattern recognition problems, while its 

performance is compared with that of several methods from the literature, under 

several experimental configurations.  

The paper is organized by presenting some mathematical preliminaries of 

Intuitionistic Fuzzy Sets Theory, Interval-Valued Fuzzy Sets and fuzzy implications 

in Section 2. Moreover, Section 3 introduces the novel distance measure between two 

intuitionistic fuzzy sets using matrix norms and fuzzy implications, while its 
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application on pattern recognition problems and its comparison with other distances is 

presented in Section 4. Finally, Section 5 summarizes the resulted outcomes of the 

experimental study and some useful conclusions are drawn. 

 

 

2. Mathematical Background 
 

2.1 Intuitionistic Fuzzy Sets and Interval-Valued Fuzzy Sets. Basic 

Notations 

 

Let E  denote a universe of discourse. Then a fuzzy set A  in E  is defined as a set of 

ordered pairs [6], 

( ){ }, /AA x x x Eμ= ∈ ,  

where the function [ ]: 0,1A Eμ → , define the degree of membership of the element 

Ex∈ . 

 

In 1983, Atanassov [1] introduced the concept of the intuitionistic fuzzy set, or IFS  

for short, as follows: 

An intuitionistic fuzzy set A  in E  is an object of the following form: 

( ) ( ){ }, , /A AA x x v x x Eμ= ∈  

where the functions, [ ]: 0,1A Eμ →  and [ ]: 0,1Av E → , define the degree of 

membership and the degree of non-membership of the element Ex∈ , respectively 

and for every Ex∈ : ( ) ( )0 1A Ax v xμ≤ + ≤ . 

If ( ) ( ) ( )1A A Ax x v xπ μ= − − , then ( )A xπ  is the degree of non-determinacy of the 

element Ex∈  to the set A  and ( )A xπ [ ]0,1∈ , x E∀ ∈ .  

It is easily seen that each fuzzy set is a particular case of the intuitionistic fuzzy set. 

Also, if A  is a fuzzy set then ( ) 0A xπ = , Ex∈∀  

For every two intuitionistic fuzzy sets, A  and B  several relations and operations 

are defined (see [2-4]). Here we shall introduce only those which are related to the 

present research. 



 

 4

 

(i) A B⊂ ⇔ ( ) ( ) ( ) ( )( ) and ,A B A Bx x v x v x x Eμ μ≤ ≥ ∀ ∈  

(ii) A B⊃ ⇔ AB ⊂  

(iii) A B= ⇔ ( ) ( ) ( ) ( )( ) and ,A B A Bx x v x v x x Eμ μ= = ∀ ∈  

(iv) ( ) ( ){ }, , /A AA x v x x x Eμ= ∈  

(v) BA∩ = ( ) ( )( ){ ,min , ,A Bx x xμ μ ( ) ( )( ) }max , /A Bv x v x x E∈  

(vi) BA∪ = ( ) ( )( ){ ,max , ,A Bx x xμ μ ( ) ( )( ) }min , /A Bv x v x x E∈  

(vii) BA + = ( ) ( ) ( ) ( ){ , ,A B A Bx x x x xμ μ μ μ+ − ( ) ( ) }/A Bv x v x x E∈  

(viii) BA ⋅ = ( ) ( ) ( ) ( ){ , ,A B A Bx x x v x v xμ μ + − ( ) ( ) }/A Bv x v x x E∈  

 

In the following some definitions and some notations used in the interval-valued 

fuzzy set theory, which are recalled, more or less known in the literature.  

In [7] Zadeh introduced the concept of interval-valued fuzzy sets, where the degree 

of membership of an element to a set is characterized not by an element of [ ]0,1  but 

by a closed subinterval of[ ]0,1 .  

The interval [ ]0,1  is replaced by the set: [ ][2]0,1 = ( ) [ ]{ }, : , 0,1 ,a b a b a b∈ ≤ . If E  

is the universal set, then the interval-valued fuzzy sets are mappings 

 [ ][2]0,1A E= →  

Let A  denote an interval-valued fuzzy set on E . 

Then ( ) ( ) ( ) [ ], 0,1A AA x L x U x= ⊆⎡ ⎤⎣ ⎦ , x E∀ ∈ , where AA UL  , are fuzzy sets that are 

called the lower bound of A  and the upper bound of A , respectively. When AA UL = , 

then A becomes an ordinary fuzzy set. 

 

We recall [1,2,23] that:  

An L-fuzzy set A  on a crisp non-empty set E is a function LEA →: .  

An intuitionistic L-fuzzy set A  in E  is an object of the following form: 

 ( ) ( ){ }, , /A AA x x v x x Eμ= ∈ , 
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Where :A E Lμ →  and :Av E L→  satisfy the 

condition ( ) ( )( ) ,A Ax N v x x Eμ ≤ ∀ ∈ ,   where N  is the order-reversing involution 

on L . 

 

 

2.2 Metric Distances - Basic Notations 

 

Definition 1: A metric distance d  in a set A  is a real function RAAd →×: , which 

satisfies the following conditions for Azyx ∈,, :   

 

(i) ( ), 0d x y x y= ⇔ = , 

(ii) ( ) ( ), ,d x y d y x=  (symmetric), 

(iii) ( ) ( ) ( ), , ,d x z d z y d x y+ ≥  (triangle inequality). 

 

Various metric distances, involving fuzzy sets, have been proposed in [24,25]. 

Some common metrics, which are used for the description of the distance between 

fuzzy sets, are the following: 

If the universe set E is finite, i.e. { }nxxE ,...,1=  then for any two fuzzy subsets A  

and B  of E  with membership functions ( ).Aμ  and ( ).Bμ , respectively, we have: 

 

Hamming  

distance 
( ) ( ) ( )

1
,

n

H A i B i
i

d A B x xμ μ
=

= −∑  (1)

 

Normalized 

Hamming  

distance 

( ) ( ) ( )
1

1,
n

n H A i B i
i

d A B x x
n

μ μ−
=

= −∑  
(2)

 

Euclidean  

distance 
( ) ( ) ( )( )2

1

,
n

E A i B i
i

d A B x xμ μ
=

= −∑  (3)
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Normalized 

Euclidean  

distance 

( ) ( ) ( )( )2

1

1,
n

n E A i B i
i

d A B x x
n

μ μ−
=

= −∑  
(4)

 

Atanassov suggested [3,8] the following generalization of the above distances 

Eq.(1)-Eq.(4) for IFSs .  

Let A , B  be IFSs  in E , with membership functions ( ).Aμ , ( ).Bμ  and with non-

membership functions ( ).Av , ( ).Bv , respectively, then: 

 

Hamming  

distance 
( ) ( ) ( ) ( ) ( )

1

1,
2

n

H A i B i A i B i
i

d A B x x x xμ μ ν ν
=

⎡ ⎤= − + −⎣ ⎦∑  (5)

 

Normalized 

Hamming  

distance 

( ) ( ) ( ) ( ) ( )
1

1,
2

n

n H A i B i A i B i
i

d A B x x x x
n

μ μ ν ν−
=

⎡ ⎤= − + −⎣ ⎦∑  
(6)

 

Euclidean  

distance 
( ) ( ) ( )( ) ( ) ( )( )2 2

1

1,
2

n

E A i B i A i B i
i

d A B x x x xμ μ ν ν
=

⎡ ⎤= − + −⎣ ⎦∑  (7)

 

Normalized 

Euclidean  

distance 

( ) ( ) ( )( ) ( ) ( )( )2 2

1

1,
2

n

n E A i B i A i B i
i

d A B x x x x
n

μ μ ν ν−
=

⎡ ⎤= − + −
⎣ ⎦∑  

(8)

 

 

2.3 Fuzzy Implications - Basic Notations and Definitions 

 

A fuzzy implication is a function [ ] [ ] [ ]: 0,1 0,1 0,1 ,σ⇒ × →  which for any truth values 

a , b [ ]0,1∈  of (fuzzy) propositions ,p  q , respectively, gives the truth value 

( ),a bσ⇒ , of conditional proposition “if p then q ”. Function ( ).,.σ⇒  should be an 

extension of the classical implication from the domain { }0,1  to the domain[ ]0,1 . 
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The implication operator of classical logic is a map { } { } { }: 0,1 0,1 0,1m × → which 

satisfies the following conditions: ( ) ( ) ( )0,0 0,1 1,1 1m m m= = =  and ( )1,0 0m = . The 

latter conditions are typically the minimum requirements for a fuzzy implication 

operator. In other words, fuzzy implications are required to reduce to the classical 

implication when truth-values are restricted to 0 and 1; i.e. ( )0,0σ⇒ = ( )0,1σ⇒ =  

( )1,1 1σ⇒ =  and ( )1,0 0σ⇒ = . 

One way of defining an implication operator m in classical logic is using formula 

( ),m a b a b= ∨ , { }, 0,1a b∈ , where a  denotes the negation of a .  

This formula can also be rewritten, based on the law of absorption of negation in 

classical logic, as either  

 

( ),m a b =  { }{ }max 0,1 :x a x b∈ ∧ ≤ , { }, 0,1a b∈  

or 

( ) ( ),m a b a a b= ∨ ∧  

 

Fuzzy logic extensions of the previous formulas respectively, are 

 

(i) ( ) ( )( ), ,a b u n a bσ⇒ =  

(ii) ( ),a bσ⇒ = [ ] ( ){ }sup 0,1 : ,x i a x b∈ ≤  

(iii) ( ) ( ) ( )( ), , ,a b u n a i a bσ⇒ =  

 

[ ], 0,1a b∀ ∈ . Where u , i  and n  denote a fuzzy union, a (continuous) fuzzy 

intersection, and a fuzzy negation, respectively. Note that functions u  and i  are dual 

(with respect to n ). Recall that a t-norm i  and a t-conorm u  are called dual (with 

respect to a fuzzy negation n ) if and only if both ( )( ) ( ) ( )( ),  ,n i a b u n a n b= and 

( )( ),n u a b = ( ) ( )( ) ,i n a n b hold [ ], 0,1a b∀ ∈ .  

Fuzzy implications obtained from (i) are usually referred to as S-implications (the 

symbol S is often used for denoting t-conorms) whereas fuzzy implications obtained 

from (ii) are called R-implications, as they are closely connected with the so-called 
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resituated semi group and fuzzy implications obtained from (iii) are called QL-

implications, since they were originally employed in quantum logic [26]. 

A number of basic properties of the classical (logic) implication has been 

generalized by fuzzy implications. Hence, a number of “reasonable axioms” emerged 

tentatively for fuzzy implications. Some of the aforementioned axioms are displayed 

next [26]. 

 

A1. a b≤ ( ) ( ), ,a x b xσ σ⇒ ⇒⇒ ≥   Monotonicity in first argument 

A2. a b≤ ⇒ ( ),x aσ⇒ ≤ ( ),x bσ⇒ .  Monotonicity in second argument 

A3. ( )( ) ( )( ), , , ,a b x b a xσ σ σ σ⇒ ⇒ ⇒ ⇒= . Exchange property 

A4. ( ) ( ) ( )( ), ,a b n b n aσ σ⇒ ⇒=   Contraposition  

A5. ( )1,b bσ⇒ =     Neutrality of truth. 

A6. ( )0, 1aσ⇒ =     Dominance of falsity 

A7. ( ), 1a aσ⇒ =     Identity 

A8. ( ), 1a bσ⇒ = ⇔ a b≤    Boundary Condition 

A9. σ⇒  is a continuous function  Continuity 

 

Contrary to the above theoretical definitions, in fuzzy systems applications the 

predominant practice (known as the Mamdani method) is to employ fuzzy products 

(symmetric operators, formally akin to t-norms) instead of implications, and to 

aggregate the results by union (usually by the { }max … ). The fuzzy products most 

commonly used in applications are:  

 

 the Mamdani rule ( ) { }M , min ,a b a bσ =  and 

 the Larsen rule ( )La ,a b a bσ = ⋅ .  

 

Fuzzy products clearly do not reduce to the classical implication in the limit. In 

fact, they differ fundamentally from fuzzy implications in that they: a) abide by 

“falsity implies nothing” (rather than “everything”) and b) do not distinguish between 

predicate (cause) and antecedent (effect).  
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In view of these properties, the Mamdani method is best suited to inference based 

on phenomenological information [18]. We refer to Mσ , Laσ  as the “engineering 

implications”, contrary to the fuzzy implications [27]. 

We refer to and employ four fuzzy implications, two fuzzy products and a novel 

fuzzy implication stemming from a fuzzy lattice inclusion measure. All these are 

listed here to avoid repetition: 

   

 Reichenbach: ( )R , 1a b a abσ = − +   (is S-implication), 

  Gödel:  ( )G

1, for
,

, for
a b

a b
b a b

σ
≤⎧

= ⎨ >⎩
 (is R-implication), 

  Lukasiewicz:  ( ) { }L , min 1,1a b a bσ = − +  (is both S-implication and  

       R-implication), 

 Kleene-Dienes: ( ) { }KD , max 1 ,a b a bσ = −  (is both S-implication and  

       QL-implication),  

 Mamdani:  ( ) { }M , min ,a b a bσ = ,  

 Larsen:  ( )La ,a b abσ = .  

 

In [28] a novel fuzzy implication ( ) ( )
( )

,T

f b
a b

f a b
σ =

∨
 has been presented, where 

[ ], 0,1a b∈  and function [ ] [ ]: 0,1 0,1f → , stemming from a fuzzy lattice inclusion 

measure function. It was shown that the presented fuzzy implication satisfies a 

number of “reasonable axioms” and properties of fuzzy implications. 

 

 

 

3. A Metric Distance on IFSs  
 

In [18] a new family of normalized metric distances between fuzzy sets based on 

matrix norms and fuzzy implications is suggested. In this Section, is introduced an 

extension, of these metric distances, on intuitionistic fuzzy sets ( IFSs ).  
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Furthermore, it is remarked [29] that if ( ) ( )1 2,ij ijΠ a Π b= = , 1, ,i n= … , 1, ,j n= …  

are square matrices then the norm  can be used to define a metric d  as:  

 

( )1 2 1 2,d Π Π Π Π= −  (9)

 

Let A  be IFS  in a finite universe { }1,..., nE x x= , with membership functions 

( ).Aμ , and with non-membership functions ( ).Av , respectively. Let σ⇒  be a fuzzy 

implication. We define the n n×  matrices ( )AΠ μ  and ( )AΠ v  of σ⇒  as follows:  

 

( ) ( ) ( )( )
1,...,

,A i A iA i n
σ μ x μ xΠ μ ⇒
=

⎡ ⎤
⎢ ⎥⎣ ⎦

� =
( )

( )
( ) ( )

1

1, , ,
A

A A n

A n

x
x x

x

μ
σ μ μ

μ
⇒

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎡ ⎤⎜ ⎟⎢ ⎥ ⎣ ⎦
⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠

…#  

 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1 1

1

,       ,

                                                       

,      ,

A A A A n

A n A A n A n

σ μ x μ x σ μ x μ x

σ μ x μ x σ μ x μ x

⇒ ⇒

⇒ ⇒

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

… …

# # # #
… …

 and 

 

( ) ( ) ( )( )
1,...,

,A i A iA i n
σ v x v xΠ v ⇒
=

⎡ ⎤
⎢ ⎥⎣ ⎦

� =
( )

( )
( ) ( )

1

1, , ,
A

A A n

A n

v x
σ v x v x

v x
⇒

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎡ ⎤⎜ ⎟⎢ ⎥ ⎣ ⎦
⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠

…#  

 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1 1

1

,       ,

                                                       

,      ,

A A A A n

A n A A n A n

σ v x v x σ v x v x

σ v x v x σ v x v x

⇒ ⇒

⇒ ⇒

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

… …

# # # #
… …

, respectively. 

 

Let E  denote a universe of discourse, where E  is a finite and let E
IFSsΣ  denote the 

set of all IFSs  in E . 
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Definition 2: Given two intuitionistic fuzzy sets, ( ) ( ){ }, , /A AA x x v x x Eμ= ∈  and 

 ( ) ( ){ }, , /B BB x x v x x Eμ= ∈ , where { }1,..., nE x x= is a finite universe. Also, let σ⇒  

be a fuzzy implication and any tensor-or operator-norm ⋅ . Then 

 

( ) ( ) ( ) ( )( , ; ) A B A Bd A B σ Π μ Π μ Π v Π v⇒ − + −�  (10)

 

where ( ) ( ) ( )( )
1,...,

,i i
i n
σ μ x μ xΠ μ ⇒ ⋅ ⋅⋅ =

⎡ ⎤= ⎢ ⎥⎣ ⎦
, ( ) ( ) ( )( )

1,...,
,i i

i n
Π v σ v x v x⋅ ⇒ ⋅ ⋅

=

⎡ ⎤= ⎢ ⎥⎣ ⎦
, defines a 

metric distance [ ): 0,E E
IFSs IFSsd Σ Σ× → +∞ . 

 

The above function ( , ; )d A B σ⇒  is a metric [18]. So, this definition actually 

introduces multiple families of metrics with different meanings, according to the 

binary operator chosen.  

In Eq.(10) the norm Π  is computed by using the largest non negative eigenvalue 

of the positive definite Hermitian matrix TΠ Π  (ΠΤ is the transpose of matrix Π) [29], 

 

maxΠ λ=  (11)

 

 

4. Application to Pattern Recognition Problems 
 

In order to study the ability of the proposed metric to count the distance between two 

intuitionistic fuzzy sets, a set of experiments have been conducted. For this purpose, 

four well known from the literature problems, according to which a test sample has to 

be recognized by classifying it to a specific category, are selected.  

In the following examples, attributes correspond to the measurements that are used 

to describe each class, while the classes are represented by specific patterns that they 

describe the classes’ centroids.  
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This procedure constitutes the main operation of the minimum-distance classifier, 

where the test sample is assigned to the class from which its distance is minimum and 

is described by the following equation: 

 

( ){ }arg min ,kk
k Dist P S∗ =  (12)

 

For comparison reasons some distance and similarity measures from the literature 

[9,11,14], have been implemented and their ability to recognize the identity of a test 

sample, by classifying it to the appropriate class, is studied in the following sections. 

In order to compare the distance and similarity (in this case the similarity measure 

is transformed to a distance by using the formula d=1-S) measures, a new 

performance index called Degree of Confidence (DoC) is introduced. This factor 

measures the confidence of each distance metric in recognizing a specific sample that 

belongs to the pattern (i) and has the following form: 

 

( ) ( ) ( )
1,

, ,
n

i
j i

i i j
DoC dist P S dist P S

= ≠

= −∑  (13)

 

It is obvious from the above Eq.(13) that the greater DoC(i) the more confident the 

result of the specific distance metric is. This factor is used in the next experimental 

sections in order to give a more accurate measurement of the distances’ behaviour 

along with the absolute recognition rate.    

Moreover, in the following comparison results the proposed distance measure is 

denoted in conjunction with the implication type being used. In this way there are 

seven different distance metrics: Proposed-T (with σΤ implication [28]), Proposed-R 

(with “Reichenbach” implication), Proposed-G (with “Gödel” implication), 

Proposed-L (with “Lukasiewicz” implication), Proposed-KD (with “Kleene-Dienes” 

implication), Proposed-M (with “Mamdani” “engineering implication”) and 

Proposed-LR (with “Larsen” “engineering implication”). 
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Example 1 

 

This example has been introduced in [14] and corresponds to a pattern recognition 

problem of 4 classes and 12 attributes, described by the patterns P1, P2, P3, P4 and the 

test sample S, as presented in the following Table 1.  

 

 
Table 1. 4-class/12-attributes problem [14], patterns and test sample. 

 

  Attributes 

 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

( )
1P xμ  0.173   0.102 0.530 0.965 0.420 0.008 0.331 1.000 0.215 0.432 0.750 0.432 

Pattern 

#1 ( )
1P xν  0.524   0.818 0.326 0.008 0.351 0.956 0.512 0.000 0.625 0.534 0.126 0.432 

( )
2P xμ  0.510   0.627 1.000 0.125 0.026 0.732 0.556 0.650 1.000 0.145 0.047 0.760 

Pattern 

#2 ( )
2P xν  0.365   0.125 0.000 0.648 0.823 0.153 0.303 0.267 0.000 0.762 0.923 0.231 

( )
3P xμ  0.495   0.603 0.987 0.073 0.037 0.690 0.147 0.213 0.501 1.000 0.324 0.045 

Pattern 

#3 ( )
3P xν  0.387   0.298 0.006 0.849 0.923 0.268 0.812 0.653 0.284 0.000 0.483 0.912 

( )
4P xμ  1.000   1.000 0.857 0.734 0.021 0.076 0.152 0.113 0.489 1.000 0.386 0.028 

Pattern 

#4 ( )
4P xν  0.000   0.000 0.123 0.158 0.896 0.912 0.712 0.756 0.389 0.000 0.485 0.912 

( )S xμ  0.978   0.980 0.798 0.693 0.051 0.123 0.152 0.113 0.494 0.987 0.376 0.012 
Test 

Sample  ( )S xν  0.003   0.012 0.132 0.213 0.876 0.756 0.721 0.732 0.368 0.000 0.423 0.897 

 

For this example, it is prior known that the test sample belongs to class 4 and thus 

the distances have to take minimum values when the sample compared with the fourth 

pattern. Table 2, summarizes the distance measures’ results along with the degree of 

confidence of each one. In this table the minimum distance and the three best 

distances with the highest degree of confidence, have been noted in bold. 
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Table 2. Distance measures’ results. 
Distances Results 

 dist(P1,S) dist(P2,S) dist(P3,S) dist(P4,S) ( )4DoC  

d1 [14] 0.4537 0.4599 0.2107 0.0338 1.0230 

d2
1 [14]     0.4311     0.4362     0.1982     0.0270     0.9843 

1-Sd
1 [9]     0.4311     0.4341     0.1969     0.0250     0.9872 

1-Se
1 [11]     0.4311     0.4362     0.1982     0.0270     0.9843 

1-Ss
1 [11]     0.4311     0.4345     0.1972     0.0256     0.9861 

1-Sh
1 [11]     0.0756     0.0767     0.0351     0.0056     0.1705 

Proposed – Τ    11.2121    10.3332     6.3613     2.3891    20.7393 

Proposed – R     7.1715     7.1012     4.4393     0.7701    16.4017 

Proposed – G    11.7043    11.0144     6.9669     2.6149    21.8410 

Proposed – L     7.6459     7.2389     4.7612     0.8205    17.1844 

Proposed – KD     7.5153     7.3560     4.6778     0.7711    17.2357 

Proposed – M     6.6799     6.9323     4.7911     0.6661    16.4050 

Proposed - LR     6.4985     6.3633     4.6090     0.8900    14.8008 

 

A careful study of the above table leads to the conclusion that while all the 

distances under comparison recognize correctly the test sample, the proposed distance 

that used the Gödel implication (Proposed-G) is highly confident. Moreover, the next 

two distances with the highest degree of confidence are the proposed one, when σΤ 

and Kleene-Dienes implications are used. 

 

 

 

Example 2 

 

This example has been introduced in [9] and corresponds to a pattern recognition 

problem of 3 classes and 3 attributes, described by the patterns P1, P2, P3 and the test 

sample S, as presented in the following Table 3.  
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Table 3. 3-class/3-attributes problem [9], patterns and test sample. 

 

  Attributes 

 

  x1 x2 x3 

( )
1P xμ  1.0 0.8 0.7 

Pattern 

#1 ( )
1P xν  0.0 0.0 0.1 

( )
2P xμ  0.8 1.0 0.9 

Pattern 

#2 ( )
2P xν  0.1 0.0 0.0 

( )
3P xμ  0.6 0.8 1.0 

Pattern 

#3 ( )
3P xν  0.2 0.0 0.0 

( )S xμ  0.5 0.6 0.8 Test 

Sample 
( )S xν  0.3 0.2 0.1 

 

For this example, it is prior known that the test sample belongs to class 3. Table 4, 

summarizes the distance measures’ results along with the degree of confidence of 

each one. 

 
Table 4. Distance measures’ results. 

Distances Results 

 dist(P1,S) dist(P2,S) dist(P3,S) ( )3DoC  

d1 [14] 0.2417 0.2417 0.1583 0.1667 

d2
1 [14]     0.2167     0.2167     0.1500     0.1333 

1-Sd
1 [9]     0.2167     0.2167     0.1500     0.1333 

1-Se
1 [11]     0.2167     0.2167     0.1500     0.1333 

1-Ss
1 [11]     0.2167     0.2167     0.1500     0.1333 

1-Sh
1 [11]     0.1611     0.1611     0.1056     0.1111 

Proposed – Τ     1.9283     1.1574     0.8817     1.3223 

Proposed – R     1.1179     0.9185     0.6029     0.8306 

Proposed – G     2.4367     1.4463     1.1346     1.6137 

Proposed – L     0.6581     0.4348     0.2414     0.6100 

Proposed – KD     1.5732     1.4028     0.9439     1.0882 

Proposed – M     1.2401     1.3391     0.8743     0.8305 

Proposed - LR     1.2754     1.4150     0.8719     0.9467 
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The results are common with the previous example, since the proposed distance 

measure using the Gödel implication (Proposed-G) outperforms the other distances, 

totally. The σΤ and Kleene-Dienes implications have the same behaviour presenting 

the second and third better performance among all distances under comparison. 

 

 

Example 3 

 

This example has been introduced in [12,17] and corresponds to a pattern recognition 

problem of 3 classes and 3 attributes, described by the patterns P1, P2, P3 and the test 

sample S, as presented in the following Table 5.  

 
Table 5. 3-class/3-attributes problem [12,17], patterns and test sample. 

 

  Attributes 

 

  x1 x2 x3 

( )
1P xμ  0.3 0.2 0.1 

Pattern 

#1 ( )
1P xν  0.3 0.2 0.1 

( )
2P xμ  0.2 0.2 0.2 

Pattern 

#2 ( )
2P xν  0.2 0.2 0.2 

( )
3P xμ  0.4 0.4 0.4 

Pattern 

#3 ( )
3P xν  0.4 0.4 0.4 

( )S xμ  0.3 0.2 0.1 Test 

Sample 
( )S xν  0.3 0.2 0.1 

 

 

For this example, it is prior known that the test sample belongs to class 1. Table 6, 

summarizes the distance measures’ results along with the degree of confidence of 

each one. 
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Table 6. Distance measures’ results. 
Distances Results 

 dist(P1,S) dist(P2,S) dist(P3,S) ( )1DoC  

d1 [14] 0 0.0667 0.2000 0.2667 

d2
1 [14]      0     0.0667     0.2000     0.2667 

1-Sd
1 [9]      0          0          0          0 

1-Se
1 [11]      0     0.0667     0.2000     0.2667 

1-Ss
1 [11]      0     0.0333     0.1000     0.1333 

1-Sh
1 [11]      0     0.0444     0.1333     0.1778 

Proposed – T      0     1.7544     1.7544     3.5087 

Proposed – R      0     0.3941     0.6218     1.0159 

Proposed – G      0     2.8291     2.8291     5.6582 

Proposed – L      0     0.4828     0.4828     0.9657 

Proposed – KD      0     0.4899     1.2961     1.7860 

Proposed – M      0     0.3759     1.5033     1.8792 

Proposed - LR      0     0.1200     0.7324     0.8524 

 

 

The same results and conclusions are drawn from the above Table 6, where the 

proposed distance measure using the Gödel implication (Proposed-G) performs better, 

since it recognizes correctly the test sample but most of all its decision is high 

confident.  Moreover, σΤ and Kleene-Dienes implications still present the second and 

third better performance. 

 

 

 

 

Example 4 

 

This example has been introduced in [12,17] and corresponds to a pattern recognition 

problem of 3 classes and 3 attributes, described by the patterns P1, P2, P3 and the test 

sample S, as presented in the following Table 7.  
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Table 7. 3-class/3-attributes problem [12,17], patterns and test sample. 

 

  Attributes 

 

  x1 x2 x3 

( )
1P xμ  0.1 0.5 0.1 

Pattern 

#1 ( )
1P xν  0.1 0.1 0.9 

( )
2P xμ  0.5 0.7 0.0 

Pattern 

#2 ( )
2P xν  0.5 0.3 0.8 

( )
3P xμ  0.7 0.1 0.4 

Pattern 

#3 ( )
3P xν  0.2 0.8 0.4 

( )S xμ  0.4 0.6 0.0 Test 

Sample 
( )S xν  0.4 0.2 0.8 

 

For this example, it is prior known that the test sample belongs to class 2. Table 8, 

summarizes the distance measures’ results along with the degree of confidence of 

each one. 

 
Table 8. Distance measures’ results. 

Distances Results 

 dist(P1,S) dist(P2,S) dist(P3,S) ( )2DoC  

d1 [14] 0.1667 0.0667 0.4167 0.4500 

d2
1 [14]     0.1667     0.0667     0.4000     0.4333 

1-Sd
1 [9] 1.1102x1016          0     0.4000     0.4000 

1-Se
1 [11]     0.1667     0.0667     0.4000     0.4333 

1-Ss
1 [11]     0.0833     0.0333     0.4000     0.4167 

1-Sh
1 [11]     0.1111     0.0444     0.2778     0.3000 

Proposed – T     1.5637     0.2401     2.2564     3.3400 

Proposed – R     0.8476     0.2749     1.4981     1.7959 

Proposed – G     1.8127     0.2618     2.5306     3.8197 

Proposed – L     0.9153     0.2828     1.4762     1.8258 

Proposed – KD     1.0883     0.4449     1.7905     1.9888 

Proposed – M     1.0523     0.4732     1.4065     1.5125 

Proposed - LR     0.6291     0.4263     1.1783     0.9547 
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Also, in this example the results remain the same as in the previous cases.The 

Gödel implication (Proposed-G) can better distinguish the patterns by giving 

confident decision about the belongingness of the test sample to class 2.  Moreover, σΤ 

and Kleene-Dienes implications still present the second and third better performance. 

Conclusively, the proposed distance measure gives the same recognition rates with 

the other distances from the literature, but it results to more confident decisions. This 

high confidence nature of this novel distance metric makes it appropriate to difficult 

pattern recognition problems where there is significant information hesitancy.     

 

 

5. Conclusion 

 
A novel distance metric between intuitionistic fuzzy sets, which is making use of 

matrix norms and fuzzy implications, was proposed in the previous sections. The 

introduced distance is very flexible in the sense that enables the usage of an 

appropriate fuzzy implication regarding the application, by resulting to a wide range 

of distances of different properties and capabilities. 

The above study has shown that the Gödel implication (Proposed-G) performs not 

only better than the older distance measures from the literature but also better than the 

same distance with different implication types, as compared to several pattern 

recognition problems. 

The present work constitutes a first study of such type of distance measures based 

on fuzzy implications and future research on several real pattern recognition problems 

is needed in order to establish the proposed methodology as a concrete pattern 

classification framework. 
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