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Abstract

Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A
popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from Fuzzy Inference
Systems (FISs) of TSK type as well as from Kohonen's Self-Organizing Map (KSOM) this work introduces
a genetically optimized synergy based on Interval Numbers, or INs for short. The latter (INs) are interpreted
here either probabilistically or possibilistically. The employment of mathematical lattice theory is instrumental.
Advantages include accommodation gfanular data, introduction oftunable nonlinearities, and induction of
descriptive decision-making knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated
in three benchmark problems. The proposed computational method demonstrates invariably a better capacity for

generalization; moreover, it learns orders of magnitude faster than alternative methods inducing clearly fewer rules.

Index Terms

. Fuzzy inference systems (FIS), Genetic optimization, Granular data, Intervals’ number (IN), Lattice theory,

Linear approximation, Rules, Self-organizing map (SOM), Similarity measure, Structure identification, TSK model

I. INTRODUCTION

The need to induce, efficiently, an effective model (real funct}ng)nRN — RM arises frequently in practical
applications. In particular, linear modej$x) = ¢y + c1z1 + caz2 + ... + cyxny are preferable due to simplicity.

However, most often, the dependence of a system output the input variables, ..., 2y is nonlinear.



18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

One way of modelling nonlinearities is by a piecewise-linear approximation. For instance, in the context of fuzzy
sets and systems, tHeSK (Tagaki-Sugeno-Kang) fuzzy modidscribed by Sugeno, Kang [47], Sugeno, Tanaka
[48], Sugeno, Yasukawa [49], Takagi, Sugeno [52], combines linguistic (fuzzy) interpretations of its numeric inputs
with a (locally, within a cluster) linear computation of an output in order to achieve a nonlinear input-to-output
map. For the reader’'s convenience, the operation of a TSK model is summarized in the Appendix.

Critical for the computation of a TSK model is the computation of input data clusters. A popular clustering
scheme iKohonen'’s self-organizing map (KSOMjroduced by Kohonen [30] mainly for visualization of nonlinear
relations of multidimensional data. Er, Li, Cai, Chen [10] have confirmed the capacity of KSOM for rapid data
processing. Pascual-Marqui, Pascual-Montano, Kochi, Carazo [40] have reported a soft (fuzzy) KSOM synergy with
conventional fuzzy-means, where the code vectors are distributed on a regular low-dimensional grid. Moreover,
Vuorimaa [59] has introduced a fuzzy extension of KSOM for functionR”Y — R approximation using triangular
fuzzy membership functions, exclusively. Recently, Kaburlasos, Papadakis [21] have propaselhr (fuzzy)
extensions of KSOM in classification applications.

This work introduces a synergy of TSK- with KSOM- inspired techniques towardsffieientas well as
effective piecewise-linear approximation of nonlinear models as explained below. The proposed synergy builds
on an established mathematical result, namely the “resolution identity theorem”, presented by Zadeh [67], which
specifies that a fuzzy set can (equivalently) be represented either by its membership function ar-bytits

Note that even though a fuzzy set can be defined on any universe of discourse, in practieal thembers
universe of discours® is preferred as pointed out by Kaburlasos and Kehagias [20]. More specifically, “fuzzy
numbers” are typically employed, for instance in Fuzzy Inference Systems (FISs). Recall finatyanumber
is defined as a convex, normal fuzzy set, often with bounded support. A fuzzy number is defifiedvitm a
upper-semicontinuousiembership function as described in Kaburlasos [17], Vroman, Deschrijver, Kerre [58].

It turns out that an-cut of a fuzzy number is an interval; hence, based on the aforementioned “resolution
identity theorem”, a fuzzy number can be represented by a set of intervals. In conclusion, Uehara, Fujise [54],
Uehara, Hirota [55], Uehara, Koyama, Hirota [56] have proposed a novel FIS design in practical applications based
on a-cuts (intervals) of fuzzy numbers — Advantages include faster (parallel) data processing “level-by-level”,
“orders-of-magnitude” smaller computer memory requirements, etc. Senturk, Erginel [43] have employtl
for enhancing traditional control strategies. Furthermore, Cornelis, Deschrijver, Kerre [8], Nachtegael, Kerre [33]
have considered-cuts/intervals for fuzzy logic/morphology operations in theoretical studies involving ambiguity.

This work builds creatively on the “resolution identity theorem” by, first, considering the equivalents
(interval) representation for a fuzzy number and, second, by dropping the corresponding possibilistic interpretation.
Hence, anintervals’ Number (IN)emerges as a mathematical object, which may admit eithgosaibilistic or
a probabilistic interpretation as explained below. Advantages include an introduction of useful linear operations,
tunable nonlinearities, a capacity to deal with granular data, etc. Instrumental for IN-based FIS analysis and design

is (mathematicallattice theory (LT)because the set of (closed) intervals on the real line is partially(lattice)-ordered.
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For the reader’s interest, the emergence of LT in information processing is outlined next.

Mathematical lattices have emerged in the first half of the nineteenth century as a spin off of work on formalizing
propositional logic. During the next one hundred years LT was established, and compiled creatively by Garrett
Birkhoff [3]. Currently, there is a number of research Communities that employ LT in various information processing
domains including, firstLogic and Reasoningor automated decision-making (see in Xu, Ruan, Qin, Liu [65]),
second Mathematical Morphologyor signal/image processing (see in Ritter, Wilson [42]), thikdrmal Concept
Analysisfor knowledge-representation and information-retrieval (see in Ganter, Wille [12]), fdwtinputational
Intelligencefor clustering, classification, and regression applications (see in Kaburlasos [18]), etc.

There are two different approaches for employing LT in practice. The first approach, nardelybasedis
based on semantics represented by the lattice(partial)-order as demonstrated also by Bloch [4], Ganter, Wille [12],
Xu, Ruan, Qin, Liu [65]. The second approach, nanafebra-basedis based on the lattice(algebraic)-operations
of meet (\) and join (/) as demonstrated also by @Geg Villaverde, Maldonado, Hernandez [14], Ritter, Wilson
[42], Soille [46], Valle, Sussnher [57]. Various combinations of the aforementioned two approaches have also been
reported, for instance in classification applications by da Silva, Sussner [9], Kaburlasos [18], Sussner, Esmi [50],
[51]. In this work, we describe a novel combination of the aforementioned two approaches.

Previous work by Kaburlasos [17], [18], Kaburlasos, Kehagias [20], Kaburlasos, Papadakis [21], [23], has
employed the ternfruzzy Interval Number (FINinstead of the ternintervals’ Number (IN) because it stressed a
fuzzy interpretation. Recently, Kaburlasos, Papadakis [22] have switched to the term IN, including also an improved
mathematical notation. Likewise, the term “CALFIN”, proposed previously for an algorithm which computes a
“FIN” from a population of measurements, is eloquently replaced here by the term “CALCIN".

This paper presents significant enhancements over the preliminary work by Kaburlasos, Papadakis in [22]
as follows. First, we introduce a novel similarity measure functiog).(Second, we detail structure/parameter
identification algorithms based @i rather than on metriéy, the latter was employed in [22]; here, we also compute
the corresponding algorithm complexity. Third, we demonstrate an employment of a IN as either a probability-
or a possibility- distribution. Fourth, we demonstrate three additional benchmark problems including improved
experimental results; moreover, in all benchmark problems, we display the induced rules. Fifth, we discuss novel
theoretical perspectives. Sixth, we cite a large number of additional references including comparative discussions.

This paper is organized as follows. Section Il summarizes the mathematical background. Section Ill presents a
novel structure identification. Section IV describes a novel parameter identification. Section V details, comparatively,
experimental results. Section VI concludes by summarizing our contribution including also future work. The

Appendix includes the proof of a proposition as well as two computational algorithms used in the experiments.

II. MATHEMATICAL BACKGROUND

This section summarizes useful mathematical results and tools introduced by Kaburlasos [18], Kaburlasos,

Kehagias [19], [20], Kaburlasos, Papadakis [21], [22], [23], Kaburlasos, Athanasiadis, Mitkas [24]. Mathematical



87 lattice theory here is instrumental.

88 Recall from Birkhoff [3] that given a seP, a binary relation €) on P is calledpartial order if and only if

89 it satisfies the following conditions: < x (reflexivity), + < y andy < x = z = y (antisymmetr); andx < y and

90 y < z = x < z (transitivity). A partially ordered setor posetfor short, is a paif P, <), whereP is a set and<

91 is a partial order relation of®. A (crisp) latticeis a posef(L, <) any two of whose elements, y € L have both

92 a greatest lower boundor meetfor short, and deast upper boundor join for short, denoted by A y andz V y,

93 respectively. A latticeL, <) is calledcompletewhen each of its subsef§ has both a greatest lower bound and
94 a least upper bound ih. For simplicity, we will use the same symbals and I to denote the least and greatest
95 element, respectively, in any complete lattice.

% A. The Vector Lattice4,<) of Generalized Intervals

97 Consider thecomplete laticdR,<) of real numbers witHeastand greatestelements denoted, respectively, by
98 O = —oo and I = +o0. A generalized intervais defined in the following.

99 Definition 1: Generalized intervais an element of the product lattic®,£%)x(R,<).

100 We remark that<? in Definition 1 denotes theual (i.e. converse) of order relatios1, i.e. <?=>. Product
101 lattice R,<?)x(R,<) = (R x R,> x <) will be denoted, simply, by4,<).

102 A generalized interval will be denoted By, y], wherez,y € R. The meet(A) andjoin (V) in lattice (A,<)

103 are given, respectively, by, b] A[e,d] = [aV e, bAd] and[a,b] V [¢,d] = [a Ac,bV d], wherea A ¢ (aV ¢) denotes
104 the minimum(maximuny of real numbers: andc.

105 The set ofpositive (negative generalized interval&, b], characterized by, < b (a > b), is denoted byA |

106 (A_). Apparently, A, ,<) is a poset, namelposet of positive generalized intervalurthermore, posety, ,<) is

107 isomorphié to the poset£(R),<) of intervals (sets) iR, i.e. (-(R),<) = (A4 ,<). We augmented poset(R),<)

108 by aleast(empty) interval, denoted b®) = [+o0, —oco] — Note that agreatestinterval I = [—oo, +oc] already
109 exists in7(R). Hence, the complete lattice{(R) = 7(R) U{0},<)~ (A1 U {0}, <) emerged. Due to the latter
110 isomorphism, we will employ latticefA . U {0}, <) and (o (R),<), interchangeably.

111 A (strictly) decreasindijective i.e. “one-to-one”, functiorfr : R — R implies isomorphismR,<) = (R,>);

112 ie.x <y < Or(x) > Or(y), x,y € R. Furthermore, a strictly increasing functiog : R — R is a positive
113 valuatior? in lattice (R,<). We will refer to functionsdr(.) andwvg(.) asdual isomorphisnand positive valuation
114 respectively. It follows that functioms : A — R given bywva([a,b]) = vr(6r(a)) + vr(b) is a positive valuation
115 in lattice (A,<). Furthermore, it follows a metric functiodix : R — R=° given by da ([a,b], [¢, d]) = [vr(0r(a A

116 ¢)) —vr(fr(a V)] + [vr(bV d) — vr(b A d)]. In particular, metricd is valid in lattice (o (R),<).

A mapy : (P,<) — (Q, <) is called(order) isomorphisnif and only if both “z < y < () < ¥ (y)” and “y is ontoQ”. Two posets
(P, <) and(Q, <) are calledisomorphi¢ symbolically (P, <) = (Q, <), if and only if there is an isomorphism between them.

%positive valuationin a lattice (L, <) is a real functionv : L x L — R that satisfies both(z) 4+ v(y) = v(z A y) + v(z V y) and
z <y=v(x) <v(y).



117 Functionség(.) and vr(.) can be selected in various ways. For instance, choo&itig) = —x and vr(.)
118 such thatug(xz) = —vr(—z) it follows positive valuationva ([a,b]) = vr(b) — vr(a); hence, it follows metric
119 da([a,b],[e,d]) = [vr(a V ¢) —vr(a A ¢)] + [vr(b V d) — vr(b A d)]. In particular, forvg(z) = z it follows
120 metric da ([a, b], [¢,d]) = |a — ¢| + |b — d|. In generalparametricfunctionsér(.) andvgr(.) may introduce tunable
121 nonlinearities.

122 The spaceA of generalized intervals is @al linear spacewith

123 « additiondefined aga, b] + [c,d] = [a + ¢, b+ d], and

124 « multiplication (by a scalark € R) defined ask[a, b] = [ka, kb).

125 A generalized interval i\ is a vector Moreover, the lattice-ordered vector spakds calledvector lattice
126 A subsetC of a linear space is calledoneif and only if for z1,zo € C and real numbers;, Ao > 0 it
127 follows (A1 + A2x2) € C. It turns out that the sef\, is a cone. Likewise, the seét_ is a cone.

128 B. The Cone LatticeR,<) of Intervals’ Numbers (INs)

129 Generalized interval analysis in the previous subsection is extendéateivals’ numbers(/Ns) in this
130 subsection. A more general number type is defined in the first place, next.

131 Definition 2: Generalized interval numbgor GIN for short, is a functiorG : (0,1] — A.

132 Let G denote the set of GINs. Sind&, <) is the Cartesian product of complete lattiges, <) it follows
133 that (G, <) is a complete lattice. Addition and multiplication can be extended fforto G as follows.

134 » Additionis defined as7, : Gs(o) = (G1 + G2)(a) = G1(a) + Ga(a), a € (0, 1].

135 « Multiplication (by a scalark € R) is defined as5, : G,(a) = kG1(a), a € (0,1].

136 Our interest here focuses on teeblatticé of intervals’ numbersiefined next.

137 Definition 3: An Intervals’ Numbey or IN for short, is a GINF' such that both#(a) € (A U{O}) and
138 a1 < ag = Flag) > F(as).

139 Let F denote the set of INs. Conventionally, a IN will be denoted by a capital letter in italics FeqgF.
140 Moreover, aN-tuple IN will be denoted by a capital letter in bold, ely= (F1,..., Fn) € =

141 Definition 3 implies that a INF' equals the set union of (conventional) intervals, ég- ae%’”{[aa,ba}},
142 where both interval-ends,, andb,, are functions ofx € (0, 1].

143 A IN is a mathematical object, which may be interpreted as a probability/possibility distribution, an interval,
144 and/or a real number as explained in the following. AN= QGL(JOJ]{[CL, b]} represents intervdh, b] including real
145 numbers fora = b. Moreover, INF = aEL(JO,l]{F(a)} may represent a probability distribution such that interval
146 F(«) includes100(1 — )% of the distribution, whereas the remainin@0a% is split even both below and above

3A sublatticeof a lattice (L, <) is another latticgS, <) such thatS C L.
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interval F'(«). In addition, due to the “resolution identity theorem”, a = ae%,l}{F(a)} may also represent
a fuzzy number, wheré’(«) is the corresponding--cut. Hence, a INF : (0,1] — 70(R) may, equivalently, be
represented by a membership functian- : R — (0, 1] as explained next.

On one hand,K, <) is a lattice with orderingFy < F5 & Fi(a) < Fy(a), o € (0,1]. On the other hand,
using the conventional (membership) notation, it follows equivaleRce< Fy < mp () < mpg,(z), where
z € R, andmp(.) denotes the membership function of fuzzy numberin conclusion, there follows equivalence
mp, () < mp,(z) & Fi(a) < Fo(o), wherez € R, o € (0, 1]. In words, INF; is smaller-than/equal-to INF if
and only if either the membership functienp, (x) is smaller-than/equal-to the membership functiomof, ()

for all z € R, or (equivalently) intervalF; (o) is smaller-than/equal-to intervdl,(«) for all o € (0, 1].

The next proposition presents a metric in latti€e <) based on a positive valuation functiog : R — R=0.

Proposition 2.1: Let F; and F; be INs in the latticgF, <) of INs. Assuming that the following integral exists,
a metric functiondg : F x F — R=" is given by

1

de(Fy, Fy) = / da(Fi(a), Fy(a))da )
0

>0

Moreover, a Minkowski metricd, : F¥ x FV = can be defined between tw&y-tuple INsF; =

[F1,17 ...,FLN]T andF2 = [Fg,l, ...,F27N]T as

dp(F1,F2) = [d}(F11, Fon) + ... + d’F’(FLN,FQ,N)]”’) 2

Note that Minkowski metrial, (Fy, F2) may involve a point = [z1,...,zy]T € R” such that an aforemen-
tioned point entryz; € R is represented by theivial IN x; = %1]{[%%]}’ 1=1,...,N.
ac (0,
SpaceF is aconefor Fy, F; € F and real numberg,, A2 > 0 it follows (A1 Fy + Ao F3) € F.

C. A Hierarchy of Fuzzy Lattices

Consider the following definition.
Definition 4: Let (L, <) be a complete lattice with least and greatest eleméhtand I, respectively. An
inclusion measurén (L, <) is a mapo : L x L — [0, 1], which satisfies the following conditions
IMO. o(x,0)=0,Vx # O,
IM1. o(z,z) =1,Vz €L,
IM2. Ay <z=o(z,y) <1, and
IM3. u <w=o(z,u) <o(z,w) (Consistency Property).
An inclusion measure in a latticfl, <) fuzzifies the corresponding (crisp) lattice inclusion relatiaf). (

Therefore, notatiow (x < y) may be used instead of(z, y).
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An alternative approach for crisp lattice fuzzification was proposed by Belohlavek [2] with emphasis on object-
attribute fuzzy relations and fuzzy concept lattices without employment of positive valuation functions.

Lately, Hatzimichailidis, Kaburlasos [15] have proposed the following two inclusion measufes (R), <).

Lv) — _ vr(Br(c))+vr(d
1) oro(ry(la; 8] < e df; V) = vR(ORR(:/\c))+vE(b2/d)’ and

vr(Or(aVe v B . :
2) 0rp(ry([a,0] < [o, d)s A) = elREAERGAD [if o v ¢ < b A d; otherwise,o, g)([a,b] < [e,d];A) =0,
wherefg/(.) is a dual isomorphism andk(.) is a positive valuation function.

There follow two inclusion measures in the lattide<) of INs, next.

1
1) op(Fy < Fo;V) = [07,r)(Fi(a) < Fz(a); V)da, and
0

1
2) or(F1 < oy A\) = [ 0,5r) (Fi(a) < Fa(a); A)da.
0
The latter inclusion measures will be employed below for calculating the similarity of two fuzzy sets, towards

conditionally merging them, based on a nosehilarity measurgunction defined next.

D. A Novel Similarity Measure

Various similarity measures have been presented by a number of authors includingA#n [1], Torsello,
Hidovic-Rowe, Pelillo [53], Wu, Mendel [64], Zeng, Guo [68], Zhang, Zhang [69]. Setnes, &abiKaymak, van
Nauta Lemke [44] have reported similarity measure applications in fuzzy rule bases towards simplification. Pappis,
Karacapilidis [39] have proposed a number of axioms for similarity measures regarding fuzzy sets, exclusively. In

this work, we consider the more general definition by Kaburlasos, Moussiades, Vakali [25] presented next.

Definition 5: Similarity measuren a setU is a functiony : U x U — [0, 1], which satisfies conditions:S()

wz,y) =1 x=y, and 62) u(z,y) = pu(y,z).

Definition 5 retains the “common sense” essentials of similarity without “esoteric” redundancies.
We define asimilarity spaceas a pair(U, 1) including a non-empty sdt’ and a similarity measure function
p: U xU — [0,1]. The following proposition introduces a novel similarity measure in a lattice based on an

inclusion measure function.

Proposition 2.2: Let (L, <) be a lattice with an inclusion measure functien L x L — R. Then, function

pa s Lx L —[0,1] given by ua(z,y) = o(z < y) Ao(y < x) is a similarity measure.

The proof of Proposition 2.2 is shown in the Appendix.

[11. NOVEL STRUCTURE IDENTIFICATION

The term “structure identification” here originates from fuzzy system modeling as explained in the Appendix.
The objective of structure identification is to partition the input data space into subspaces such that the output to
an inputx = [zq,...,zn]7 € R”, within a subspace, is a linear combination of tNeinputs z1, ..., zn. Some

basic ideas are illustrated in the following.
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Fig. 1. Consequents (lines) of two different single-input-single-output piecewise-linear models. (a) This model partitions the input space
effectively with a small error using three lines. (b) This model partitions the input space ineffectively with a large error using two lines.

203 The computation of a piecewise-linear model, characterized by both a smealh square error (Epnd a

204 minimum number of rules, is not trivial. For example, consider the data points shown together with the consequents
205 (lines) of two different single-input-single-output piecewise-linear models in Fig. 1(a) and Fig. 1(b), respectively.
206 On one hand, Fig. 1(a) demonstrates an effective partition (of the input $ackaracterized by a small error.

207 On the other hand, Fig. 1(b) demonstrates a non-effective partition characterized by a large error.

208 A structure identification method is proposed next for computing an effective partition based on (1) A novel
209 SOM architecture inspired from KSOM, and (2) A novel structure identification algorithm, namely INSOM.

210 A. A Novel SOM Architecture

211 AcellC; j, wherei =1,..., T andj = 1, ..., J in our proposed 2-dimensional SOM architecture grid stores both
212 a N-dimensional INF; ; = [F; j1,..., F; jn]7 and a(N + 1)-dimensional vector; j = [¢; .0, Cij1, - Ci,j,N] " -
213 On one hand, INF; ; € = represents a population of data assigned to Cgll as detailed below. On the other
214 hand, vectore; ; € R¥ ! stores the parameters of the following hyperplane.

Pij(X) = €ij0 + Cij1T1 + CijaTa, oo G NTN 3)
215 A cell is callednon-emptyif at least one datum is assigned to it. Vectoys are calledcode vectorsStructure
216 identification is carried out by algorithm INSOM, next.

217 B. INSOM: A Novel Structure Identification Algorithm

218 Algorithm INSOM is applied in the aforementioned SOM architecture as detailed in the following.
219 After initialization (INSOM, lines 1-4) a loop of computations (INSOM, lines 6-23) repeats a user-defined
220 number Ne,..ns Of epochs. An epoch initially computes the neighborhood $zg(r) (INSOM, line 6) of the
221 winner cellC, , as follows.
I+J I1+J
Bp,q(w = 1 €Xp <_ Nepoons 7") ) 4)
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wherer € {1, ..., Nepocns - Note that the following “decreasing” functios(r), r € {1, ...Nepochs } (INSOM,

line 6) equals the weighi in Eq. (13) of algorithm WRLS (in the Appendix).

or) = exp <_ r ):wk 5)

Nepoch,s

Of particular interest is function “FindTheWinnes(, y.)” (INSOM, line 9). Recall that in order to compute an
effective piecewise-linear model, the training data within a cluster have to be not only co-planar but also adjacent.
Therefore, we proceed as follows.

First, we compute the distanek ;(x;) of point (xx,yx) € RY x R from hyperplanep; ; (Eq. (3)) as

dij(xp) = [Pij (Xk) — yk|7 (6)

wherei=1,...,I,j=1,...J,k=1,...,n, and
Second, we compute the distanbg ; (F; ;,x;) of point x; from the cluster of points within SOM cell’; ;
using Eq. (2), where a cluster of points is represented by one IN per (data) dimension.

Then, a datum(x;, ;) is assigned to the (winner) cell, ,, which minimizes the following index’; ;

P;j = bqd; j(x) + (1 — bq)D; ;(Fi j, Xk), (7)

wherei =1,...,1, j =1,...,J, andb, € [0,1] is a user-definetalancing factor for distance

We remark that a balanced consideration of both distadgeéx;) and D; ;(F; ;,xx), as in Eq. (7), has
demonstrated an improved capacity for generalization in our computational experiments below.

Furthermore, we remark that an input datsme R” is assigned to the winner cefl, , exclusively. However,
input datumxy, is used to update the parameters of not only the winner cell’s hyperplane but also of its neighbours’
hyperplanes by algorithm WRLS (INSOM, line 16). In particular, algorithm WRLS (in the Appendix) is applied
here locally, at each SOM grid cell, withh = N.

At the end of an epoch, if the total number of data assigned to a specific SOM cell is smaller than a user-defined
threshold valugy = n/10 then the aforementioned cell is “reset” (INSOM, line 21). That is, the cell's hyperplane
parameter values are initialized to zero, moreover the corresponding INs are initialized to trivial values randomly;
in addition, all data assigned to a “reset” cell are fed back to be assigned to different cells.

A N-dimensional IN is computed at each SOM cell by applying algorithm CALCIN once per data dimension
for the data assigned to a cell (INSOM, line 22). Since neighboring cells in the SOM grid typically encode similar
data, a post-processing simplification was carried out by assuming that two neighboring cells describe the same
(input) subspace if their correspondingdimensional INs are “quite similar” to each other in a similarity measure

pa = Fx F — [0,1] sense as in Proposition 2.2 using either inclusion measgfeV) or og(.; A). Only when
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248 un(F1,Fo) is above a user-defined threshold vajuge the aforementioned two cells are merged (INSOM, line
249 23). Note that preliminary work by Kaburlasos, Papadakis [22] has employed a user-defined threshold djstance
250 instead ofug. An advantage of usingy over dy is that the size ofiy is normalized(in the unit interval[0, 1]),

251 whereas the size afy is application-dependent.

252 C. INSOM Algorithm Complexity

253 We will consider only those routines @lgorithm 1 (INSOM) with “substantial” complexity. The “outer”
254 loop repeatsV.,.chs times, furthermore the “inner” loop repeatgimes. Within the aforementioned “inner” loop,
255 the complexity of routine “FindTheWinnex(;, yi)" equalsO(I x J «m); moreover, routine “WRLS( j,wg Xk, yx)"

256 repeats]  J times, each time with complexit®(m = n). Therefore, the complexity of the “inner” loop equals
257 O(IxJ+mx=n?). After the “inner” loop, there follow, first, routine “ComputeINs()” with complex®( 1 x.Jxlog(n))

258 and, second, routine “MergeSimilarCellg]” with complexity O(1 * J x m x (L + log(n))), whereL is the total
259 number of levels considered for a IN, e.g. N= iél{[aa“bai]}’ a; € (0,1]. Making the reasonable assumption
260 n? >> L, it follows that the complexity oAlgorithm 1 (INSOM) equalsO(I *.J #m*n?* Nepocns)- IN conclusion,
261 Algorithm 1 (INSOM) computes an “initial” model, which is fine-tuned as detailed next.

Algorithm 1 INSOM: A Novel Structure Identification Algorithm
1: I «— Number of rows in a SOM grid/map
2: J < Number of columns in a SOM grid/map
3: g < 0.67, Ly < n/10 /luser-defined parameteys, and /g
4: createANDinitializeMapl, .J)
5: for 7 =1 t0 Nepoens dO /ffor each epoch do

6. CalculateB, ,(r), a(r) /IB,,(r) is a neighborhoodg(r) is a weight coefficient
7. wy <« a(r)

8: for k=1 ton do //for each input datunix;, ;) do

o: FindTheWinnergy, yx)

10: p < the winner row

11: q <+ the winner column

12: Assigny, yk.p,q) /lassign input datunixy, yx) to the winner cellC,, ,

13: for ¢ =1 to I do //for each row in the SOM grid/map do

14: for j =1 to J do //for each column in the SOM grid/map do

15: if C;; € Bp,(r) then /lupdate hyperplane parameters for a cell in the neighborhégg(r)
16: WRLS(Z, j,wk,xk, yk)

17: end if

18: end for/ffor j

19: end for//for i

20:  end for//for k

21:  ResetCellsConditionallyf)
22:  ComputelNs()

23:  MergeSimilarCells(y)

24: end for/ffor r
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IV. NOVEL PARAMETER IDENTIFICATION

The previous section has induced an “initial” piecewise-linear model from a detieg:) € RY xR, k=
1,2,...,n of training data. Recall that a IN, in the previous section, was interpatashbilistically (statistically).
Nevertheless, a IN is interpret@dssibilisticallyin this section. More specifically, here we assume that a non-empty
cell in our proposed SOM represents a fuzzy rule such thatMhéls in F; ;, stored in cellC; ;, define a fuzzy
rule antecedent, whereas the+ 1 hyperplane parameters, storedcify;, define the corresponding rule consequent,
in a TSK-model-sense. The aforementioned model includesles in the form of Eq. (14) (in the Appendix) such

that each rule is locally optimum. The objective in this section is to optimize our model, globally.

A. Hyperplane Parameter Optimization

Based on Eqg. (14) the output of a piecewise-linear model in Eq. (15) (in the Appendix) equals

K N
y(xk) _CO+Z CZO J7. +Z ng szk] (8)
i=1 j=1
where x;, = [xhl,...,xk,N]T, furthermore theo;’s are functions of the (known) INs in th& rules. In

conclusion, a globally optimum set of hyperplanes can be computed by algorithm WRLS (in the Appendix) with
m = K (N +1). Further improvement was sought by optimal parameter estimation of parametrically described INs

as detailed next.

B. IN Parameter Optimization

Recall that a general IN has a non-parametric membership function. In the context of this work, based on the
theory presented in section 1I-B, we replaced aA; € F by another INF} ; = a; ; F; ; +b; j, wherea; ; € (0, 3]
is a scaling parameter and, ; € [—1, 1] is atranslation parameter; = 1,...,K,j = 1,..., N. It follows that IN
F}; is in the neighborhood (in a metrig= sense) of INF; ;. The task now is to compute “optimal” IN; ;, in
mean square error sense of Eq. (16) (in the Appendix), fromHN,sby optimal parameted; ;, b; ; estimation.

Genetic algorithms are established optimization tools as explained by Chakraborty [6fnC@&@dmide,
Herrera, Hoffmann, Magdalena [7], Papadakis, Theocharis [37]. Hence, optimization was pursued here by genetic
algorithms, where the phenotype of an “individual” consisted of specific values of the aforementioned parameters
a; j,b; ;. We remark that an “individual” encodes all rules’ antecedents (IF part) of a piecewise-linear model.

There was a total number & x N x K parameters binary-encoded in the chromosome of an individual.
We included 25 individuals per generation. The genetic algorithm was enhanced imjctogenetic hill-climbing
operator introduced by Kazarlis, Papadakis, Theocharis, Petridis [26] as well as by both opes&BesmdRWSCS
of Papadakis, Theocharis [36]. In addition, betfitism and adaptive crossover/mutatiorates were implemented.

To avoid overtraining, the fitness value of an individual was computed as follows. The data set was divided

in three subsets including (1) a training set (2) a validation set, and (3) a testing set. The consequent parameters
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292 of the fuzzy model were calculated from the training and validation setsELgt and E,,; be the mean square
203 errors on the training and validation sets, respectively. The fiti@p®f an individual was calculated as follows.

Q = beEyrn + (1 — be) Eval 9)
204 whereb,. € [0,1] is a user-definedbalancing factor for error The genetic algorithm was left to evolve until
295 no improvement was observed in the fitne€y of the best “individual” for 50 generations in a row. Then, the
206 testing (data) set was applied once. Finally, the mean square Esjoon the testing set was recorded.
297 C. Comparative Algorithm Discussion
298 The TSK-model-based FIS scheme proposed in this work has followed, in general, the mainstream interpretabil-
299 ity guidelines for FIS design presented by Guillaume [13]. For instance, care was taken to induce a small set of
300 readable rules from the data, FIS optimization was pursued, etc.
301 Recall that FIS structure identification can be pursued bygfld type partition, (2) guillotine cuts or (3)
302 scatter typepartition as explained by Cobth, Gomide, Herrera, Hoffmann, Magdalena [7], Papadakis, Theocharis
303 [37]. On one hand, both grid type partition and guillotine cuts suffer fromciimse of dimensionalityproblem,
304 moreover they often result in redundant rules in large numbers. On the other hand, scatter type partition typically
305 induces a small number of rules, furthermore it does not suffer frontiinge of dimensionalitproblem for any
306 number of inputs. Therefore, our INSOM architecture employedater typepartition of the input space.
307 The INSOM architecture was employed towards computing an “initial” piecewise-linear model. INs were
308 computed per data dimension by algorithm CALCIN. Therefore, initially, INs were interpreted probabilistically
309 (statistically). Next, the aforementioned “initial” model was employed as a TSK model. Therefore, ultimately, INs
310 were interpreted possibilistically. In other words, a statistically computed “initial” model was ultimately interpreted
311 linguistically. Finally, parameter optimization was pursued using standard FIS optimization techniques towards an
312 improved practical performance.
313 In the interest of simplicity, this work considered only a single system outputM.e= 1, in a function
a14 y : RY — RM approximation problem. Multiple inputs, i.8/ > 1, can be accommodated by considerih
315 single-output models. Furthermore, our intention here was neither an improvement of the TSK paradigm nor an
316 improvement of the KSOM paradigm itself. Rather, inspired from both aforementioned paradigms, we sought a
317 synergy towards aefficientas well as areffectivepiecewise-linear approximation of nonlinear models. Where,
318 by effectivewe mean a good capacity for generalization, whereagffigientwe mean 1) fast computation, and
319 2) small computer memory storage requirements. Our proposed synergy has demonstrated both effectiveness and

320 efficiency in the computational experiments presented in the following section.
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V. COMPUTATIONAL EXPERIMENTS

The performance of our proposed piecewise-linear modeling method is demonstrated in this section in four
experiments including (1) a single-input-single-output, non-linear, static system, (2) a two-input-single-output, non-
linear, static system, (3) Fisher’s Iris benchmark classification problem, and (4) a three-input-single-output, non-
linear, dynamic system. In the interest of simplicity, positive valuation funcijg:) = = was employed in every
(data) dimension. Moreover, in all cases, both input and output data were normalized in the ifiteivaly a
straightforward linear transformation; at the end of all computations, the output data were restored in their original
domain in order to enable meaningful comparisons. Only the first experiment has been published in a preliminary

work by Kaburlasos, Papadakis [22]; whereas, the remaining three experiments are presented here for the first time.

A. Single-Input-Single-Output, Non-linear, Static System

Consider the system described by the following equation.

y = sin(10x) (20)

wherez € [0,1]. Forty input/output data pair6ey,yr) € R x R, k = 1,...,40 were randomly (uniformly)
generated. The scatter plot of the generated input/output data points is shown in Fig. 2(a). Following the practice
of different authors, we employed the same data set for both training and testing. No validation set was employed
here, i.e.b, = 1 in Eq. (9).

A 4x4 SOM grid was used to compute a piecewise-linear model as described above. The structure identification
algorithm was applied fofV,,..ns = 100 epochs resulting in five non-empty cells. Recall that a non-empty cell
represents a rule. The IN/antecedent and the hyperplane/consequent (a line in this case) in each cell are shown,
respectively, in Fig. 2(b) and Fig. 2(a). A visual inspection of Fig. 2 clearly shows that the proposed method

partitions the input space well, in this simple example.

B. Two-Input-Single-Output, Non-linear, Static System

Consider the following system, also used by Kim, Park, Ji, Park [27], Papadakis, Theocharis [37], Sugeno,
Yasukawa [49].

y=floy,22) = (1+a7° +25"°)° (11)

wherel < 1,25 < 5. The surface in Fig. 3(a) plots the graph of Eq. (11). Fifty input vectars= [z 1, Tk 2],
k=1,2,...,50 were generated randomly in the squ@re5] x [1,5]. For each vectok, the corresponding output
y, was computed. Following the practice of different authors, we employed the same data set for both training and

testing. No validation set was employed here, be= 1 in Eq. (9).
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X

0, 0

0 0,2 0,4 0,6 0,8 1,
1,0
0,0

0 0,2 0.4 0,6 0,8 1,

0,

0

Fig. 2. (a) Scatter plot of mode} = sin(10z) including 40 randomly generated input/output data points. The five lines correspond,
respectively, to the consequents of five piecewise-linear (fuzzy) model rules. (b) Five INs, each one corresponds to the antecedent of a rule.
The corresponding rule consequent (line) is shown above a IN.

TABLE |
TWO-INPUT-SINGLE-OUTPUT SYSTEM: COMPARISON OF OUR PROPOSED METHOD WITH ALTERNATIVE METHODS

Method Rules|| Testing Error
Sugeno, Yasukawa [49] 6 0.0790
Kim, Park, Ji, Park [27] 3 0.0190

Papadakis, Theocharis [3]] 4 0.0095
Our proposed method 4 0.0086

For structure identification & x 4 grid of cells was employed folV,,..rs = 100 epochs. The rule-base of
the induced “initial” piecewise-linear model is shown in Fig. 4 including four rules. The four planes described
analytically in the consequents of the (four) rules in Fig. 4 are shown in Fig. 3(b). Fig. 3(c) displays the surfaces
in Fig. 3(a) and Fig. 3(b) superimposed.

The mean square errdt,,; (on the testing data set) of our “initial” piecewise-linear model iag ~ 0.70.
After parameter identification, as described above, the testing error reduced déyg te 0.0086. A comparison
of our proposed method with alternative methods is summarized in Table I. We point out that all the methods in
Table |, have used the same data.

The total computing time for our proposed method was around 22 sec on a Pentium IV 2.5 GHz computer. In
stark contrast we remark that the genetic-based structure identification method presented by Papadakis, Theocharis

[37] required around 50 min on the same data set.
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f(x7,X2)

y:

f(x1,X2)

Il

y

f(x1,X2)

y:

Fig. 3.

(a) The input-output surface of the two-input-single-output, non-linear, static system example. (b) Four planes represent the
consequents of four rules induced by our “initial” piecewise-linear model. (c) The surfaces in figures (a) and (b) are displayed superimposed.



359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

16

IF x,is and x, is THEN
1,00 1,00
030 030 /\ y=0.13-0.66x, +0.19x,
0,00 0,00

00 05 10 00 05 1,0
1,00 1,00
0,50 0,50 y=0.93-1.91x, —0.91x,
0,00 0,00

00 05 10 00 05 1,0
1,00 1,00
030 A o0 /\ y=0.13-0.03x, — 0.10x,
0,00 0,00

00 05 1,0 00 05 1,0
1,00 1,00
050 /\ 050 y=0.41-0.06x, —0.85x,
0,00 0,00

00 05 10 00 05 1,0

Fig. 4. The rule base of our “initial” piecewise-linear model in the two-input-single-output, non-linear, static system example.

C. Fisher’s Iris Benchmark Classification Problem

The Fisher Iris benchmark data set was downloaded from the UCI machine learning repository [35]. There are
fifty 4-dimensional vectors per class in three classes. Following a random data permutation we employed the first
75 data vectors “half” for training and “half” for validation, and the remaining 75 data vectors for testing.

This classification problem was dealt with by our proposed piecewise-linear modeling methiod.4Agrid
of cells was employed foN,,..ns = 100 epochs resulting in, in one experiment, an “initial” model with the three
rules shown in Fig. 5. Ten experiments were carried out using a different random data permutation per experiment.
The sizes of the data sets used for training /validation /testing were as described above.

The experimental results in ten experiments are summarized in Table Il. For comparison, the average training
and testing classification accuracies in our ten experiments vs. the corresponding results by alternative classification
methods are summarized in Table Ill. We point out that other authors do not, typically, specify the sizes of the

training/testing data sets they use.

D. Three-Input-Single-Output, Non-linear, Dynamic System
Consider the dynamic system described by the following difference equation.

_ Yr—1Yk—2(Yr—1 + 2.5)

+ up (12)
L+yi  + Yo

We remark that Eqg. (12) was employed as a benchmark in a number of previous works by Farag, Quintana,

Lambert-Torres [11], Narendra, Parthasarathy [34], Sugeno, Tanaka [48]. Note that the gutpleipends on both



375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

17

IF x, X, X, X, THEN

1.0 1.0 1.0 1y 1.0

05 0.5 A 05 L 05 L y=1.0+0.0 x;+0.0 x5+0.0 x3+0.0 x4
%0 05 10 00 05 10 00 05 10 00 05 10

1.0 1.0 1.0 1.0
05 A 0.5 A 05 A 05 A y=3.0+0.0 x;+0.0 xp+0.0 x3+0.0 x4
0.0 0.0 0.0 0.0

00 05 10 00 05 10 00 05 10 00 05 10

10 1.0 1.0 10 —
05 A 0.5 \ 05 A 05 A y=2.0+0.0 x;+0.0 x2+0.0 x3+0.0 x4
0.0 0.0 0.0 0.0

00 05 1.0 00 05 1.0 00 05 1.0 00 05 1.0

(a) Rule antecedent. (b) Rule consequent.

Fig. 5. The rule base of an “initial” piecewise-linear model in the Iris benchmark classification problem.

1) the previous output valugg,_; andy,_», and 2) the excitation signad;,.
Using initial valuesyy, = y; = 0 and random values (uniformly) for the excitation sigmgl in the interval

[—2,2], we generated five hundred data vectors 1, yx—2, uk, yx], k¥ = 1,2,...500. Half (250) of the aforemen-

tioned vectors were used for training and the remaining (250) vectors were used for validation. We considered a

piecewise-linear model with three inputs = yx_1, T2 = yr_2, 3 = ur and one outpuy = y, according to the
series-parallelapproach described by Juang [16], Papadakis, Tzionas, Kaburlasos, Theocharis [38].
The application of our proposed structure identification method induced an “initial” piecewise-linear model

with the three rules shown in Fig. 6. It is remarkable that the INs along thexis are quite similar to one another,

in particular they are “almost triangular” covering the whole universe of discourse — Note also that the coefficients

of uy in the consequent of every rule are (approximately) equal to one anethers). Therefore, we assumed
that inputzs = uy, is redundant, and it can be omitted as discussed in the following section.

After parameter identification, our proposed modeling method achieved a training&pprs 0.024. The
capacity for generalization of the final model was tested using five hundred data vegtorsyx—s, ux, yx|,
k = 1,2,..500 generated using a sinusoid excitation signgl= 8111(22’“—5’7). The testing error in this case was

Es = 0.0159. We remark that the smaller testing erfb0159 (compared td).024 training error) is attributed to

the sinusoid excitation signal used for testing. In particular, it appears that the outputs produced by our piecewise-
linear model in response to a sinusoid excitation are more predictable than the outputs produced in response to

a random excitation due to the input-output data law, which characterizes a signusoid. Furthermore, note that our

experimental results did not change significantly when system imput u; was omitted, thus confirming our

hypothesis regarding the redundancy of inpgit= uy in this example.

Table IV shows the performance of our proposed method, comparatively with alternative methods from the

literature. Note that all the methods in Table IV have used similar training /validation /testing data sets. In conclusion,

our proposed method produced both a small testing drygr~ 0.015 and a small number of (three) rules.



TABLE I
EXPERIMENTAL RESULTS FOR THEIRIS CLASSIFICATION BENCHMARK PROBLEM

# Exper || Classification Accuracy % # Misclassified Data
Training Testing Training | Testing
1 97.33 96.00 2 3
2 100.00 97.33 0 2
3 97.33 100.00 2 0
4 97.33 98.66 2 1
5 97.33 98.66 2 1
6 98.66 98.66 1 1
7 100.00 97.33 0 2
8 96.00 100.00 4 0
9 100.00 96.00 0 3
10 96.00 100.00 3 0
Average: | 98.00 98.26 1.60 1.30
Std. Dev: 1.57 1.55 1.35 1.16
Min: 96.00 96.00 0 0
Max: 100.00 100.00 4 3
TABLE I
IRIS BENCHMARK: COMPARISON OF OUR PROPOSED METHOD WITH ALTERNATIVE METHODS
Method Classification Accuracy %
Training Testing
Lee, Chen, Chen, Jou [32] 96.70 97.12
Wang, Lee [60] 97.20 97.47
Lee, Chen, Jiang [31] 96.30 Not Available
Simpson [45] 97.30 Not Available
Our proposed method 98.00 98.26
TABLE IV

THREE-INPUT-SINGLE-OUTPUT SYSTEM: COMPARISON OF OUR PROPOSED METHOD WITH ALTERNATIVE METHODS

Method Rules|| Trn Error || Testing Error
Wang, De Baets, Kerre [62] 8 0.618 0.203
Sugeno, Tanaka [48] 12 0.507 0.244
Farag, Quintana, Lambert-Torres [11] 75 0.037 0.040
Papadakis, Theocharis [37] 3 0.018 0.025
Our proposed method 3 0.024 0.015
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1.00 1.00 1.00
ify, ;s os0 andy, , is os0 and u, is 050 then v,=0.23-0.076y, ,-0.17y, ,+0.52u,
0.00 0.00 0.00
00 05 1.0 00 05 1.0 00 05 10
1.00 1.00 1.00
. . . . 0.50 —
ify,, is 0% /\ andy, ,is 0% and u, is then ¥,=0.42-0.76y, ;+0.14y, ,+0.49u,
0.00 0.00 0.00
00 05 1.0 00 05 1.0 00 05 1.0
1.00 1.00 1.00
iy, i os andy, ,is (s and u, is s then v,=-0.176+0.56y, ,+0.26y, ,+0.49u,
0.00 0.00 0.00
00 05 1.0 0.0 05 1.0 00 05 1.0
(a) Rule antecedent. (b) Rule consequent.

Fig. 6. The rule base of our “initial” piecewise-linear model in the three-input-single-output, non-linear, dynamic system example.

VI. DiscussioON ANDCONCLUSION

This work has proposed a novel synergy of TSK type FISs with a SOM towards piecewise-linear approximation
of nonlinear models based on INs. A IN was presented as a mathematical object interpreted as either a probability- or
a possibility- distribution. Hence, we moved freely between different paradigms including a probabilistic (statistical)
and a possibilistic (fuzzy) one towards an improved performance in practice. Note that here we employed a
novel combination of an “order-based” employment of LT with a “lattice-based” employment of LT including the
computation of a (novel) similarity measure functipp(.,.), etc.

The employment of (fairly small) SOM grids here did not aim at data visualization. Rather, our objective
here was practical efficiency as well as effectiveness in piecewise-linear modeling applications. The end result has
justified our practices since they compared favorably with the results by alternative methods from the literature
regarding the (small) number of rules, the (high) speed of learning, and the capacity for (comparatively accurate)
generalization in three new experiments regarding benchmark problems.

Recall, on one hand, that based on experimental evidence, Kaburlasos, Papadakis [23] have considered the
following null hypothesis HOA system’s input variable may be omitted when an underlying (sigmoid) positive
valuation function remains practically constant over the aforementioned input variable’s domain. On the other
hand, this work has presented experimental evidence that an input variable may be omitted when, given a linear
underlying positive valuation function, the induced INs (in different rules) are quite similar to one another, e.g.
input variablers = uy, in example V-D may be omitted. Therefore, we propose here an “enhancdidiypothesis
HO as follows: An input variable may be omitted when the INs induced (in different rules) for the aforementioned
input variable are “quite” near to one another, in a metkicsense. The latter hypothesis remains to be tested
statistically in a future work since the problem of input variable selection is significant in practice.

Another promising potential of our techniques is their inherent capacity to deal, in principle, with the uncertainty

as described by Wang [61] by treating, in particular, granular data such as intervals and (probability/possibility)
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distributions. Note that the need to accommodate the aforementioned data has been acknowledged in various
applications by different authors including Boukezzoula, Foulloy, Galichet [5], Pedrycz, Bezdek, Hathaway, Rogers
[41], etc. Furthermore, our techniques might be especially handy for (fuzzy) rule interpolation along the lines of

work by Koczy and colleagues, e.g. Koczy, Hirota [28], [29], Wong, Tikk, Gedeon, Koczy [63], Yam, Koczy [66].

APPENDIX

This Appendix, in the first place, presents the proof of Proposition 2.2. Then, it summarizes the WRLS

algorithm as well as the operation of a TSK model employed in this work.

Proposition 2.2Let (L, <) be a lattice with an inclusion measure functien L x L — R. Then, function

pa s Lx L —[0,1] given by us(z,y) = o(x < y) Ao(y < z) is a similarity measure.

Proof of Proposition 2.2 Functionu(.,.) satisfies both conditionsS() and (52) of Definition 5 as shown
in the following — We will employ the following equivalencer“< y < o(z < y) = 1” shown by Kaburlasos,

Athanasiadis, Mitkas (see in [24], Proposition 3).

(S1) In one direction, letux(z,y) = 1.
Theno(z <y)Ao(y<z)=1=o@@<y)=1l=ocy<z)=zr<yandy<z=z=y.
In the other direction, let = .
Then,us(z,y) =o(z <y)ANo(y<z)=1A1=1

(52) pa(z,y)=o(@<y)Ao(y<z)=0c(y <z)No(x <y)=pnly ).

Therefore, functionu, : L x L — [0,1] is a similarity measure.

A. WRLS Algorithm for Incremental Learning

Consider a series of data vectdrs 1, ..., zx.m, yx]T € R™ xR, k =1,...,n. The WRLS (Weighted Recursive
Least Squares) algorithm computes incrementally the parametegsof a hyperplane irR™ ", optimally fitted

in a least square error sense, to the aforementioned data. The corresponding equations are displayed next.
Ciy1 = Ck + (Yng1 — Xp, 1 - k) ki

Skxk 1
l:k — +
= I T
wy, +x 1 SkXk 41

(13)

Sk+1 = (I — kkxg_H) Sk

k=1,2,...,n.
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443 The WRLS equations above are initializedkat 0 with co = 0 andSy = al, wherel is the identity matrix of
444 dimensionm+1 anda € R is typically large, e.ga = 1000. A “weight of significance™wy, € (0, 1] may be attached
445 to a data paifxy, yx). In particular, forw, = 0 the corresponding datuixy, yx) is ignored. In this work we used
446 wy, = constant, i.e. all data pair{x,yx),k = 1,...,n are equally significant. Vectat, = [ck.0,Ck.1, - Ch.m] "
447 includes theoptimumhyperplane parameters in a step. Moreover, vegfan = [1,Zg41.1, ...,ka,m]T is used
448 to incrementally modify parameter vecteg.;. The value of parameten depends on the application.

449 B. A TSK model

450 The TSK model version we employed in our computational experiments includes a Ketinfeger number

451 ofy IF — THEN rules. The antecedent (IF part) of a rule corresponds to a fuzzy subspace of the input space,
452 whereas the corresponding consequent (THEN part) is a linear combinatidnimput valuesz;, j =1,...,N.

453 For instance, rulek;, is shown, next.

Ry : IF 21 is A1 and x2 is Ap o and---and o is Agn

N (14)
THEN yi =cko+ Y crjzj =cl -x
j=1
454 wherecy, = [cr.0, 1y con]” € RV x = [1,21, ..., 2n5]T € RV T furthermore A, ; are fuzzy numbers,
455 wherek =1,..., K andj =1,...,N.
456 A fuzzy rule is interpreted linguistically ag:F" the system inputsy, ..., z y are within a fuzzy subspace, which
457 is specified by theV-tuple [A 1, ..., Ak n], THEN the system outpujy is on a hyperplane iRV ! defined by
458 the consequent part. When more than one rules are activated then the output is computed as follows.
459 Let ma, ,(.) be the membership function of fuzzy numbey, ;. Assuming the “centroid” defuzzification
460 technique, the output to an input vector= [1, x1,...,xx]? is computed as follows.
K
> GkYk K
~ k=
J(x) = ==Y owfi (15)
dog9k k=L
k=1
N K
461 where gr = [] ma, ,(x;), moreovero, = g/ ) gr. We point out that outpuf(x) may be used as an
j=1 ‘ k=1
462 estimate of the system'’s “true” (sampled) outguih response to input vectot.
463 Given a numbem of input/output samples$x;,y;) € RV x R, i = 1,2, ...,n, the predictive accuracyof
464 the model is measured by the followimgean square error (E)
B=L S ) -y (16)
n 1 3
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