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Abstract This work introduces a Type-II fuzzy lattice reasoning (FLRtypeII)

scheme for learning/generalizing novel 2D shape representations based “in princi-

ple” on a fuzzy lattice inclusion measure function. A 2D shape is represented as

an element – induced from populations of three different shape descriptors – in the

product lattice (F3,¹), where (F,¹) denotes the lattice of Type-I intervals num-

bers (INs). Learning is pursued by inducing Type-II INs, i.e. intervals in (F,¹).

Our proposed techniques compare well with alternative classification methods from

the literature in three benchmark classification problems. Competitive advantages

include the accommodation of granular data as well as the visual representation

of a class. We discuss potential extensions to gray/color images, etc.
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1 Introduction

Lattice theory (LT) [6] has been an instrument in applied mathematics including

mathematical morphology (MM) [41], formal concept analysis (FCA) [14] and logic

[49]. Lately, LT has been proposed as a sound framework for both mathematically

rigorous modeling and knowledge-representation [19] with emphasis in information

engineering applications [20] according to the following rationale.

A number of disparate data types, of practical interest, including matrices

of real numbers, (cumulative) functions, sets/partitions, logic values, data struc-

tures, (strings of) symbols, etc. are lattice(partially)-ordered. Moreover, different

authors have acknowledged that information granules [38,50] are lattice-ordered

[19,43]. Hence, LT emerged as a sound framework for rigorous analysis and de-

sign involving, either separately or jointly in any combination, disparate types of

data including numeric and/or nonnumeric ones. The interest of this work is in

pattern recognition on digital (binary) images based on intervals, i.e. granules, of

cumulative function representations.

LT in image processing is typically employed in the context of MM [39], where

MM techniques depend on the algebra-based definition of a mathematical lattice

including the operations of meet (∧) and join (∨) as explained in [36]. It turns out

that typical MM techniques, directly applicable on images, can perform well in

noise filtering applications [44]; however, the aforementioned techniques do not sat-

isfy any translation /rotation /scale -invariant pattern recognition requirements.

The unifying potential of LT for disparate data unification/fusion has been,

partly, recognized in MM. For instance, a number of authors have established

connections between mathematical morphology and fuzzy set theory [7,8,10,12,

33,42]. Other authors have applied lattice indepedent techniques on vectors of

features extracted from images [18]. Moreover, largely in the context of MM, the

term Lattice-Computing (LC) has been proposed to denote any computation in

a mathematical lattice [15]. Graña and colleagues have demonstrated a number

of LC techniques in signal/image processing applications [16–18]. Nevertheless,

conventional MM fails to take any advantage of the semantics inherent in a lattice

(partial) order relation.

This work proposes a complementary, to standard MM, technology towards

the development of mathematically rigorous image processing techniques based on

the partial order semantics in a lattice. From a technical point of view, we propose

the manipulation of intervals in mathematical lattices, induced from real numbers,

based on both positive valuations functions and dual isomorphic functions.

Of particular interest here is fuzzy lattice reasoning (FLR). The latter is a term

originally proposed for denoting a specific rule-based reasoning scheme for clas-
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sification in a general complete lattice (L,¹) data domain based on an inclusion

measure function σ : L × L → [0, 1] as explained in [19]. Recently, the scope of

FLR was widened by including any decision-making based on an inclusion mea-

sure function [22]. Note that, on its introduction, the FLR was applied exclusively

in lattice (RN ,≤), that is the (conventional) Euclidean space [28]. Later work

extended the FLR to the product lattice (FN ,¹), where (F,¹) in the lattice of

Intervals’ Numbers (INs), in pattern recognition /system modeling /reasoning ap-

plications [19,21–25,36]. This work further extends FLR to the lattice (τO(F),¹)

of intervals in (F,¹).

Advantages of FLR include the accommodation of granular data, introduction

of tunable nonlinearities and induction of descriptive decision-making knowledge

from the data. In its capacity, a novel FLR scheme is introduced here in the domain

of image processing for learning/recognizing 2D shape patterns on binary images.

The study of 2D shapes on digital images has been popular in the literature

[5,30,47] including, in particular, 2D shape recognition [32,46]. A popular repre-

sentation of a 2D shape is by a shape descriptors vector −→xd = (x1, . . . , xNd
), where

d stands for an index denoting the corresponding descriptor extraction algorithm.

What is typically required from shape descriptors is a capacity to accurately recon-

struct the shape they represent, especially following translation/ scale /rotation

transformations [3]. Note that shape descriptors can be characterized by either

quantitative or qualitative indices of performance [4].

A number of shape descriptors, introduced in the literature, fall in one of

two major groups, namely contour-based (shape descriptors) and region-based ones

[52]. The former are typically extracted from the contour (boundary) of a shape,

whereas the latter are typically extracted from the whole shape region. On the

one hand, popular contour-based shape descriptors include the Fourier Descrip-

tors (FD), which have been especially useful in character recognition applications;

their advantages include simple derivation, robustness to noise, etc. [51]. On the

other hand, popular region-based shape descriptors include the Image Moments

(IM) derived by an affine transformation decomposition to six single-parameter

transforms [13]. In particular, the Angular Radial Transform (ART) is a moment-

based image descriptor adopted in MPEG-7 [9]; more specifically, ART is defined

by a complex orthogonal unitary transform on the unit disk.

In a recent image retrieval application [1], we have represented a 2D shape by

a shape descriptors vector −→xd = (x1, . . . , xNd
), where d ∈ {FD, ART, IM}. We

remark that the entries of vector −→xd are indexed according to inherent semantics

of the employed descriptor extraction algorithm. A significant practical advantage

of any aforementioned shape descriptors vector is the translation /scale /rotation

invariance of the corresponding 2D shape [52]. Furthermore, note that computa-
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tional experiments have demonstrated that the larger the (integer) number Nd,

the more accurate is the corresponding 2D shape reconstruction [31].

This paper is a significant extension of preliminary work in [27] including the

following novelties. First, it presents a wider hierarchy, including Type-II inter-

vals/INs, of complete lattices stemming from (R,≤). Second, it details a novel 2D

shape representation technique. Third, it introduces a FLR scheme to the product

lattice (FN ,¹). Fourth, it presents, comparatively, only new experimental appli-

cation results. Fifth, it cites a large number of new references including novel

perspectives.

The work here is organized as follows. Section 2 details a wide hierarchy of

complete lattices. Section 3 summarizes a fuzzy lattice reasoning (FLR) scheme for

learning/generalization. Section 4 details a novel 2D shape representation. Section

5 presents, comparatively, experimental application results. Section 6 concludes

by summarizing the contribution as well as discussing potential future work. The

Appendix displays useful mathematical notions.

2 A Hierarchy of Lattices in Perspective

This section introduces constructively, in six steps, a hierarchy of complete lattices;

in particular, each subsection presents a progressively enhanced (lattice) hierarchy

level. Various interpretations are also presented in this section. Useful notation and

tools regarding general lattice theory are summarized in the Appendix.

2.1 Real Numbers

The set R of real numbers is a totally-ordered, non-complete lattice denoted by

(R,≤). The latter (lattice) can be extended to a complete lattice by including both

symbols “−∞” and “+∞”. In conclusion, the complete lattice (R,≤) emerges,

where R = R ∪ {−∞, +∞}.
On the one hand, any strictly increasing function v : R → R is a positive val-

uation in the complete lattice (R,≤). Motivated by the two constraints presented

underneath Theorem 1, here we consider positive valuation functions v : R → R

such that both v(−∞) = 0 and v(+∞) = A < +∞. That is, here we consider

“saturated” positive valuation functions v : R → [0, A], where 0 < A < +∞. On

the other hand, any one-to-one, strictly decreasing function θ : R → R is an eligible

dual isomorphic function in lattice (R,≤). We will refer to functions θ(.) and v(.)

as dual isomorphic and positive valuation, respectively.
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2.2 Type-I Intervals

Type-I (including conventional) intervals [a, b] of real numbers are studied in this

section. A more general interval type is defined, in the first place, next.

Definition 1 Generalized Type-I interval is an element of the product lattice

(R,≤∂)× (R,≤).

Recall that ≤∂ in Definition 1 denotes the dual (i.e. converse) of order relation

≤ in lattice (R,≤), i.e. ≤∂≡≥. Product lattice (R,≤∂)× (R,≤) ≡ (R× R,≥ × ≤)

will be denoted, simply, by (∆,¹).

A generalized Type-I interval will be denoted by [x, y], where x, y ∈ R. It

follows that the meet (f) and join (g) in lattice (∆,¹) are given, respectively, by

[a, b] f [c, d] = [a ∨ c, b ∧ d] and [a, b] g [c, d] = [a ∧ c, b ∨ d].

The set of positive (negative) generalized Type-I intervals [a, b], characterized

by a ≤ b (a > b), will be denoted by ∆+ (∆−). It turns out that (∆+,¹) is a poset,

which is isomorphic to the poset (τ(R),¹) of conventional intervals (sets) in R,

i.e. (τ(R),¹) ∼= (∆+,¹). We augmented poset (τ(R),¹) by a unique least (empty)

interval denoted by O = [+∞,−∞] – We remark that a unique greatest interval

I = [−∞, +∞] already exists in τ(R). Hence, the complete lattice (τO(R) = τ(R)∪
{O},¹)∼= (∆+ ∪ {O},¹) of Type-I intervals emerged. In the sequel, we employ

isomorphic lattices (∆+ ∪ {O},¹) and (τO(R),¹), interchangeably.

Consider a positive valuation function v : R → [0, A] as well as a dual isomor-

phic function θ : R → R. Then, based on Proposition 1, it follows that function

v∆ : ∆ → [0, 2A] given by v∆([a, b]) = v(θ(a)) + v(b) is a positive valuation in

lattice (∆,¹). Furthermore, based on both v(−∞) = 0 and v(+∞) = A < +∞,

there follow v∆(O = [+∞,−∞]) = 0 as well as v∆(I = [−∞, +∞]) = 2A < +∞.

In conclusion, the following two inclusion measures emerge in lattice (∆,¹).

σf([a, b] ¹ [c, d]) = v([a∨c,b∧d])
v([a,b]) = v(θ(a∨c))+v(b∧d)

v(θ(a))+v(b) .

σg([a, b] ¹ [c, d]) = v([c,d])
v([a∧c,b∨d]) = v(θ(c))+v(d)

v(θ(a∧c))+v(b∨d) .

The aforementioned inclusion measures are, in particular, applicable in the

complete lattice (τO(R),¹) of Type-I intervals as follows.

σf([a, b] ¹ [c, d]) =

{
v(θ(a∨c))+v(b∧d)

v(θ(a))+v(b) , a ∨ c ≤ b ∧ d

0, a ∨ c > b ∧ d
(1)

σg([a, b] ¹ [c, d]) =
v(θ(c)) + v(d)

v(θ(a ∧ c)) + v(b ∨ d)
. (2)

In this work we employ, exclusively, inclusion measure σg(., .) rather than

σf(., .) because only σg(., .) is non-zero for non-overlapping Type-I intervals.
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Therefore, only σg(., .) is dependable for sensible decision-making in practical

applications involving non-overlapping (Type-I) intervals.

Functions θ(.) and v(.) can be selected in different ways. For instance, choosing

θ(x) = −x and v(.) such that v(x) = −v(−x) it follows v∆([a, b]) = v(b) − v(a).

In the context of this work, we select a pair of functions v(x) and θ(x) so as to

satisfy equality v∆([x, x]) = v(θ(x)) + v(x) = Constant required for atoms by a

standard FLR scheme [22,26,28]. For instance, eligible pairs of functions v(x) and

θ(x) include, first, v(x) = px and θ(x) = Q − x, where p, Q > 0, x ∈ [0, Q] and,

second, vs(x) = A
1+e−λ(x−µ) and θ(x) = 2µ− x, where A, λ ∈ R≥0, µ, x ∈ R.

A sigmoid positive valuation is preferable because a sigmoid is defined over

the whole set R of real numbers. Moreover, empirical evidence strongly suggests

that a sigmoid positive valuation can produce identical results as a linear positive

valuation [22]. An additional advantage for a sigmoid positive valuation function

is its capacity to deal with intervals of Type-I INs as explained below. Therefore,

here we employ a parametric sigmoid positive valuation vs(x; A, λ, µ) together

with a parametric dual isomorphic function θ(x; µ) = 2µ−x, exclusively; it follows

v∆([x, x]) = A for an atom [x, x].

2.3 Type-II Intervals

A Type-II interval is “an interval of (Type-I) intervals” as explained in this section.

A more general interval type is defined, in the first place, next.

Definition 2 Generalized Type-II interval is an element of the product lattice

(∆,¹∂)× (∆,¹) ≡ (∆×∆,º × ¹).

We remark that a generalized Type-II interval will be denoted by [x, y], where

x, y ∈ (∆,¹). It follows

[[a1, a2], [b1, b2]] f [[c1, c2], [d1, d2]] = [[a1, a2] g [c1, c2], [b1, b2] f [d1, d2]], and

[[a1, a2], [b1, b2]] g [[c1, c2], [d1, d2]] = [[a1, a2] f [c1, c2], [b1, b2] g [d1, d2]].

Our interest here focuses on the complete lattice (τO(τO(R)),¹) of Type-II

intervals. For the reader’s interest, we point out that the least element O of the

complete lattice (τO(τO(R)),¹) equals O = [[−∞, +∞], [+∞,−∞]].

Recall that above we have assumed, first, a (strictly increasing) “saturated”

positive valuation function v : R → [0, A] such that both v(−∞) = 0 and v(+∞) =

A < +∞ and, second, a (strictly decreasing) dual isomorphic function θ : R → R.

Furthermore, we assumed a positive valuation function v∆ : ∆ → [0, 2A] given by

v∆([a, b]) = v(θ(a)) + v(b). Note that a dual isomorphic function θ∆ : ∆ → ∆ is

given by θ∆([a, b]) = [b, a] as explained in the following: Inequality “[a, b] ¹ [c, d]”

is equivalent to the disjunction “either (c < a).AND.(b ≤ d) or (c ≤ a).AND.(b <



2D Shape Learning and Recognition Based on Lattice-Computing 7

d)”; the latter is equivalent to the disjunction “either (b < d).AND.(c ≤ a) or

(b ≤ d).AND.(c < a)”; the latter is equivalent to inequality “[d, c] ¹ [b, a]”; the

latter is equivalent to inequality “θ∆([a, b]) º θ∆([c, d])”.

Based on Proposition 1, it follows that function v∆∆ : ∆×∆ → [0, 4A] given

by v∆∆([[a1, a2], [b1, b2]]) = v(a1) + v(θ(a2)) + v(θ(b1)) + v(b2) is a positive val-

uation in lattice (∆ × ∆,¹). Furthermore, based on positive valuation function

vs(x) = A
1+e−λ(x−µ) as well as dual isomorphic function θ(x) = 2µ − x, there

follows v∆∆([[a1, a2], [a1, a2]]) = v(a1) + v(θ(a2)) + v(θ(a1)) + v(a2) = 2A for

an atom Type-II interval [[a1, a2], [a1, a2]]. There follow both v∆∆(O) = 0 and

v∆∆(I) = 4v(+∞) = 4A < +∞.

According to Theorem 1, two inclusion measures emerge in the complete lattice

(∆×∆,¹) of generalized Type-II intervals as follows.

First, σf([[a1, a2], [b1, b2]] ¹ [[c1, c2], [d1, d2]]) =

= v∆∆([[a1∧c1,a2∨c2],[b1∨d1,b2∧d2]])
v∆∆([[a1,a2],[b1,b2]])

=

= v(a1∧c1)+v(θ(a2∨c2))+v(θ(b1∨d1))+v(b2∧d2)
v(a1)+v(θ(a2))+v(θ(b1))+v(b2)

.

Second, σg([[a1, a2], [b1, b2]] ¹ [[c1, c2], [d1, d2]]) =

= v∆∆([[c1,c2],[d1,d2]])
v∆∆([[a1∨c1,a2∧c2],[b1∧d1,b2∨d2]])

=

= v(c1)+v(θ(c2))+v(θ(d1))+v(d2)
v(a1∨c1)+v(θ(a2∧c2))+v(θ(b1∧d1))+v(b2∨d2)

.

The aforementioned inclusion measures are, in particular, applicable in the

complete lattice (τO(τO(R)),¹) of Type-II intervals as follows.

σf([[a1, a2], [b1, b2]] ¹ [[c1, c2], [d1, d2]]) =

{
v(a1∧c1)+v(θ(a2∨c2))+v(θ(b1∨d1))+v(b2∧d2)

v(a1)+v(θ(a2))+v(θ(b1))+v(b2)
, b1 ∨ d1 ≤ a1 ∧ c1 ≤ a2 ∨ c2 ≤ b2 ∧ d2

0, otherwise

(3)

σg([[a1, a2], [b1, b2]] ¹ [[c1, c2], [d1, d2]]) =

{
v(c1)+v(θ(c2))+v(θ(d1))+v(d2)

v(a1∨c1)+v(θ(a2∧c2))+v(θ(b1∧d1))+v(b2∨d2)
, a1 ∨ c1 ≤ a2 ∧ c2

v(c1)+v(θ(c2))+v(θ(d1))+v(d2)
2A+v(θ(b1∧d1))+v(b2∨d2)

, a1 ∨ c1 > a2 ∧ c2

(4)

The size of a Type-II interval [[a1, a2], [b1, b2]] in the poset (τ(τO(R)),¹) equals

Z∆∆([[a1, a2], [b1, b2]]) = v(θ(b1)) + v(b2)− v(θ(a1))− v(a2) (5)

We remark that Z∆∆([O, [b1, b2]]) = v(θ(b1)) + v(b2) = v∆([b1, b2]).
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2.4 Type-I INs

Based on the analysis above, this subsection presents Type-I intervals’ numbers

(Type-I INs). A more general number type is defined, in the first place, next.

Definition 3 Type-I generalized intervals’s number, or Type-I GIN for short, is a

function G : (0, 1] → ∆.

Let G denote the set of Type-I GINs. It follows complete lattice (G,¹), as the

product of complete lattices (∆,¹). Our interest here focuses on the sublattice1 of

Type-I intervals’ numbers defined next.

Definition 4 A Type-I Intervals’ Number, or Type-I IN for short, is a Type-I GIN

F such that both F (h) ∈ (∆+ ∪ {O}) and h1 ≤ h2 ⇒ F (h1) º F (h2).

Let F denote the set of Type-I INs. It turns out, as shown in [36], that (F,¹)

is a complete lattice with least element O = O(h) = [+∞,−∞], h ∈ (0, 1] and

greatest element I = I(h) = [−∞, +∞], h ∈ (0, 1]. A Type-I IN will be denoted

by a capital letter in italics, e.g. F ∈ F.

Definition 4 implies that a Type-I IN F is a function from interval (0, 1] to

the set τO(R) of Type-I intervals. Hence, a Type-I IN will also be denoted by

F (h) = [ah, bh], h ∈ (0, 1], where both interval-ends ah and bh are functions of

h ∈ (0, 1].

Based on equations (1) and (2), respectively, the following two inclusion mea-

sures emerge in the complete lattice (F,¹) of Type-I INs [19]:

σf(E1 ¹ E2) =

1∫

0

σf(E1(h) ¹ E2(h))dh. (6)

σg(E1 ¹ E2) =

1∫

0

σg(E1(h) ¹ E2(h))dh. (7)

The complete lattice (F,¹) of Type-I INs has been studied in a series of pub-

lications [21,22,25,36]. In short, it has been shown that a Type-I IN is a mathe-

matical object, which may be interpreted as either a possibility- or a probability-

distribution function. Moreover, the cardinality of the set F equals the cardinal-

ity ℵ1 of the set R of real numbers; that is, there is a one-to-one correspondence

between Type-I INs and real numbers. Nevertheless, the set R of real numbers is

totally(lattice)-ordered, whereas the set F of Type-I INs is partially(lattice)-ordered.

In practice, a Type-I IN can be interpreted as an information granule.

1 A sublattice of a lattice (L,¹) is another lattice (S,¹) such that S ⊆ L.
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2.5 Type-II INs

Another information granule of interest here is an interval [U, W ] of Type-I INs,

i.e. the set {X : X ∈ F and U ¹ X ¹ W}. A latter interval will be called Type-II

IN. It follows the complete lattice (τO(F),¹) of Type-II INs. We remark that the

least (empty) interval O in τO(F) is O = O(h) = [+∞,−∞], for h ∈ [0, 1]. A

Type-II IN will be denoted by a double-lined capital letter, e.g. E ∈ τO(F).

Based on equations (3) and (4), respectively, two inclusion measures emerge in

lattice (τO(F),¹) as follows.

σf(E1 ¹ E2) =

1∫

0

σf(E1(h) ¹ E2(h))dh. (8)

σg(E1 ¹ E2) =

1∫

0

σg(E1(h) ¹ E2(h))dh. (9)

The size of a Type-II IN E = [A, B] is computed as follows.

Z(E) = Z([A, B]) =

1∫

0

Z∆∆([A(h), B(h)])dh. (10)

We remark that previous attempts [24,25] to deal with Type-II INs have failed

mainly due to the employment of “non-saturated” (strictly increasing) positive val-

uation functions v : R → R as well as due to the employment of the poset (τ(R),¹).

Whereas, Type-II INs are dealt with here in the complete lattice (τO(R),¹) based

on “saturated” (sigmoid) positive valuations v : R → [0, A]. Further details will be

presented elsewhere because they are outside the scope of this paper.

2.6 Extensions to More Dimensions

A N -tuple IN of either Type-I or Type-II will be indicated by an “over right arrow”.

More specifically, the former will be denoted by
−→
E = (E1, . . . , EN ) ∈ (FN ,¹),

whereas the latter will be denoted by
−→
E = (E1, . . . ,EN ) ∈ ((τO(F))N ,¹). Note

that N -tuples
−→
E of Type-I INs have already been shown to be the vectors of a

cone in a linear space [19,23,36].

Lattice ((τO(F))N ,¹) is the “sixth level” in a hierarchy of complete lattices

whose previous levels include, first, lattice (R,≤), second, lattice (τO(R),¹), third,

lattice (τO(τO(R)),¹), fourth, lattice (F,¹) and, fifth, lattice (τO(F),¹).

We remark that function ψ : (τO(R),¹) → ({O}×τO(R),¹) given by ψ([b1, b2]) =

[O = [+∞,−∞], [b1, b2]] is isomorphic. In other words, lattices (τO(R),¹) and
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({O} × τO(R),¹) are isomorphic; symbolically, (τO(R),¹) ∼= ({O}× τO(R),¹). It

follows (F,¹) ∼= ({O} × F,¹).

The analysis above has shown how to define inclusion measure functions in

lattice (τO(F),¹). The aforementioned functions can be extended to the product

lattice ((τO(F))N ,¹), based on Proposition A.11 in [25]. For the reader’s conve-

nience, the latter proposition’s statement is repeated in the following: “Let func-

tion σi : Li × Li → [0, 1] be an inclusion measure in lattice (Li,¹), i = 1, . . . , N .

Then, the convex combination σ((u1, . . . , uN ) ¹ (w1, . . . , wN )) = λ1σ1(u1 ¹
w1) + · · · + λNσN (uN ¹ wN ) is an inclusion measure in the product lattice

(L,¹) = (L1,¹)×· · ·× (LN ,¹) = (L1×· · ·×LN ,¹)”, where by “convex combina-

tion” we mean a set λ1, . . . , λI of non-negative numbers such that λ1+· · ·+λI = 1.

The size of a Type-II N -tuple IN
−→
E = (E1, . . . ,EN ) is computed as follows.

Z(
−→
E = (E1, . . . ,EN )) = Z(E1) + · · ·+ Z(EN ). (11)

3 A Type-II Fuzzy Lattice Reasoning (FLR) Scheme

Fuzzy Lattice Reasoning (FLR) was introduced for computing hyperboxes in lat-

tice (RN ,¹) [19,28]. Later, a FLR extension was introduced in lattice ({O}×FN ,¹
) using a different mathematical notation [25]. In all cases, the instrument for

fuzzy lattice reasoning (FLR) is an inclusion measure function σ(., .) in a com-

plete lattice (L,¹), which (σ) supports at least two different modes of reasoning,

namely Generalized Modus Ponens and Reasoning by Analogy. More specifically,

on the one hand, Generalized Modus Ponens is supported as follows: Given both

an implication (rule) “IF variable V0 is E THEN proposition p” and a proposi-

tion “variable V0 is Ep”, where both Ep and E are lattice (L,¹) elements such

that Ep ¹ E, it follows “proposition p”. On the other hand, Reasoning by Anal-

ogy is supported as follows: Given both a set of implications (rules) “IF variable

V0 is Ek THEN proposition pk”, k ∈ {1, . . . , K} and a proposition “variable V0

is Ep”, where both Ep and Ek for k ∈ {1, . . . , K} are lattice (L,¹) elements

such that such that Ep � Ek, for k ∈ {1, . . . , K}, it follows “proposition pJ”,

where J
.
= arg max

k∈{1,...,K}
{σ(Ep ¹ Ek) < 1}. A novel FLR extension in the lattice

((τO(F))N ,¹) of N -tuples of Type-II INs is introduced in the following.

3.1 FLRtypeII Scheme for Learning (Training)

Algorithm 1 introduces the FLRtypeII scheme for learning (training) in the prod-

uct lattice (FN ,¹) by computing intervals; the latter (intervals) are elements of
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lattice ((τO(F))N ,¹). Note that the training phase employs a series of data pairs

(
−→
E i, `(

−→
E i)), i = 1, . . . , n, where

−→
E i ∈ (τO(F))N , moreover `(

−→
E i) obtains values

in the set {1, . . . , L} of class labels.

Algorithm 1 : FLRtypeII scheme for learning (training)

1: Let Z0 be a user-defined threshold size.
2: The first training datum (

−→
E 1, `(

−→
E 1)) is memorized; M(1) = 1.

3: for i = 2 to i = n do
4: Present the next training datum (

−→
E i, `(

−→
E i)) to the “set” classes

c1, . . . cM(i−1).
5: while there exit “set” classes do
6: For each “set” class cj calculate σg(

−→
E i ¹ cj).

7: Competition among the “set” classes cj , where j ∈ {1, . . . , M(i− 1)}.
Winner is class cJ : J = argmax

j∈{1,...,M(i−1)}
{σg(

−→
E i ¹ cj)}.

Let
−→
WL be the interval of cJ =

⋃
k
{−→WJ,k}: L = argmax

k
{σg(

−→
E i ¹ −→

WJ,k)}
– Break (possible) ties by selecting the interval

−→
WL with the smallest size.

8: Assimilation Condition: Both Z(
−→
E i g−→WL) < Z0 and `(

−→
E i) = `(

−→
WL).

9: If the Assimilation Condition is satisfied then replace
−→
WL by

−→
E i g −→

WL;
otherwise, “reset” class cJ .

10: end while
11: If all the classes c1, . . . cM(i−1) have been “reset” then memorize the training

datum (
−→
E i, `(

−→
E i)); moreover, M(i) = M(i− 1) + 1.

12: end for

We remark that integer function M(i − 1), with (integer) argument “i − 1”,

denotes the number of classes at (discrete) time “i”. Moreover, a clas cj =
⋃
k
{−→Wj,k}

is the (finite) set of intervals
−→
Wj,k ∈ (τO(F))N characterized by the same label

`(
−→
Wj,k); the latter (label) denotes the label `(cj) of class cj .

It is important to point out that function σg(
−→
E i ¹ cj), for class cj =

⋃
k
{−→Wj,k},

is a well-defined inclusion measure computable based on Proposition 3.4 in [29].

For the reader’s convenience, the latter proposition’s statement is repeated next:

“Let function σV : L× L → [0, 1] be an inclusion measure in a lattice (L,¹). Then

function σ : 2L × 2L → [0, 1] given by the convex combination σ({u1, . . . , uI} ¹
{w1, . . . , wJ}) = λ1max

j
σV (u1 ¹ wj)+· · ·+λImax

j
σV (uI ¹ wj) is an inclusion mea-

sure”, where by “convex combination” we mean a set λ1, . . . , λI of non-negative

numbers such that λ1 + · · ·+λI = 1 – We remark that 2L denotes the power set of

(set) L. Here we assume λ1 = 1; moreover, λ2 = · · · = λI = 0. It follows inclusion

measure σg(
−→
E i ¹ cj) = σg({−→E i} ¹ ⋃

k
{−→Wj,k}) = max

k
σg(

−→
E i ¹ Wj,k).
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3.2 FLRtypeII Scheme for Generalization (Testing)

Algorithm 2 presents the corresponding FLRtypeII scheme for generalization (test-

ing) in the product lattice ((τO(F))N ,¹).

Algorithm 2 : FLRtypeII scheme for generalization (testing)

1: Assume a set
⋃

j∈{1,...M}
{cj} of labeled classes cj , where each class cj is a (finite)

collection of intervals in lattice ((τO(F))N ,¹); i.e. cj =
⋃
k
{−→Wj,k} ⊆ 2(τO(F))N

,

moreover let `(cj) ∈ {1, . . . , L} denote the label of class cj .

2: Consider an unlabeled datum
−→
E 0 ∈ (τO(F))N for testing (classification).

3: For each class cj calculate inclusion measure σg(
−→
E 0 ¹ cj).

4: Competition among classes cj , where j ∈ {1, . . . , M}.
Winner is class cJ : J = argmax

j∈{1,...,M}
{σg(

−→
E 0 ¹ cj)}.

5: The class label `(
−→
E 0) of datum

−→
E 0 is defined to be `(

−→
E 0) = `(cJ).

We remark that an abovementioned class cj , j ∈ {1, . . . M} consists of a num-

ber of lattice ((τO(F))N ,¹) intervals, where an interval is interpreted here as an

(information) granule [38,50]. Likewise, a training/testing datum
−→
E ∈ (τO(F))N

is a granule, including trivial granules
−→
E = [E, E] as a special case.

4 Data Preprocessing and 2D Shape Representation

This section, first, demonstrates an induction of Type-II INs from vectors of num-

bers, second, it details a novel 2D shape representation based on Type-II INs.

4.1 Inducing Type-I INs

Consider a vector −→x = (x1, . . . , xn) with real number entries. Two entries xi, xj

are called “successive” if and only if there no other entry xk such that xi ∧ xj <

xk < xi ∨ xj .

A strictly-increasing cumulative (real) function c : R → R is induced from the

entries of vector −→x , first, by defining c(xi) = 1
n

∑
xj≤xi

(
+∞∫
−∞

δ(t− xj)dt

)
, where δ(t)

is the Dirac delta function, and, second, by straight-line connecting two points

(xi, c(xi)) and (xj , c(xj)), where xi, xj are “successive” entries of vector −→x – We

remark that cumulative function c(.) obtains values from 0 to 1 included.
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Fig.1(b) shows a (strictly increasing) cumulative function c induced from the

real numbers in Fig.1(a). Note that both Fig.1 (a) and (b) indicate the me-

dian value 1.484 of the corresponding data. In particular, Fig.1(b) indicates that

c(1.484) = 0.5, as expected. Fig.1(c) displays a Type-I IN E1 induced from func-

tion c(.) such that for values less than the median 1.484, the envelope function

of E1 equals 2c; whereas, for values larger than the median 1.484, the envelope

function of E1 equals 2(1− c).

Recall that there is a one-to-one correspondence between Type-I INs and cu-

mulative functions [19,23,25]. In other words, a Type-I IN is an alternative repre-

sentation for a cumulative function.

4.2 Inducing Type-II INs

Assume a number of Type-I INs E1, E2, . . . each one induced as described above.

Type-I INs E1, E2, . . . can, equivalently, be represented by trivial Type-II INs,

respectively, as follows E1 = [E1, E1],E2 = [E2, E2], . . . . For instance, three trivial

Type-II INs E1 = [E1, E1], E2 = [E2, E2], E3 = [E3, E3], i.e. elements of the

complete lattice (τO(F),¹), are shown in Fig.2(a). The latter (Type-II) INs are

employed, next, for demonstrating the lattice join operation in (τO(F),¹).

On the one hand, Fig.2(b) demonstrates Type-II IN E1gE2 = [E1fE2, E1gE2].

Note that E1 f E2 6= O = O(h) = [+∞,−∞], for h ∈ [0, 1], because Type-I

INs E1 and E2 overlap. More specifically, since the tip of Type-I IN E1 f E2 is

h0 = 0.6129, for h ∈ [0, 0.6129] it is (E1fE2)(h) 6= O(h) = [+∞,−∞], whereas for

h ∈ (0.6129, 1] it is (E1 f E2)(h) = O(h) = [+∞,−∞]. We note that a Type-I IN

X is in the interval [E1 fE2, E1 gE2] if and only if E1 fE2 ¹ X ¹ E1 gE2. In the

latter case we say that X is encoded in [E1fE2, E1gE2] – Apparently, both E1 and

E2 are also encoded in [E1fE2, E1gE2]. On the other hand, Fig.2(c) demonstrates

Type-II IN E2 gE3 = [E2 fE3, E2 gE2], where E2 fE3 = O = O(h) = [+∞,−∞]

for h ∈ [0, 1] because Type-I INs E2 and E3 do not overlap – Apparently, both E2

and E3 are encoded in [O, E2 g E3].

The illustrations presented above, in this section, are especially useful for inter-

preting our experimental results/practices below. A novel 2D shape representation,

based on Type-II INs, is detailed next.

4.3 A Novel 2D Shape Representation

From each 2D shape on binary images we extracted, as described in [1], three

shape descriptors vectors −→xd = (x1, . . . , xNd
), where d ∈ {FD, ART, IM}. Recall
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that FD stands for Fourier descriptors, ART stands for angular radial transform

(descriptors) and IM stands for image moments (descriptors).

In this work we considered the three descriptors FD, ART and IM combined,

for representing a 2D shape as follows. One data dimension was engaged per

descriptor. Then, in each data dimension, a Type-I IN was computed from the

cumulative function c(.) induced from the entries of the corresponding vector
−→xd = (x1, . . . , xNd

). Hence, a 2D shape was represented by a 3-tuple of Type-

I INs or, equivalently, by a 3-tuple of trivial Type-II INs. Moreover, in each of

the three dimensions we considered both a parametric sigmoid positive valua-

tion vs(x; Ai, λi, µi) = Ai

1+e−λi(x−µi)
and a parametric dual isomorphic function

θ(x; µi) = 2µi − x, where Ai, λi ∈ R≥0, µi, x ∈ R and i ∈ {1, 2, 3}.
We point out that based on our proposed 2D shape representation, a (rep-

resented) 2D shape cannot be recovered. Nevertheless, an advantage of our pro-

posed 2D shape representation is “information compression” because a Type-I

IN can accurately represent any number of descriptors, i.e. any number of vector
−→xd = (x1, . . . , xNd

) entries. In other words, the distribution of any number of shape

descriptors in a data dimension can be represented accurately by a Type-I IN.

Then, the FLRtypeII scheme for learning (training) was applied followed by

the FLRtypeII scheme for generalization (testing) on three benchmark data sets

as described in the following section.

5 Computational Experiments and Results

In this section we employ three benchmark data sets, namely Kimia-99, Kimia-

216 [40] and Chicken-Pieces [2]. Note that precision-and-recall applications of the

aforementioned data sets abound in the literature; nevertheless, classification re-

sults are scarcely reported.

In our classification experiments below we applied the FLRtypeII scheme; that

is, both Algorithm 1 and Algorithm 2 were applied, with N = 3. A training/testing

datum
−→
E i ∈ (τO(F))3 was a trivial Type-II IN, i.e.

−→
E i = [

−→
Ei,

−→
Ei]. An inclusion

measure (σ) and a size (Z) in the product lattice ((τO(F))3,¹) were defined as in

subsection 2.6; in particular, σ was calculated here using λ1 = λ2 = λ3 = 1/3. We

used shape descriptors vectors −→xd = (x1, . . . , xNd
), where d ∈ {FD, ART, IM},

with NFD = 32, NART = 35 and NIM = 6. All descriptor values were normalized.

Furthermore, a Type-I IN was represented with L = 32 intervals equally spaced

from h = 0 to h = 1 included.

Parameter optimization was pursued by a genetic algorithm, where the phe-

notype of an “individual” consisted of specific values for three sigmoid function

vs(x; Ai, λi, µi) parameters Ai, λi and µi per data dimension i ∈ {1, 2, 3}; an addi-



2D Shape Learning and Recognition Based on Lattice-Computing 15

tional parameter was the threshold size Z0. In conclusion, there was a total number

of 3 × 3 + 1 = 10 parameters, binary-encoded in the chromosome of an individ-

ual. The ranges of the aforementioned parameters were Ai ∈ [0, 100], λi ∈ [0, 10]

and µi ∈ [−10, 10]; moreover, based on the previously selected parameters A1, A2

and A3, we assumed Z0 ∈ [0.01, A1 + A2 + A3]. We included 25 individuals per

generation. The genetic algorithm was enhanced by the microgenetic hill-climbing

operator; in addition, both elitism and adaptive crossover/mutation rates were

implemented [36].

To avoid overtraining, the fitness value of a genetic algorithm individual was

computed by partitioning, wherever possible, the data set in three subsets includ-

ing (1) a training set (2) a validation set, and (3) a testing set. Let Etrn and

Eval be the percentage error on the training and validation sets, respectively. The

fitness (Q) of an individual was calculated as follows.

Q = beEtrn + (1− be)Eval (12)

where be ∈ [0, 1] is a user-defined balancing factor for error. The genetic al-

gorithm was left to evolve until no improvement was observed in the fitness (Q)

of the best individual for 30 generations in a row. Then, the testing (data) set

was applied once and the corresponding testing data percentage error Etst was

recorded.

5.1 Kimia-99 Data Set

Kimia-99 is a small subset of database MPEG-7 including labeled binary images.

In particular, Kimia-99 includes 99 images partitioned in 9 classes with 11 images

per class. All the 99 images in this data set are displayed in Fig.3 arranged in a

9×11 Table, where a row exclusively displays images in the same class. The name

of a class is shown, respectively, at the end of a row in Fig.4. This data set was

employed for illustrative purposes as detailed next.

We carried out Leave-1-Out classification experiments. That is, we carried out

99 different computational experiments leaving a single image out for testing,

whereas all the remaining 98 images were employed for training. In turn, all the

images were left out for testing. A validation set was not used here; hence be = 1.

We recorded no misclassifications. That is, the single datum left out for test-

ing in all the 99 computational experiments was classified right. In each of the

abovementioned experiments, a number of 3-tuple Type-II INs were induced for

representing the classes. Fig.4 displays one 3-tuple Type-II IN per class as fol-

lows. The first three columns of the 9 × 4 Table in Fig.4 display Type-II INs
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Table 1 Results of Leave-1-Out experiments on the Kimia-99 data set. A pair (v, σv) indicates
the average (v) and the corresponding standard deviation (σv) of a sigmoid positive valuation
function vs(x; Ai, λi, µi) parameter v ∈ {Ai, λi, µi} in a data dimension i ∈ {1, 2, 3} for 99
computational experiments. The corresponding pair for the threshold size Z0 was (0.573, 0.262).

Data dimension i (Ai, σAi
) (λi, σλi

) (µi, σµi)

i = 1 (FD descriptors) (20.54, 11.02) (16.71, 9.63) (15.58, 12.05)
i = 2 (ART descriptors) (1.825, 0.957) (1.938, 0.800) (1.496, 0.770)
i = 3 (IM descriptors) (0.013, 0.008) (0.018, 0.007) (0.016, 0.008)

corresponding, respectively, to FD, ART and IM descriptors; the fourth column

displays the corresponding class name. Hence, the first row in Fig.4 displays an

induced “Type-II 3-tuple IN” granule for class FISH, the second row displays a

corresponding granule for class RABBIT, etc. We point out that the lower/upper

bound U/W ∈ τO(F) of a Type-II IN, say E = [U, W ], in Fig.4 is shown in bold

(black) color; whereas, all the encoded Type-I INs are shown in light (red) color

within a Type-II IN.

The set of Type-II INs representing a class (Fig.4) may be interpreted as the

visual representation of the class in question. A closer study of our results revealed

that, first, the Type-II INs shown in the first column (header: FD) of Fig.4 are,

in general, similar to one another. Second, the Type-II INs in the second column

(header: ART) of Fig.4 are quite dissimilar from one another. Third, the Type-II

INs in the third column of Fig.4 (header: IM) are quite similar to one another.

The latter similarity implicitly suggests that the IM descriptors are not significant

in this pattern recognition problem.

The small significance of the IM descriptors was confirmed by the small param-

eter A3 value of the corresponding sigmoid positive valuation function as shown

in Table 1. The latter Table also suggests that the large (average) parameter A1

value for FD descriptors is partly neutralized by the large (average) parameter µ1

value; hence, the training/testing data appear in the saturation region of the cor-

responding (sigmoid) positive valuation function. Note that in a recently reported

evaluation of individual descriptors including FD, ART and IM in an image re-

trieval application [1], the IM descriptors have resulted in the best performance.

We believe that there is no contradiction with the results reported here because

in this work we employ the descriptors FD, ART and IM “combined” instead of

“individually”. It is interesting to point out that, in a system modeling context, a

combination of (system) inputs is already known to result in better performance

than any (system) input alone [37].
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Table 2 Classification results of Leave-1-Out experiments on the Kimia-216 data set.

Method Classification Accuracy

Tree-Union 97.7 %
Class-Segment-Sets 97.2 %
FLRtypeII 95.4 %
Skeleton-Based 94.1 %

5.2 Kimia-216 Data Set

Kimia-216 is a larger, than Kimia-99, subset of database MPEG-7. In particular,

Kimia-216 includes 216 labeled binary images partitioned in 18 classes with 12

images per class.

The Tree-Union classification method has reported 97.7% classification accu-

racy (Table 2) for Leaving-1-Out experiments [48]; more specifically, 5 images

were reported misclassified. The aforementioned publication [48] has also reported

classification results by another two methods shown in Table 2.

We carried out Leave-1-Out experiments using our proposed FLRtypeII classi-

fier. A validation set was not used here; hence be = 1. We recorded 10 misclassifica-

tions in 216 experiments. Therefore, the accuracy of our proposed FLRtypeII clas-

sifier was 95.4% as shown in Table 2. Furthermore, the average threshold size Z0

in 216 training experiments was Z0 = 0.417 with standard deviation σZ0 = 0.237.

5.3 Chicken-Pieces Data Set

This data set consists of 446 shapes of five different chicken parts, namely wing,

breast, leg, thigh and quarter (Fig.5). Following the literature we randomly divided

this data set into three subsets of 149 shapes for training, 149 shapes for validation

and 148 shapes for testing [11].

The Kernel-Edit Distance method in [11] has reported 87.16% classification

accuracy on the testing data. The aforementioned publication also reports the

classification results by the alternative methods shown in Table 3.

We applied our proposed FLRtypeII classifier using the validation set available

in this problem with be = 0.5. Then, the testing data were applied. We recorded 20

misclassifications. Therefore, the classification accuracy of our proposed FLRtypeII

classifier was 86.48% (Table 3). Our genetic optimization algorithm estimated an

optimal threshold size Z0 = 0.114.
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Table 3 Classification results on the Chicken-Pieces data set.

Method Classification Accuracy

Kernel-Edit Distance 87.16 %
FLRtypeII 86.48 %
Symbolic 84.45 %
Kernel-PCA 81.75 %
Structural 81.10 %
Kernel-LDA 80.40 %

6 Conclusion

This technical work has demonstrated novel lattice-computing (LC) techniques for

both 2D shape representation and recognition.

Based on a hierarchy of lattices stemming from the lattice (R,≤) of real num-

bers, the FLRtypeII scheme was introduced for learning and/or recognizing Type-

II-IN-based representations of binary image 2D shapes; where, a Type-II IN was

induced from a population of image descriptors in a data preprocessing step.

Experimental results have demonstrated, comparatively, the effectiveness of

our proposed techniques. In addition, the FLRtypeII scheme induced Type-II-IN-

based class representations/conceptualizations.

In a future work we plan to extend our techniques to gray/color image ap-

plications by considering additional and/or alternative populations of image de-

scriptors. We also plan applications of larger scale. Furthermore, our proposed

techniques might be employed by interval-valued morphological operators [34].

Acknowledgements This work has been supported, in part, by a project Archimedes-III

contract.

Appendix

This Appendix summarizes useful notation and tools regarding general lattice

theory [6,19].

I. Mathematical Background Given a set P , a binary relation (¹) in P is called

partial order if and only if it satisfies the following conditions: x ¹ x (reflexivity),

x ¹ y and y ¹ x ⇒ x = y (antisymmetry), and x ¹ y and y ¹ z ⇒ x ¹ z

(transitivity) – We remark that the antisymmetry condition may be replaced by

the following equivalent condition: x ¹ y and x 6= y ⇒ y � x. If both x ¹ y and

x 6= y then we write x ≺ y. A partially ordered set, or poset for short, is a pair

(P,¹), where P is a set and ¹ is a partial order relation in P . Note that this work



2D Shape Learning and Recognition Based on Lattice-Computing 19

employs, first, “curly” symbols ¹, ≺, g, f for general poset elements and, second,

“straight” symbols ≤, <, ∨, ∧ for real numbers.

A lattice is a poset (L,¹) any two of whose elements x, y ∈ L have both a

greatest lower bound, or meet for short, and a least upper bound, or join for short,

denoted by xfy and xgy, respectively. Two elements x, y ∈ L in a lattice (L,¹) are

called comparable, symbolically x ∼ y, if and only if it is either x ¹ y or x Â y. A

lattice (L,¹) is called totally-ordered if and only if x ∼ y for x, y ∈ L. For example,

a totally-ordered lattice is the poset (R,≤) of real numbers. If x � y holds for x, y

in a lattice (L,¹) then x and y are called incomparable or, equivalently, parallel,

symbolically x||y.

Given a lattice (L,¹) it is known that (L,¹∂) ≡ (L,º) is also a lattice, namely

dual (lattice), where ¹∂ denotes the dual (i.e. converse) of order relation ¹. Fur-

thermore, it is known that the product (L1,¹) × (L2,¹), of two lattices (L1,¹)

and (L2,¹), may define another lattice with order (x1, x2) ¹ (y1, y2) ⇔ x1 ¹ y1

and x2 ¹ y2. In the latter (product) lattice it holds both (x1, x2) f (y1, y2) =

(x1 f y1, x2 f y2) and (x1, x2) g (y1, y2) = (x1 g y1, x2 g y2). It follows that the

product (L,º) × (L,¹) ≡ (L × L,º × ¹) is another lattice with order (x1, x2) ¹
(y1, y2) ⇔ x1 º y1 and x2 ¹ y2; moreover, (x1, x2) f (y1, y2) = (x1 g y1, x2 f y2)

and (x1, x2) g (y1, y2) = (x1 f y1, x2 g y2). An element of lattice (L × L,º × ¹)

here will be denoted by a pair of L elements within square brackets, e.g. [a, b].

Our interest, in the context of this work, is in complete lattices – We point

out that complete lattices are significant also in mathematical morphology [35].

Recall that a lattice (L,¹) is called complete when each of its subsets X has both

a greatest lower bound and a least upper bound in L; hence, for X = L it follows

that a complete lattice has both a least and a greatest element. Unless otherwise

indicated, this work employs the same symbols O and I to denote the least and the

greatest element, respectively, in any complete lattice. Likewise, this work employs

the same symbol ¹ to denote a partial order relation.

Especially interesting, in the context of this work, is the complete lattice

(τO(L),¹) of intervals; the latter (lattice) is a sublattice of (L×L,º × ¹) such that

the corresponding join and meet are, respectively, given by [a, b]g[c, d] = [afc, bgd]

and either [a, b] f [c, d] = [a g c, b f d] if a g c ¹ b f d or [a, b] f [c, d] = [I, O]

otherwise. Note that (τ(L),¹) denotes the poset of conventional lattice intervals

[a, b] with a ¹ b. We point out that lattice (τO(L),¹) differs from poset (τ(L),¹)

in a single element, that is the least element [I, O] of lattice (L× L,º × ¹) which

(least element) belongs to (τO(L),¹) but not to (τ(L),¹) as detailed in [19]. Note

that the least element [I, O] in lattice (τO(L),¹) represents the “empty” interval.

Consider the following definition.
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Definition 5 Let (L,¹) be a complete lattice with least and greatest elements O

and I, respectively. An inclusion measure in (L,¹) is a real function σ : L× L →
[0, 1], which satisfies the following conditions

I0. σ(x, O) = 0,∀x 6= O.

I1. σ(x, x) = 1,∀x.

I2. x f y ≺ x ⇒ σ(x, y) < 1.

I3. u ¹ w ⇒ σ(x, u) ≤ σ(x, w).

We remark that an inclusion measure σ(x, y) can be interpreted as a (fuzzy)

degree to which x is less than or equal to y; therefore notation σ(x ¹ y) may be

used instead of σ(x, y). We also point out that our proposed inclusion measure σ

might be considered in future mathematical morphology studies [45].

II. Useful Mathematical Tools Two different inclusion measures are presented

next, based on a positive valuation2 function.

Theorem 1 Let function v : L → R be a positive valuation in a complete lat-

tice (L,¹). Then, both functions sigma-meet σf(x, y) = v(xfy)
v(x) and sigma-join

σg(x, y) = v(y)
v(xgy) are inclusion measures.

We introduce two constraints on positive valuation functions as explained next.

First constraint: “v(O) = 0” (in order to satisfy condition I0 of Definition 5).

Second constraint: “v(I) < +∞” (because a positive valuation function v : L → R

implies a metric (distance) function d : L× L → R≥0 given by d(a, b) = v(a g b)−
v(a f b), moreover infinite distances between lattice elements are not desired).

A bijective (i.e. one-to-one) dual isomorphic3 function θ : L → L such that

x ≺ y ⇔ θ(x) Â θ(y), in a lattice (L,¹), will be used in this work for extending

an inclusion measure from a complete lattice (L,¹) to the corresponding lattice

(τO(L),¹) of intervals. In the first place note that given a dual isomorphic function

θ : L → L there follow, by definition, both θ(x f y) = θ(x) g θ(y) and θ(x g y) =

θ(x) f θ(y). The latter equalities are handy in proving the following Proposition

[22].

Proposition 1 Let real function v : L → R be a positive valuation in a lattice

(L,¹); moreover, let bijective function θ : L → L be dual isomorphic in (L,¹) such

that x ≺ y ⇔ θ(x) Â θ(y). Then, function v∆ : L × L → R given by v∆(a, b) =

v(θ(a)) + v(b) is a positive valuation in lattice (L× L,º × ¹).

2 Positive valuation in a lattice (L,¹) is a real function v : L → R that satisfies both
v(x) + v(y) = v(x f y) + v(x g y) and x ≺ y ⇒ v(x) < v(y).

3 A function ψ : (P,¹) → (Q,¹), between posets (P,¹) and (Q,¹), is called (order)
isomorphic iff both “x ¹ y ⇔ ψ(x) ¹ ψ(y)” and “ψ is onto Q”. Then, posets (P,¹) and
(Q,¹) are called isomorphic, symbolically (P,¹) ∼= (Q,¹).
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The following definition is handy in this work.

Definition 6 Given a positive valuation v : L → R in a lattice (L,¹) the size of

an interval [a, b], in poset (τ(L),¹), is a non-negative (real) function Z : L → R≥0

given by Z([a, b]) = v(b)− v(a).

We remark that the size of a trivial interval [x, x] equals Z([x, x]) = 0. Fur-

thermore, we point out that a trivial interval [x, x] = a is an atom in the complete

lattice (τO(L),¹), where an atom a by definition satisfies both O ≺ a and there is

no interval t ∈ (τO(L),¹) such that O ≺ t ≺ a.
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Fig. 1 Induction of a Type-I IN from a series of data samples whose median value equals 1.484.
(a) The series of data samples. (b) The corresponding cumulative function c. (c) Computation
of Type-I IN E1 from function c above.
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Fig. 2 Demonstrating the lattice join (g) operation between trivial Type-II INs. (a) Trivial
Type-II INs [E1, E1] = E1, [E2, E2] = E2 and [E3, E3] = E3. (b) Type-II IN E1 g E2 =
[E1 f E2, E1 g E2]. Note that, since Type-I INs E1 and E2 overlap, the Type-I IN E1 f E2

is not empty. More specifically, it is (E1 f E2)(h) 6= O = [+∞,−∞], for h ∈ [0, 0.6129];
nevertheless, for h ∈ (0.6129, 1] it is (E1 fE2)(h) = O = [+∞,−∞]. (c) Type-II IN E2 gE3 =
[E2 f E3, E2 g E3] = [O, E2 g E3]. Note that, since Type-I INs E2 and E3 do not overlap, the
Type-I IN E2 f E3 is empty, that is (E2 f E3)(h) = O = [+∞,−∞], for h ∈ [0, 1].
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Fig. 3 The 9×11 = 99 Table of binary images above displays the complete Kimia-99 data set.
More specifically, one row displays all the (11) images in a class for all the 9 different classes,
namely FISH, RABBIT, KK, TOOL, FIGHTER, DUDE, FOURLEGGED, GENOME and
HAND.
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Fig. 4 The 9 × 4 Table above displays Type-II-IN granules for each of the 9 classes of the
Kimia-99 data set. More specifically, one row of the Table above displays three Type-II INs
corresponding to FD, ART and IM descriptors, respectively, as detailed in the text. At the
end of a row, the corresponding class name is displayed.
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Fig. 5 The 5 × 6 Table of binary images above displays samples of the Chicken-Pieces data
set. More specifically, a row of the Table above displays 6 pieces of chicken from 5 different
chicken parts, namely wing, breast, leg, thigh and quarter.


