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Abstract1

Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A2

popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from Fuzzy Inference3

Systems (FISs) of TSK type as well as from Kohonen’s Self-Organizing Map (KSOM) this work introduces4

a genetically optimized synergy based on Interval Numbers, or INs for short. The latter (INs) are interpreted5

here either probabilistically or possibilistically. The employment of mathematical lattice theory is instrumental.6

Advantages include accommodation ofgranular data, introduction oftunable nonlinearities, and induction of7

descriptive decision-making knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated8

in three benchmark problems. The proposed computational method demonstrates invariably a better capacity for9

generalization; moreover, it learns orders of magnitude faster than alternative methods inducing clearly fewer rules.10

Index Terms11

. Fuzzy inference systems (FIS), Genetic optimization, Granular data, Intervals’ number (IN), Lattice theory,12

Linear approximation, Rules, Self-organizing map (SOM), Similarity measure, Structure identification, TSK model13

I. I NTRODUCTION14

The need to induce, efficiently, an effective model (real function)y : RN → RM arises frequently in practical15

applications. In particular, linear modelsy(x) = c0 + c1x1 + c2x2 + ... + cNxN are preferable due to simplicity.16

However, most often, the dependence of a system outputy on the input variablesx1, ..., xN is nonlinear.17
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One way of modelling nonlinearities is by a piecewise-linear approximation. For instance, in the context of fuzzy18

sets and systems, theTSK (Tagaki-Sugeno-Kang) fuzzy model, described by Sugeno, Kang [47], Sugeno, Tanaka19

[48], Sugeno, Yasukawa [49], Takagi, Sugeno [52], combines linguistic (fuzzy) interpretations of its numeric inputs20

with a (locally, within a cluster) linear computation of an output in order to achieve a nonlinear input-to-output21

map. For the reader’s convenience, the operation of a TSK model is summarized in the Appendix.22

Critical for the computation of a TSK model is the computation of input data clusters. A popular clustering23

scheme isKohonen’s self-organizing map (KSOM)introduced by Kohonen [30] mainly for visualization of nonlinear24

relations of multidimensional data. Er, Li, Cai, Chen [10] have confirmed the capacity of KSOM for rapid data25

processing. Pascual-Marqui, Pascual-Montano, Kochi, Carazo [40] have reported a soft (fuzzy) KSOM synergy with26

conventional fuzzyc-means, where the code vectors are distributed on a regular low-dimensional grid. Moreover,27

Vuorimaa [59] has introduced a fuzzy extension of KSOM for functionf : RN → R approximation using triangular28

fuzzy membership functions, exclusively. Recently, Kaburlasos, Papadakis [21] have proposedgranular (fuzzy)29

extensions of KSOM in classification applications.30

This work introduces a synergy of TSK- with KSOM- inspired techniques towards anefficient as well as31

effectivepiecewise-linear approximation of nonlinear models as explained below. The proposed synergy builds32

on an established mathematical result, namely the “resolution identity theorem”, presented by Zadeh [67], which33

specifies that a fuzzy set can (equivalently) be represented either by its membership function or by itsα-cuts.34

Note that even though a fuzzy set can be defined on any universe of discourse, in practice, thereal numbers35

universe of discourseR is preferred as pointed out by Kaburlasos and Kehagias [20]. More specifically, “fuzzy36

numbers” are typically employed, for instance in Fuzzy Inference Systems (FISs). Recall that afuzzy number37

is defined as a convex, normal fuzzy set, often with bounded support. A fuzzy number is defined onR with a38

upper-semicontinuousmembership function as described in Kaburlasos [17], Vroman, Deschrijver, Kerre [58].39

It turns out that aα-cut of a fuzzy number is an interval; hence, based on the aforementioned “resolution40

identity theorem”, a fuzzy number can be represented by a set of intervals. In conclusion, Uehara, Fujise [54],41

Uehara, Hirota [55], Uehara, Koyama, Hirota [56] have proposed a novel FIS design in practical applications based42

on α-cuts (intervals) of fuzzy numbers — Advantages include faster (parallel) data processing “level-by-level”,43

“orders-of-magnitude” smaller computer memory requirements, etc. Senturk, Erginel [43] have employedα-cuts44

for enhancing traditional control strategies. Furthermore, Cornelis, Deschrijver, Kerre [8], Nachtegael, Kerre [33]45

have consideredα-cuts/intervals for fuzzy logic/morphology operations in theoretical studies involving ambiguity.46

This work builds creatively on the “resolution identity theorem” by, first, considering the equivalentα-cuts47

(interval) representation for a fuzzy number and, second, by dropping the corresponding possibilistic interpretation.48

Hence, anIntervals’ Number (IN)emerges as a mathematical object, which may admit either apossibilistic or49

a probabilistic interpretation as explained below. Advantages include an introduction of useful linear operations,50

tunable nonlinearities, a capacity to deal with granular data, etc. Instrumental for IN-based FIS analysis and design51

is (mathematical)lattice theory (LT)because the set of (closed) intervals on the real line is partially(lattice)-ordered.52
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For the reader’s interest, the emergence of LT in information processing is outlined next.53

Mathematical lattices have emerged in the first half of the nineteenth century as a spin off of work on formalizing54

propositional logic. During the next one hundred years LT was established, and compiled creatively by Garrett55

Birkhoff [3]. Currently, there is a number of research Communities that employ LT in various information processing56

domains including, first,Logic and Reasoningfor automated decision-making (see in Xu, Ruan, Qin, Liu [65]),57

second,Mathematical Morphologyfor signal/image processing (see in Ritter, Wilson [42]), third,Formal Concept58

Analysisfor knowledge-representation and information-retrieval (see in Ganter, Wille [12]), fourth,Computational59

Intelligencefor clustering, classification, and regression applications (see in Kaburlasos [18]), etc.60

There are two different approaches for employing LT in practice. The first approach, namelyorder-based, is61

based on semantics represented by the lattice(partial)-order as demonstrated also by Bloch [4], Ganter, Wille [12],62

Xu, Ruan, Qin, Liu [65]. The second approach, namelyalgebra-based, is based on the lattice(algebraic)-operations63

of meet (∧) and join (∨) as demonstrated also by Graña, Villaverde, Maldonado, Hernandez [14], Ritter, Wilson64

[42], Soille [46], Valle, Sussner [57]. Various combinations of the aforementioned two approaches have also been65

reported, for instance in classification applications by da Silva, Sussner [9], Kaburlasos [18], Sussner, Esmi [50],66

[51]. In this work, we describe a novel combination of the aforementioned two approaches.67

Previous work by Kaburlasos [17], [18], Kaburlasos, Kehagias [20], Kaburlasos, Papadakis [21], [23], has68

employed the termFuzzy Interval Number (FIN)instead of the termIntervals’ Number (IN), because it stressed a69

fuzzy interpretation. Recently, Kaburlasos, Papadakis [22] have switched to the term IN, including also an improved70

mathematical notation. Likewise, the term “CALFIN”, proposed previously for an algorithm which computes a71

“FIN” from a population of measurements, is eloquently replaced here by the term “CALCIN”.72

This paper presents significant enhancements over the preliminary work by Kaburlasos, Papadakis in [22]73

as follows. First, we introduce a novel similarity measure function (µθ). Second, we detail structure/parameter74

identification algorithms based onµθ rather than on metricdθ, the latter was employed in [22]; here, we also compute75

the corresponding algorithm complexity. Third, we demonstrate an employment of a IN as either a probability-76

or a possibility- distribution. Fourth, we demonstrate three additional benchmark problems including improved77

experimental results; moreover, in all benchmark problems, we display the induced rules. Fifth, we discuss novel78

theoretical perspectives. Sixth, we cite a large number of additional references including comparative discussions.79

This paper is organized as follows. Section II summarizes the mathematical background. Section III presents a80

novel structure identification. Section IV describes a novel parameter identification. Section V details, comparatively,81

experimental results. Section VI concludes by summarizing our contribution including also future work. The82

Appendix includes the proof of a proposition as well as two computational algorithms used in the experiments.83

II. M ATHEMATICAL BACKGROUND84

This section summarizes useful mathematical results and tools introduced by Kaburlasos [18], Kaburlasos,85

Kehagias [19], [20], Kaburlasos, Papadakis [21], [22], [23], Kaburlasos, Athanasiadis, Mitkas [24]. Mathematical86
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lattice theory here is instrumental.87

Recall from Birkhoff [3] that given a setP , a binary relation (≤) on P is calledpartial order if and only if88

it satisfies the following conditions:x ≤ x (reflexivity), x ≤ y andy ≤ x ⇒ x = y (antisymmetry), andx ≤ y and89

y ≤ z ⇒ x ≤ z (transitivity). A partially ordered set, or posetfor short, is a pair(P,≤), whereP is a set and≤90

is a partial order relation onP . A (crisp) lattice is a poset(L,≤) any two of whose elementsx, y ∈ L have both91

a greatest lower bound, or meetfor short, and aleast upper bound, or join for short, denoted byx ∧ y andx ∨ y,92

respectively. A lattice(L,≤) is calledcompletewhen each of its subsetsX has both a greatest lower bound and93

a least upper bound inL. For simplicity, we will use the same symbolsO and I to denote the least and greatest94

element, respectively, in any complete lattice.95

A. The Vector Lattice (∆,≤) of Generalized Intervals96

Consider thecomplete latice(R,≤) of real numbers withleastandgreatestelements denoted, respectively, by97

O = −∞ andI = +∞. A generalized intervalis defined in the following.98

Definition 1: Generalized intervalis an element of the product lattice (R,≤∂)×(R,≤).99

We remark that≤∂ in Definition 1 denotes thedual (i.e. converse) of order relation≤, i.e. ≤∂≡≥. Product100

lattice (R,≤∂)×(R,≤) ≡ (R× R,≥ × ≤) will be denoted, simply, by (∆,≤).101

A generalized interval will be denoted by[x, y], wherex, y ∈ R. The meet(∧) and join (∨) in lattice (∆,≤)102

are given, respectively, by[a, b]∧ [c, d] = [a∨ c, b∧ d] and [a, b]∨ [c, d] = [a∧ c, b∨ d], wherea∧ c (a∨ c) denotes103

the minimum(maximum) of real numbersa andc.104

The set ofpositive (negative) generalized intervals[a, b], characterized bya ≤ b (a > b), is denoted by∆+105

(∆−). Apparently, (∆+,≤) is a poset, namelyposet of positive generalized intervals. Furthermore, poset (∆+,≤) is106

isomorphic1 to the poset (τ(R),≤) of intervals (sets) inR, i.e. (τ(R),≤) ∼= (∆+,≤). We augmented poset (τ(R),≤)107

by a least (empty) interval, denoted byO = [+∞,−∞] – Note that agreatestinterval I = [−∞, +∞] already108

exists inτ(R). Hence, the complete lattice (τO(R) = τ(R)∪ {O},≤)∼= (∆+ ∪ {O},≤) emerged. Due to the latter109

isomorphism, we will employ lattices(∆+ ∪ {O},≤) and (τO(R),≤), interchangeably.110

A (strictly) decreasingbijective, i.e. “one-to-one”, functionθR : R → R implies isomorphism (R,≤) ∼= (R,≥);111

i.e. x < y ⇔ θR(x) > θR(y), x, y ∈ R. Furthermore, a strictly increasing functionvR : R → R is a positive112

valuation2 in lattice (R,≤). We will refer to functionsθR(.) andvR(.) asdual isomorphismandpositive valuation,113

respectively. It follows that functionv∆ : ∆ → R given byv∆([a, b]) = vR(θR(a)) + vR(b) is a positive valuation114

in lattice (∆,≤). Furthermore, it follows a metric functiond∆ : R → R≥0 given byd∆([a, b], [c, d]) = [vR(θR(a ∧115

c))− vR(θR(a ∨ c))] + [vR(b ∨ d)− vR(b ∧ d)]. In particular, metricd∆ is valid in lattice (τO(R),≤).116

1A map ψ : (P,≤) → (Q,≤) is called(order) isomorphismif and only if both “x ≤ y ⇔ ψ(x) ≤ ψ(y)” and “ψ is ontoQ”. Two posets
(P,≤) and (Q,≤) are calledisomorphic, symbolically(P,≤) ∼= (Q,≤), if and only if there is an isomorphism between them.

2Positive valuationin a lattice (L,≤) is a real functionv : L × L → R that satisfies bothv(x) + v(y) = v(x ∧ y) + v(x ∨ y) and
x < y ⇒ v(x) < v(y).
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FunctionsθR(.) and vR(.) can be selected in various ways. For instance, choosingθR(x) = −x and vR(.)117

such thatvR(x) = −vR(−x) it follows positive valuationv∆([a, b]) = vR(b) − vR(a); hence, it follows metric118

d∆([a, b], [c, d]) = [vR(a ∨ c) − vR(a ∧ c)] + [vR(b ∨ d) − vR(b ∧ d)]. In particular, forvR(x) = x it follows119

metric d∆([a, b], [c, d]) = |a− c|+ |b− d|. In general,parametricfunctionsθR(.) andvR(.) may introduce tunable120

nonlinearities.121

The space∆ of generalized intervals is areal linear spacewith122

• addition defined as[a, b] + [c, d] = [a + c, b + d], and123

• multiplication (by a scalark ∈ R) defined ask[a, b] = [ka, kb].124

A generalized interval in∆ is a vector. Moreover, the lattice-ordered vector space∆ is calledvector lattice.125

A subsetC of a linear space is calledcone if and only if for x1, x2 ∈ C and real numbersλ1, λ2 ≥ 0 it126

follows (λ1x1 + λ2x2) ∈ C. It turns out that the set∆+ is a cone. Likewise, the set∆− is a cone.127

B. The Cone Lattice (F,≤) of Intervals’ Numbers (INs)128

Generalized interval analysis in the previous subsection is extended tointervals’ numbers(INs) in this129

subsection. A more general number type is defined in the first place, next.130

Definition 2: Generalized interval number, or GIN for short, is a functionG : (0, 1] → ∆.131

Let G denote the set of GINs. Since(G,≤) is the Cartesian product of complete lattices(∆,≤) it follows132

that (G,≤) is a complete lattice. Addition and multiplication can be extended from∆ to G as follows.133

• Addition is defined asGs : Gs(α) = (G1 + G2)(α) = G1(α) + G2(α), α ∈ (0, 1].134

• Multiplication (by a scalark ∈ R) is defined asGp : Gp(α) = kG1(α), α ∈ (0, 1].135

Our interest here focuses on thesublattice3 of intervals’ numbersdefined next.136

Definition 3: An Intervals’ Number, or IN for short, is a GINF such that bothF (α) ∈ (∆+ ∪ {O}) and137

α1 ≤ α2 ⇒ F (α1) ≥ F (α2).138

Let F denote the set of INs. Conventionally, a IN will be denoted by a capital letter in italics, e.g.F ∈ F.139

Moreover, aN -tuple IN will be denoted by a capital letter in bold, e.g.F = (F1, ..., FN ) ∈ FN .140

Definition 3 implies that a INF equals the set union of (conventional) intervals, e.g.F = ∪
α∈(0,1]

{[aα, bα]},141

where both interval-endsaα andbα are functions ofα ∈ (0, 1].142

A IN is a mathematical object, which may be interpreted as a probability/possibility distribution, an interval,143

and/or a real number as explained in the following. INF = ∪
α∈(0,1]

{[a, b]} represents interval[a, b] including real144

numbers fora = b. Moreover, INF = ∪
α∈(0,1]

{F (α)} may represent a probability distribution such that interval145

F (α) includes100(1−α)% of the distribution, whereas the remaining100α% is split even both below and above146

3A sublatticeof a lattice(L,≤) is another lattice(S,≤) such thatS ⊆ L.
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interval F (α). In addition, due to the “resolution identity theorem”, a INF = ∪
α∈(0,1]

{F (α)} may also represent147

a fuzzy number, whereF (α) is the correspondingα-cut. Hence, a INF : (0, 1] → τO(R) may, equivalently, be148

represented by a membership functionmF : R → (0, 1] as explained next.149

On one hand, (F,≤) is a lattice with orderingF1 ≤ F2 ⇔ F1(α) ≤ F2(α), α ∈ (0, 1]. On the other hand,150

using the conventional (membership) notation, it follows equivalenceF1 ≤ F2 ⇔ mF1(x) ≤ mF2(x), where151

x ∈ R, andmF (.) denotes the membership function of fuzzy numberF . In conclusion, there follows equivalence152

mF1(x) ≤ mF2(x) ⇔ F1(α) ≤ F2(α), wherex ∈ R, α ∈ (0, 1]. In words, INF1 is smaller-than/equal-to INF2 if153

and only if either the membership functionmF1(x) is smaller-than/equal-to the membership function ofmF2(x)154

for all x ∈ R, or (equivalently) intervalF1(α) is smaller-than/equal-to intervalF2(α) for all α ∈ (0, 1].155

The next proposition presents a metric in lattice(F,≤) based on a positive valuation functionvR : R → R≥0.156

Proposition 2.1: Let F1 andF2 be INs in the lattice(F,≤) of INs. Assuming that the following integral exists,

a metric functiondF : F× F → R≥0 is given by

dF(F1, F2) =

1∫

0

d∆(F1(α), F2(α))dα (1)

Moreover, a Minkowski metricdp : FN × FN → R≥0 can be defined between twoN -tuple INs F1 =157

[F1,1, ..., F1,N ]T andF2 = [F2,1, ..., F2,N ]T as158

dp(F1,F2) = [dp
F(F1,1, F2,1) + ... + dp

F(F1,N , F2,N )]1/p (2)

Note that Minkowski metricdp(F1,F2) may involve a pointx = [x1, ..., xN ]T ∈ RN such that an aforemen-159

tioned point entryxi ∈ R is represented by thetrivial IN xi = ∪
α∈(0,1]

{[xi, xi]}, i = 1, ..., N .160

SpaceF is a conefor F1, F2 ∈ F and real numbersλ1, λ2 ≥ 0 it follows (λ1F1 + λ2F2) ∈ F.161

C. A Hierarchy of Fuzzy Lattices162

Consider the following definition.163

Definition 4: Let (L,≤) be a complete lattice with least and greatest elementsO and I, respectively. An164

inclusion measurein (L,≤) is a mapσ : L× L → [0, 1], which satisfies the following conditions165

IM0. σ(x,O) = 0, ∀x 6= O,166

IM1. σ(x, x) = 1,∀x ∈ L,167

IM2. x ∧ y < x ⇒ σ(x, y) < 1, and168

IM3. u ≤ w ⇒ σ(x, u) ≤ σ(x,w) (Consistency Property).169

An inclusion measure in a lattice(L,≤) fuzzifies the corresponding (crisp) lattice inclusion relation (≤).170

Therefore, notationσ(x ≤ y) may be used instead ofσ(x, y).171
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An alternative approach for crisp lattice fuzzification was proposed by Belohlavek [2] with emphasis on object-172

attribute fuzzy relations and fuzzy concept lattices without employment of positive valuation functions.173

Lately, Hatzimichailidis, Kaburlasos [15] have proposed the following two inclusion measures in(τO(R),≤).174

1) στO(R)([a, b] ≤ [c, d];∨) = vR(θR(c))+vR(d)
vR(θR(a∧c))+vR(b∨d) , and175

2) στO(R)([a, b] ≤ [c, d];∧) = vR(θR(a∨c))+vR(b∧d)
vR(θR(a))+vR(b) , if a ∨ c ≤ b ∧ d; otherwise,στO(R)([a, b] ≤ [c, d];∧) = 0,176

whereθR(.) is a dual isomorphism andvR(.) is a positive valuation function.177

There follow two inclusion measures in the lattice (F,≤) of INs, next.178

1) σF(F1 ≤ F2;∨) =
1∫
0

στO(R)(F1(α) ≤ F2(α);∨)dα, and179

2) σF(F1 ≤ F2;∧) =
1∫
0

στO(R)(F1(α) ≤ F2(α);∧)dα.180

The latter inclusion measures will be employed below for calculating the similarity of two fuzzy sets, towards181

conditionally merging them, based on a novelsimilarity measurefunction defined next.182

D. A Novel Similarity Measure183

Various similarity measures have been presented by a number of authors including Adán, Ad́an [1], Torsello,184

Hidović-Rowe, Pelillo [53], Wu, Mendel [64], Zeng, Guo [68], Zhang, Zhang [69]. Setnes, Babuška, Kaymak, van185

Nauta Lemke [44] have reported similarity measure applications in fuzzy rule bases towards simplification. Pappis,186

Karacapilidis [39] have proposed a number of axioms for similarity measures regarding fuzzy sets, exclusively. In187

this work, we consider the more general definition by Kaburlasos, Moussiades, Vakali [25] presented next.188

Definition 5: Similarity measurein a setU is a functionµ : U × U → [0, 1], which satisfies conditions: (S1)189

µ(x, y) = 1 ⇔ x = y, and (S2) µ(x, y) = µ(y, x).190

Definition 5 retains the “common sense” essentials of similarity without “esoteric” redundancies.191

We define asimilarity spaceas a pair(U, µ) including a non-empty setU and a similarity measure function192

µ : U × U → [0, 1]. The following proposition introduces a novel similarity measure in a lattice based on an193

inclusion measure function.194

Proposition 2.2: Let (L,≤) be a lattice with an inclusion measure functionσ : L × L → R. Then, function195

µ∧ : L× L → [0, 1] given byµ∧(x, y) = σ(x ≤ y) ∧ σ(y ≤ x) is a similarity measure.196

The proof of Proposition 2.2 is shown in the Appendix.197

III. N OVEL STRUCTURE IDENTIFICATION198

The term “structure identification” here originates from fuzzy system modeling as explained in the Appendix.199

The objective of structure identification is to partition the input data space into subspaces such that the output to200

an inputx = [x1, ..., xN ]T ∈ RN , within a subspace, is a linear combination of theN inputs x1, ..., xN . Some201

basic ideas are illustrated in the following.202
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Fig. 1. Consequents (lines) of two different single-input-single-output piecewise-linear models. (a) This model partitions the input space
effectively with a small error using three lines. (b) This model partitions the input space ineffectively with a large error using two lines.

The computation of a piecewise-linear model, characterized by both a smallmean square error (E)and a203

minimum number of rules, is not trivial. For example, consider the data points shown together with the consequents204

(lines) of two different single-input-single-output piecewise-linear models in Fig. 1(a) and Fig. 1(b), respectively.205

On one hand, Fig. 1(a) demonstrates an effective partition (of the input spaceR) characterized by a small error.206

On the other hand, Fig. 1(b) demonstrates a non-effective partition characterized by a large error.207

A structure identification method is proposed next for computing an effective partition based on (1) A novel208

SOM architecture inspired from KSOM, and (2) A novel structure identification algorithm, namely INSOM.209

A. A Novel SOM Architecture210

A cell Ci,j , wherei = 1, ..., I andj = 1, ..., J in our proposed 2-dimensional SOM architecture grid stores both211

a N -dimensional INFi,j = [Fi,j,1, ..., Fi,j,N ]T and a(N + 1)-dimensional vectorci,j = [ci,j,0, ci,j,1, ..., ci,j,N ]T .212

On one hand, INFi,j ∈ FN represents a population of data assigned to cellCi,j as detailed below. On the other213

hand, vectorci,j ∈ RN+1 stores the parameters of the following hyperplane.214

pi,j(x) = ci,j,0 + ci,j,1x1 + ci,j,2x2, ..., ci,j,NxN (3)

A cell is callednon-emptyif at least one datum is assigned to it. Vectorsci,j are calledcode vectors. Structure215

identification is carried out by algorithm INSOM, next.216

B. INSOM: A Novel Structure Identification Algorithm217

Algorithm INSOM is applied in the aforementioned SOM architecture as detailed in the following.218

After initialization (INSOM, lines 1-4) a loop of computations (INSOM, lines 6-23) repeats a user-defined219

numberNepochs of epochs. An epoch initially computes the neighborhood sizeBp,q(r) (INSOM, line 6) of the220

winner cellCp,q as follows.221

Bp,q(r) =
I + J

4
exp

(
− I + J

Nepochs
r

)
, (4)
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wherer ∈ {1, ..., Nepochs}. Note that the following “decreasing” functiona(r), r ∈ {1, ...Nepochs} (INSOM,222

line 6) equals the weightwk in Eq. (13) of algorithm WRLS (in the Appendix).223

a(r) = exp
(
− r

Nepochs

)
= wk (5)

Of particular interest is function “FindTheWinner(xk, yk)” (INSOM, line 9). Recall that in order to compute an224

effective piecewise-linear model, the training data within a cluster have to be not only co-planar but also adjacent.225

Therefore, we proceed as follows.226

First, we compute the distancedi,j(xk) of point (xk, yk) ∈ RN × R from hyperplanepi,j (Eq. (3)) as227

di,j(xk) =
|pi,j(xk)− yk|√

1 +
N∑

t=1
c2
i,j

, (6)

wherei = 1, ..., I, j = 1, ..., J , k = 1, ..., n, and228

Second, we compute the distanceDi,j(Fi,j ,xk) of point xk from the cluster of points within SOM cellCi,j229

using Eq. (2), where a cluster of points is represented by one IN per (data) dimension.230

Then, a datum(xk, yk) is assigned to the (winner) cellCp,q, which minimizes the following indexPi,j231

Pi,j = bddi,j(xk) + (1− bd)Di,j(Fi,j ,xk), (7)

wherei = 1, ..., I, j = 1, ..., J , andbd ∈ [0, 1] is a user-definedbalancing factor for distance.232

We remark that a balanced consideration of both distancesdi,j(xk) and Di,j(Fi,j ,xk), as in Eq. (7), has233

demonstrated an improved capacity for generalization in our computational experiments below.234

Furthermore, we remark that an input datumxk ∈ RN is assigned to the winner cellCp,q exclusively. However,235

input datumxk is used to update the parameters of not only the winner cell’s hyperplane but also of its neighbours’236

hyperplanes by algorithm WRLS (INSOM, line 16). In particular, algorithm WRLS (in the Appendix) is applied237

here locally, at each SOM grid cell, withm = N .238

At the end of an epoch, if the total number of data assigned to a specific SOM cell is smaller than a user-defined239

threshold valuè θ = n/10 then the aforementioned cell is “reset” (INSOM, line 21). That is, the cell’s hyperplane240

parameter values are initialized to zero, moreover the corresponding INs are initialized to trivial values randomly;241

in addition, all data assigned to a “reset” cell are fed back to be assigned to different cells.242

A N -dimensional IN is computed at each SOM cell by applying algorithm CALCIN once per data dimension243

for the data assigned to a cell (INSOM, line 22). Since neighboring cells in the SOM grid typically encode similar244

data, a post-processing simplification was carried out by assuming that two neighboring cells describe the same245

(input) subspace if their correspondingN -dimensional INs are “quite similar” to each other in a similarity measure246

µ∧ : F × F → [0, 1] sense as in Proposition 2.2 using either inclusion measureσF(.;∨) or σF(.;∧). Only when247
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µ∧(F1,F2) is above a user-defined threshold valueµθ the aforementioned two cells are merged (INSOM, line248

23). Note that preliminary work by Kaburlasos, Papadakis [22] has employed a user-defined threshold distancedθ249

instead ofµθ. An advantage of usingµθ over dθ is that the size ofµθ is normalized(in the unit interval[0, 1]),250

whereas the size ofdθ is application-dependent.251

C. INSOM Algorithm Complexity252

We will consider only those routines ofAlgorithm 1 (INSOM) with “substantial” complexity. The “outer”253

loop repeatsNepochs times, furthermore the “inner” loop repeatsn times. Within the aforementioned “inner” loop,254

the complexity of routine “FindTheWinner(xk, yk)” equalsO(I ∗J ∗m); moreover, routine “WRLS(i, j,wk,xk, yk)”255

repeatsI ∗ J times, each time with complexityO(m ∗ n). Therefore, the complexity of the “inner” loop equals256

O(I∗J∗m∗n2). After the “inner” loop, there follow, first, routine “ComputeINs()” with complexityO(I∗J∗log(n))257

and, second, routine “MergeSimilarCells(µθ)” with complexity O(I ∗ J ∗m ∗ (L + log(n))), whereL is the total258

number of levels considered for a IN, e.g. INF =
L∪

i=1
{[aαi

, bαi
]}, αi ∈ (0, 1]. Making the reasonable assumption259

n2 >> L, it follows that the complexity ofAlgorithm 1 (INSOM) equalsO(I ∗J ∗m∗n2∗Nepochs). In conclusion,260

Algorithm 1 (INSOM) computes an “initial” model, which is fine-tuned as detailed next.261

Algorithm 1 INSOM: A Novel Structure Identification Algorithm
1: I ← Number of rows in a SOM grid/map
2: J ← Number of columns in a SOM grid/map
3: µθ ← 0.67, `θ ← n/10 //user-defined parametersµθ and `θ

4: createANDinitializeMap(I, J)
5: for r = 1 to Nepochs do //for each epoch do

6: CalculateBp,q(r), a(r) //Bp,q(r) is a neighborhood;a(r) is a weight coefficient

7: wk ← a(r)
8: for k = 1 to n do //for each input datum(xk, yk) do

9: FindTheWinner(xk, yk)
10: p ← the winner row
11: q ← the winner column
12: Assign(xk, yk,p,q) //assign input datum(xk, yk) to the winner cellCp,q

13: for i = 1 to I do //for each row in the SOM grid/map do

14: for j = 1 to J do //for each column in the SOM grid/map do

15: if Ci,j ∈ Bp,q(r) then //update hyperplane parameters for a cell in the neighborhoodBp,q(r)
16: WRLS(i, j,wk,xk, yk)
17: end if
18: end for//for j

19: end for//for i

20: end for//for k

21: ResetCellsConditionally(`θ)
22: ComputeINs()
23: MergeSimilarCells(µθ)
24: end for//for r
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IV. N OVEL PARAMETER IDENTIFICATION262

The previous section has induced an “initial” piecewise-linear model from a series(xk, yk) ∈ RN × R, k =263

1, 2, ..., n of training data. Recall that a IN, in the previous section, was interpretedprobabilistically (statistically).264

Nevertheless, a IN is interpretedpossibilisticallyin this section. More specifically, here we assume that a non-empty265

cell in our proposed SOM represents a fuzzy rule such that theN INs in Fi,j , stored in cellCi,j , define a fuzzy266

rule antecedent, whereas theN +1 hyperplane parameters, stored inci,j , define the corresponding rule consequent,267

in a TSK-model-sense. The aforementioned model includesK rules in the form of Eq. (14) (in the Appendix) such268

that each rule is locally optimum. The objective in this section is to optimize our model, globally.269

A. Hyperplane Parameter Optimization270

Based on Eq. (14) the output of a piecewise-linear model in Eq. (15) (in the Appendix) equals271

ŷ(xk) = c0 +
K∑

i=1

[(ci,0)(σi) +
N∑

j=1

(ci,j)(σixk,j)] (8)

where xk = [xk,1, ..., xk,N ]T , furthermore theσi’s are functions of the (known) INs in theK rules. In272

conclusion, a globally optimum set of hyperplanes can be computed by algorithm WRLS (in the Appendix) with273

m = K(N +1). Further improvement was sought by optimal parameter estimation of parametrically described INs274

as detailed next.275

B. IN Parameter Optimization276

Recall that a general IN has a non-parametric membership function. In the context of this work, based on the277

theory presented in section II-B, we replaced a INFi,j ∈ F by another INF ′i,j = ai,jFi,j +bi,j , whereai,j ∈ (0, 3]278

is a scaling parameter andbi,j ∈ [−1, 1] is a translation parameter,i = 1, ..., K, j = 1, ..., N . It follows that IN279

F ′i,j is in the neighborhood (in a metricdF sense) of INFi,j . The task now is to compute “optimal” INsF ′i,j , in a280

mean square error sense of Eq. (16) (in the Appendix), from INsFi,j by optimal parameterai,j , bi,j estimation.281

Genetic algorithms are established optimization tools as explained by Chakraborty [6], Cordón, Gomide,282

Herrera, Hoffmann, Magdalena [7], Papadakis, Theocharis [37]. Hence, optimization was pursued here by genetic283

algorithms, where the phenotype of an “individual” consisted of specific values of the aforementioned parameters284

ai,j , bi,j . We remark that an “individual” encodes all rules’ antecedents (IF part) of a piecewise-linear model.285

There was a total number of2 × N × K parameters binary-encoded in the chromosome of an individual.286

We included 25 individuals per generation. The genetic algorithm was enhanced by themicrogenetic hill-climbing287

operator introduced by Kazarlis, Papadakis, Theocharis, Petridis [26] as well as by both operatorsASERandRWSCS288

of Papadakis, Theocharis [36]. In addition, bothelitism andadaptive crossover/mutationrates were implemented.289

To avoid overtraining, the fitness value of an individual was computed as follows. The data set was divided290

in three subsets including (1) a training set (2) a validation set, and (3) a testing set. The consequent parameters291
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of the fuzzy model were calculated from the training and validation sets. LetEtrn andEval be the mean square292

errors on the training and validation sets, respectively. The fitness (Q) of an individual was calculated as follows.293

Q = beEtrn + (1− be)Eval (9)

wherebe ∈ [0, 1] is a user-definedbalancing factor for error. The genetic algorithm was left to evolve until294

no improvement was observed in the fitness (Q) of the best “individual” for 50 generations in a row. Then, the295

testing (data) set was applied once. Finally, the mean square errorEtst on the testing set was recorded.296

C. Comparative Algorithm Discussion297

The TSK-model-based FIS scheme proposed in this work has followed, in general, the mainstream interpretabil-298

ity guidelines for FIS design presented by Guillaume [13]. For instance, care was taken to induce a small set of299

readable rules from the data, FIS optimization was pursued, etc.300

Recall that FIS structure identification can be pursued by (1)grid type partition, (2) guillotine cuts, or (3)301

scatter typepartition as explained by Cordón, Gomide, Herrera, Hoffmann, Magdalena [7], Papadakis, Theocharis302

[37]. On one hand, both grid type partition and guillotine cuts suffer from thecurse of dimensionalityproblem,303

moreover they often result in redundant rules in large numbers. On the other hand, scatter type partition typically304

induces a small number of rules, furthermore it does not suffer from thecurse of dimensionalityproblem for any305

number of inputs. Therefore, our INSOM architecture employed ascatter typepartition of the input space.306

The INSOM architecture was employed towards computing an “initial” piecewise-linear model. INs were307

computed per data dimension by algorithm CALCIN. Therefore, initially, INs were interpreted probabilistically308

(statistically). Next, the aforementioned “initial” model was employed as a TSK model. Therefore, ultimately, INs309

were interpreted possibilistically. In other words, a statistically computed “initial” model was ultimately interpreted310

linguistically. Finally, parameter optimization was pursued using standard FIS optimization techniques towards an311

improved practical performance.312

In the interest of simplicity, this work considered only a single system output, i.e.M = 1, in a function313

y : RN → RM approximation problem. Multiple inputs, i.e.M > 1, can be accommodated by consideringM314

single-output models. Furthermore, our intention here was neither an improvement of the TSK paradigm nor an315

improvement of the KSOM paradigm itself. Rather, inspired from both aforementioned paradigms, we sought a316

synergy towards anefficientas well as aneffectivepiecewise-linear approximation of nonlinear models. Where,317

by effectivewe mean a good capacity for generalization, whereas byefficientwe mean 1) fast computation, and318

2) small computer memory storage requirements. Our proposed synergy has demonstrated both effectiveness and319

efficiency in the computational experiments presented in the following section.320
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V. COMPUTATIONAL EXPERIMENTS321

The performance of our proposed piecewise-linear modeling method is demonstrated in this section in four322

experiments including (1) a single-input-single-output, non-linear, static system, (2) a two-input-single-output, non-323

linear, static system, (3) Fisher’s Iris benchmark classification problem, and (4) a three-input-single-output, non-324

linear, dynamic system. In the interest of simplicity, positive valuation functionvR(x) = x was employed in every325

(data) dimension. Moreover, in all cases, both input and output data were normalized in the interval[0, 1] by a326

straightforward linear transformation; at the end of all computations, the output data were restored in their original327

domain in order to enable meaningful comparisons. Only the first experiment has been published in a preliminary328

work by Kaburlasos, Papadakis [22]; whereas, the remaining three experiments are presented here for the first time.329

A. Single-Input-Single-Output, Non-linear, Static System330

Consider the system described by the following equation.331

y = sin(10x) (10)

wherex ∈ [0, 1]. Forty input/output data pairs(xk, yk) ∈ R × R, k = 1, ..., 40 were randomly (uniformly)332

generated. The scatter plot of the generated input/output data points is shown in Fig. 2(a). Following the practice333

of different authors, we employed the same data set for both training and testing. No validation set was employed334

here, i.e.be = 1 in Eq. (9).335

A 4×4 SOM grid was used to compute a piecewise-linear model as described above. The structure identification336

algorithm was applied forNepochs = 100 epochs resulting in five non-empty cells. Recall that a non-empty cell337

represents a rule. The IN/antecedent and the hyperplane/consequent (a line in this case) in each cell are shown,338

respectively, in Fig. 2(b) and Fig. 2(a). A visual inspection of Fig. 2 clearly shows that the proposed method339

partitions the input space well, in this simple example.340

B. Two-Input-Single-Output, Non-linear, Static System341

Consider the following system, also used by Kim, Park, Ji, Park [27], Papadakis, Theocharis [37], Sugeno,342

Yasukawa [49].343

y = f(x1, x2) = (1 + x−2
1 + x−1.5

2 )2 (11)

where1 ≤ x1, x2 ≤ 5. The surface in Fig. 3(a) plots the graph of Eq. (11). Fifty input vectorsxk = [xk,1, xk,2],344

k = 1, 2, ..., 50 were generated randomly in the square[1, 5]× [1, 5]. For each vectorxk the corresponding output345

yk was computed. Following the practice of different authors, we employed the same data set for both training and346

testing. No validation set was employed here, i.e.be = 1 in Eq. (9).347
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Fig. 2. (a) Scatter plot of modely = sin(10x) including 40 randomly generated input/output data points. The five lines correspond,
respectively, to the consequents of five piecewise-linear (fuzzy) model rules. (b) Five INs, each one corresponds to the antecedent of a rule.
The corresponding rule consequent (line) is shown above a IN.

TABLE I

TWO-INPUT-SINGLE-OUTPUT SYSTEM: COMPARISON OF OUR PROPOSED METHOD WITH ALTERNATIVE METHODS

Method Rules Testing Error

Sugeno, Yasukawa [49] 6 0.0790

Kim, Park, Ji, Park [27] 3 0.0190

Papadakis, Theocharis [37] 4 0.0095

Our proposed method 4 0.0086

For structure identification a4 × 4 grid of cells was employed forNepochs = 100 epochs. The rule-base of348

the induced “initial” piecewise-linear model is shown in Fig. 4 including four rules. The four planes described349

analytically in the consequents of the (four) rules in Fig. 4 are shown in Fig. 3(b). Fig. 3(c) displays the surfaces350

in Fig. 3(a) and Fig. 3(b) superimposed.351

The mean square errorEtst (on the testing data set) of our “initial” piecewise-linear model wasEtst ≈ 0.70.352

After parameter identification, as described above, the testing error reduced down toEtst ≈ 0.0086. A comparison353

of our proposed method with alternative methods is summarized in Table I. We point out that all the methods in354

Table I, have used the same data.355

The total computing time for our proposed method was around 22 sec on a Pentium IV 2.5 GHz computer. In356

stark contrast we remark that the genetic-based structure identification method presented by Papadakis, Theocharis357

[37] required around 50 min on the same data set.358
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Fig. 3. (a) The input-output surface of the two-input-single-output, non-linear, static system example. (b) Four planes represent the
consequents of four rules induced by our “initial” piecewise-linear model. (c) The surfaces in figures (a) and (b) are displayed superimposed.
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Fig. 4. The rule base of our “initial” piecewise-linear model in the two-input-single-output, non-linear, static system example.

C. Fisher’s Iris Benchmark Classification Problem359

The Fisher Iris benchmark data set was downloaded from the UCI machine learning repository [35]. There are360

fifty 4-dimensional vectors per class in three classes. Following a random data permutation we employed the first361

75 data vectors “half” for training and “half” for validation, and the remaining 75 data vectors for testing.362

This classification problem was dealt with by our proposed piecewise-linear modeling method. A4 × 4 grid363

of cells was employed forNepochs = 100 epochs resulting in, in one experiment, an “initial” model with the three364

rules shown in Fig. 5. Ten experiments were carried out using a different random data permutation per experiment.365

The sizes of the data sets used for training /validation /testing were as described above.366

The experimental results in ten experiments are summarized in Table II. For comparison, the average training367

and testing classification accuracies in our ten experiments vs. the corresponding results by alternative classification368

methods are summarized in Table III. We point out that other authors do not, typically, specify the sizes of the369

training/testing data sets they use.370

D. Three-Input-Single-Output, Non-linear, Dynamic System371

Consider the dynamic system described by the following difference equation.372

yk =
yk−1yk−2(yk−1 + 2.5)

1 + y2
k−1 + y2

k−2

+ uk (12)

We remark that Eq. (12) was employed as a benchmark in a number of previous works by Farag, Quintana,373

Lambert-Torres [11], Narendra, Parthasarathy [34], Sugeno, Tanaka [48]. Note that the output (yk) depends on both374
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(a) Rule antecedent.

0.0 0.5 1.0

y=1.0+0.0 x1+0.0 x2+0.0 x3+0.0 x4

0.0 0.5 1.0

y=3.0+0.0 x1+0.0 x2+0.0 x3+0.0 x4

0.0 0.5 1.0

y=2.0+0.0 x1+0.0 x2+0.0 x3+0.0 x4

THEN

(b) Rule consequent.

Fig. 5. The rule base of an “initial” piecewise-linear model in the Iris benchmark classification problem.

1) the previous output valuesyk−1 andyk−2, and 2) the excitation signaluk.375

Using initial valuesy0 = y1 = 0 and random values (uniformly) for the excitation signaluk in the interval376

[−2, 2], we generated five hundred data vectors[yk−1, yk−2, uk, yk], k = 1, 2, ...500. Half (250) of the aforemen-377

tioned vectors were used for training and the remaining (250) vectors were used for validation. We considered a378

piecewise-linear model with three inputsx1 = yk−1, x2 = yk−2, x3 = uk and one outputy = yk according to the379

series-parallelapproach described by Juang [16], Papadakis, Tzionas, Kaburlasos, Theocharis [38].380

The application of our proposed structure identification method induced an “initial” piecewise-linear model381

with the three rules shown in Fig. 6. It is remarkable that the INs along theuk axis are quite similar to one another,382

in particular they are “almost triangular” covering the whole universe of discourse – Note also that the coefficients383

of uk in the consequent of every rule are (approximately) equal to one another (≈ 0.5). Therefore, we assumed384

that inputx3 = uk is redundant, and it can be omitted as discussed in the following section.385

After parameter identification, our proposed modeling method achieved a training errorEtrn ≈ 0.024. The386

capacity for generalization of the final model was tested using five hundred data vectors[yk−1, yk−2, uk, yk],387

k = 1, 2, ...500 generated using a sinusoid excitation signaluk = sin( 2kπ
25 ). The testing error in this case was388

Etst ≈ 0.0159. We remark that the smaller testing error0.0159 (compared to0.024 training error) is attributed to389

the sinusoid excitation signal used for testing. In particular, it appears that the outputs produced by our piecewise-390

linear model in response to a sinusoid excitation are more predictable than the outputs produced in response to391

a random excitation due to the input-output data law, which characterizes a signusoid. Furthermore, note that our392

experimental results did not change significantly when system inputx3 = uk was omitted, thus confirming our393

hypothesis regarding the redundancy of inputx3 = uk in this example.394

Table IV shows the performance of our proposed method, comparatively with alternative methods from the395

literature. Note that all the methods in Table IV have used similar training /validation /testing data sets. In conclusion,396

our proposed method produced both a small testing errorEtst ≈ 0.015 and a small number of (three) rules.397
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TABLE II

EXPERIMENTAL RESULTS FOR THEIRIS CLASSIFICATION BENCHMARK PROBLEM

# Exper Classification Accuracy % # Misclassified Data

Training Testing Training Testing

1 97.33 96.00 2 3

2 100.00 97.33 0 2

3 97.33 100.00 2 0

4 97.33 98.66 2 1

5 97.33 98.66 2 1

6 98.66 98.66 1 1

7 100.00 97.33 0 2

8 96.00 100.00 4 0

9 100.00 96.00 0 3

10 96.00 100.00 3 0

Average: 98.00 98.26 1.60 1.30

Std. Dev: 1.57 1.55 1.35 1.16

Min: 96.00 96.00 0 0

Max: 100.00 100.00 4 3

TABLE III

IRIS BENCHMARK: COMPARISON OF OUR PROPOSED METHOD WITH ALTERNATIVE METHODS

Method Classification Accuracy %

Training Testing

Lee, Chen, Chen, Jou [32] 96.70 97.12

Wang, Lee [60] 97.20 97.47

Lee, Chen, Jiang [31] 96.30 Not Available

Simpson [45] 97.30 Not Available

Our proposed method 98.00 98.26

TABLE IV

THREE-INPUT-SINGLE-OUTPUT SYSTEM: COMPARISON OF OUR PROPOSED METHOD WITH ALTERNATIVE METHODS

Method Rules Trn Error Testing Error

Wang, De Baets, Kerre [62] 8 0.618 0.203

Sugeno, Tanaka [48] 12 0.507 0.244

Farag, Quintana, Lambert-Torres [11] 75 0.037 0.040

Papadakis, Theocharis [37] 3 0.018 0.025

Our proposed method 3 0.024 0.015
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Fig. 6. The rule base of our “initial” piecewise-linear model in the three-input-single-output, non-linear, dynamic system example.

VI. D ISCUSSION ANDCONCLUSION398

This work has proposed a novel synergy of TSK type FISs with a SOM towards piecewise-linear approximation399

of nonlinear models based on INs. A IN was presented as a mathematical object interpreted as either a probability- or400

a possibility- distribution. Hence, we moved freely between different paradigms including a probabilistic (statistical)401

and a possibilistic (fuzzy) one towards an improved performance in practice. Note that here we employed a402

novel combination of an “order-based” employment of LT with a “lattice-based” employment of LT including the403

computation of a (novel) similarity measure functionµ∧(., .), etc.404

The employment of (fairly small) SOM grids here did not aim at data visualization. Rather, our objective405

here was practical efficiency as well as effectiveness in piecewise-linear modeling applications. The end result has406

justified our practices since they compared favorably with the results by alternative methods from the literature407

regarding the (small) number of rules, the (high) speed of learning, and the capacity for (comparatively accurate)408

generalization in three new experiments regarding benchmark problems.409

Recall, on one hand, that based on experimental evidence, Kaburlasos, Papadakis [23] have considered the410

following null hypothesis H0: A system’s input variable may be omitted when an underlying (sigmoid) positive411

valuation function remains practically constant over the aforementioned input variable’s domain. On the other412

hand, this work has presented experimental evidence that an input variable may be omitted when, given a linear413

underlying positive valuation function, the induced INs (in different rules) are quite similar to one another, e.g.414

input variablex3 = uk in example V-D may be omitted. Therefore, we propose here an “enhanced”null hypothesis415

H0 as follows: An input variable may be omitted when the INs induced (in different rules) for the aforementioned416

input variable are “quite” near to one another, in a metricdF sense. The latter hypothesis remains to be tested417

statistically in a future work since the problem of input variable selection is significant in practice.418

Another promising potential of our techniques is their inherent capacity to deal, in principle, with the uncertainty419

as described by Wang [61] by treating, in particular, granular data such as intervals and (probability/possibility)420
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distributions. Note that the need to accommodate the aforementioned data has been acknowledged in various421

applications by different authors including Boukezzoula, Foulloy, Galichet [5], Pedrycz, Bezdek, Hathaway, Rogers422

[41], etc. Furthermore, our techniques might be especially handy for (fuzzy) rule interpolation along the lines of423

work by Koczy and colleagues, e.g. Koczy, Hirota [28], [29], Wong, Tikk, Gedeon, Koczy [63], Yam, Koczy [66].424

APPENDIX425

This Appendix, in the first place, presents the proof of Proposition 2.2. Then, it summarizes the WRLS426

algorithm as well as the operation of a TSK model employed in this work.427

Proposition 2.2Let (L,≤) be a lattice with an inclusion measure functionσ : L × L → R. Then, function428

µ∧ : L× L → [0, 1] given byµ∧(x, y) = σ(x ≤ y) ∧ σ(y ≤ x) is a similarity measure.

429

Proof of Proposition 2.2. Functionµ∧(., .) satisfies both conditions (S1) and (S2) of Definition 5 as shown430

in the following – We will employ the following equivalence “x ≤ y ⇔ σ(x ≤ y) = 1” shown by Kaburlasos,431

Athanasiadis, Mitkas (see in [24], Proposition 3).432

(S1) In one direction, letµ∧(x, y) = 1.433

Then,σ(x ≤ y) ∧ σ(y ≤ x) = 1 ⇒ σ(x ≤ y) = 1 = σ(y ≤ x) ⇒ x ≤ y andy ≤ x ⇒ x = y.434

In the other direction, letx = y.435

Then,µ∧(x, y) = σ(x ≤ y) ∧ σ(y ≤ x) = 1 ∧ 1 = 1.436

(S2) µ∧(x, y) = σ(x ≤ y) ∧ σ(y ≤ x) = σ(y ≤ x) ∧ σ(x ≤ y) = µ∧(y, x).437

Therefore, functionµ∧ : L× L → [0, 1] is a similarity measure.438

A. WRLS Algorithm for Incremental Learning439

Consider a series of data vectors[xk,1, ..., xk,m, yk]T ∈ Rm×R, k = 1, ..., n. The WRLS (Weighted Recursive440

Least Squares) algorithm computes incrementally the parametersck+1 of a hyperplane inRm+1, optimally fitted,441

in a least square error sense, to the aforementioned data. The corresponding equations are displayed next.442

ck+1 = ck +
(
yk+1 − xT

k+1 · ck

)
kk

kk = Skxk+1
1

wk
+xT

k+1Skxk+1

Sk+1 =
(
I− kkxT

k+1

)
Sk

k = 1, 2, ..., n.

(13)
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The WRLS equations above are initialized atk = 0 with c0 = 0 andS0 = aI, whereI is the identity matrix of443

dimensionm+1 anda ∈ R is typically large, e.g.a = 1000. A “weight of significance”wk ∈ (0, 1] may be attached444

to a data pair(xk, yk). In particular, forwk = 0 the corresponding datum(xk, yk) is ignored. In this work we used445

wk = constant, i.e. all data pairs(xk, yk), k = 1, ..., n are equally significant. Vectorck = [ck,0, ck,1, ..., ck,m]T446

includes theoptimumhyperplane parameters in a step. Moreover, vectorxk+1 = [1, xk+1,1, ..., xk+1,m]T is used447

to incrementally modify parameter vectorck+1. The value of parameterm depends on the application.448

B. A TSK model449

The TSK model version we employed in our computational experiments includes a set ofK (integer number450

of) IF − THEN rules. The antecedent (IF part) of a rule corresponds to a fuzzy subspace of the input space,451

whereas the corresponding consequent (THEN part) is a linear combination ofN input valuesxj , j = 1, ..., N .452

For instance, ruleRk is shown, next.453

Rk : IF x1 is Ak,1 and x2 is Ak,2 and · · · and xN is Ak,N

THEN yk = ck,0 +
N∑

j=1

ck,jxj = cT
k · x

(14)

whereck = [ck,0, ck,1, ..., ck,N ]T ∈ RN+1, x = [1, x1, ..., xN ]T ∈ RN+1; furthermore,Ak,j are fuzzy numbers,454

wherek = 1, ...,K and j = 1, ..., N .455

A fuzzy rule is interpreted linguistically as:IF the system inputsx1, ..., xN are within a fuzzy subspace, which456

is specified by theN -tuple [Ak,1, ..., Ak,N ], THEN the system outputyk is on a hyperplane inRN+1 defined by457

the consequent part. When more than one rules are activated then the output is computed as follows.458

Let mAk,j
(.) be the membership function of fuzzy numberAk,j . Assuming the “centroid” defuzzification459

technique, the output to an input vectorx = [1, x1, ..., xN ]T is computed as follows.460

ŷ(x) =

K∑
k=1

gkyk

K∑
k=1

gk

=
K∑

k=1

σkfk (15)

where gk =
N∏

j=1

mAk,j
(xj), moreoverσk = gk/

K∑
k=1

gk. We point out that output̂y(x) may be used as an461

estimate of the system’s “true” (sampled) outputy in response to input vectorx.462

Given a numbern of input/output samples(xi, yi) ∈ RN+1 × R, i = 1, 2, ..., n, the predictive accuracyof463

the model is measured by the followingmean square error (E).464

E =
1
n
·

n∑

i=1

[ŷ(xi)− yi]2 (16)
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