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Fuzzy Lattice Reasoning (FLR) Neural Computation for Weighted Graph Partitioning 

 

Abstract 

The fuzzy lattice reasoning (FLR) neural network was introduced lately based on an inclusion 

measure function. This work presents a novel FLR extension, namely agglomerative 

similarity measure FLR, or asmFLR for short, for clustering based on a similarity measure 

function, the latter (function) is based on a metric. We demonstrate application in a metric 

space emerging from a weighted graph towards partitioning it. The asmFLR compares 

favorably with four alternative graph-clustering algorithms from the literature in a series of 

computational experiments on artificial data. In addition, our work introduces a novel index 

for the quality of clustering, which (index) compares favorably with two popular indices. 

 

Keywords: Clustering; Graph partitioning; Fuzzy lattices; Measurable path; Metric; 

Similarity Measure 

 

1. Introduction 

Neural computation is typically pursued on numeric data in the Euclidean space RN, where 

there is an abundance of mathematical tools available. Nonnumeric data were also considered 

including linguistic (fuzzy) data [32], [46]. Alternative (nonnumeric) data of practical interest 

include structured (graph) data. 

Our long-term interest, in the context of this work, is in partitioning a weighted graph, which 

represents a WWW-site as explained below. Advantages of meeting the aforementioned task 

by neural computing techniques include a capacity for massively parallel data processing as 

well as a capacity for both learning and generalization. A number of authors have pursued 

neural computing involving graphs as described next. 

A structure (graph) was used a vehicle for a unified data representation including arrays, 

sequences, and trees; in conclusion, a neural paradigm was proposed for learning, 

probabilistically, IO-isomorph transductions from an input- to an output- structured space, 

where transductions admit a recursive hidden state-space representation [18]. The latter work 

has spurred a lasting research activity including various enhancements and applications [1], 

[2], [8], [20], [47], [48]. In addition, a number of technical issues were studied including 

ambiguity [19], node-complexity, etc. [21]. Extensions to Kohonen’s self-organizing map 

(SOM) were also reported [27], [29]. However, the aforementioned neural paradigm pursues 
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learning by optimizing an “energy type” objective (error) function in RN using “number 

crunching” techniques. Hence, even though semantics may exist in (structured) input/output 

data, nevertheless semantics is absent during data processing. Also, the aforementioned neural 

paradigm does not induce descriptive, decision-making knowledge for the general user. 

On a different context, especially popular is an employment of the Hopfield neural network in 

graph theoretic problems including: maximum cut [9], search [58], minimum vertex cover 

[66], etc. Note that, typically, a Hopfield network ignores semantics and it pursues 

optimization of an “energy type” objective function. Nevertheless, a different (Hopfield) 

network, which does not neglect graph-theoretical properties, preserved under isomorphism, 

was also presented for deciding whether two graphs are structurally equivalent [31]. 

Several works have dealt with the problem of graph matching using neural networks [62]. For 

instance, a general framework was proposed for approximate graph matching problems in 

image retrieval tasks [22]. Moreover, a (neural) graph matching technique was presented for 

object recognition [57], where a graph representation of the neuron positions/interconnections 

reflects the structure of model objects. Furthermore, a pattern recognition problem was 

formulated as labelled graph matching towards finding the best match between an input graph 

and a stored graph [59]. 

The abovementioned graph matching techniques typically assume overlapping graphs, 

moreover an objective (cost) function is assumed. A recent work has introduced a (metric) 

graph edit distance (GED), derived from a metric cost function, in a set of graphs embedded 

in a labelled complete graph GΩ, namely edit grid; moreover it demonstrated, comparatively, 

a successful pattern recognition application regarding a chemical information system [33]. 

Furthermore, three novel graph kernels were introduced for measuring similarity between 

feature vectors of chemical molecules towards classification of chemical compounds 

represented by graphs of covalent bonds [54]. 

The specifications of our task here, namely weighted graph partitioning, require different 

tools since we need to partition a graph into non-overlapping (sub)graphs by clustering, as 

explained below. There exists an abundance of graph (clustering) algorithms in various 

application domains including circuit partitioning [6], pattern recognition [15], [25], [65], 

structure comparison [26], [33], etc. Note that the literature is dominated by divisive type 

clustering algorithms [4], [16], [61], where clusters are computed “top-down” by successively 

batch-splitting a graph. A different type of clustering, namely agglomerative (clustering), may 

proceed “bottom-up” by incrementally augmenting graphs. However, agglomerative 

clustering is not usually pursued mainly due to a shortage of enabling mathematical tools. 
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A fundamentally novel approach to neural computing was introduced lately applicable on 

partially(lattice)-ordered data including logic values, numbers, sets, symbols, and graphs [36], 

[38], [40], [41]. In conclusion, the Fuzzy Lattice Reasoning (FLR) emerged as an enhanced 

version of the learning algorithm employed by the neural-fuzzy classifier σ-FLN(MAP) [42]. 

The latter (classifier), in turn, has emerged as a lattice data domain extension of the well-

known neural classifier fuzzy-ARTMAP, or FAM for short [40]. 

The operation of FLR was originally based on an inclusion measure function [39], [42] 

towards inducing descriptive, decision-making knowledge (rules). A cluster, computed by 

FLR, is interpreted as an information granule [37]. A successful employment of a FLR 

version on graphs was already demonstrated using fuzzy lattice neurocomputing (FLN) [52], 

where clusters (namely, hyperwords) were computed in a master-graph, the latter encoded a 

thesaurus of English language synonyms; in conclusion, hyperwords were used for 

dimensionality reduction in a classification problem regarding large text documents. 

Nevertheless, the work in [52] ignores graph connectivity and treats, quite restrictively, a 

graph as an unstructured set of both vertices (or, nodes) and edges (or, links). 

A substantial novelty of this work is consideration of graph connectivity by a different FLR 

version based on a novel similarity measure function. In conclusion, a master-graph is treated 

here as a (structured) data domain where, in contrast with the conventional data domain R, 

which includes a single shortest path between two different real numbers a,b∈R [40], [42], 

there might be multiple shortest paths between two different nodes a and b in a master-graph. 

Previous versions of FLR dealt either with hyperboxes in RN [42] or with FINs [39]; whereas, 

this work extends the applicability of FLR to graphs based on a metric distance − Note that a 

number of distances between graphs have been proposed by different authors [5], [55]. 

There are similarities as well as substantial differences between FLR and previous graph 

processing algorithms. For instance, the latter algorithms have proposed a unification of graph 

/set /series data at a “representation” (encoding) level in the Euclidean space RN, whereas 

FLR proposes a disparate data fusion in a mathematical product-lattice L= L1×…×LN data 

domain [36], [40]. In conclusion, previous algorithms carry out data processing by “number 

crunching” techniques, whereas FLR may retain semantics throughout data processing [34]. 

In addition, the FLR may induce descriptive decision-making knowledge (rules) from the 

training data. An additional advantage for FLR includes the capacity to introduce tunable 

nonlinearities [34], [36], [37], [39], [40], [42]. 

This paper builds on previous work [43] including the following substantial novelties. First, 

we introduce a number of useful mathematical results including theoretical substantiation (i.e. 

proofs) and, second, we demonstrate comparatively a large number of new experimental 
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results on artificial data. In addition, the work in [43] employs solely the inner-transactions 

ratio (ITR) index for evaluating the quality of graph clustering in a real-world application, 

where a weighted master-graph represents traffic. However, the ITR index “by definition” 

ascribes larger values to fewer clusters; hence, it encourages the computation of a single 

cluster. Whereas, the work here employs three different indices, including a novel one, for 

evaluating advantageously the quality of graph clustering. Future work will demonstrate a 

real-world application using the novel (mathematical) tools detailed here. 

The layout is as follows. Section 2 defines metrics in measure (path) spaces. Section 3 

summarizes the theory of fuzzy lattices including useful extensions; the practical relevance is 

also explained. Section 4 presents a novel neural computing algorithm for graph clustering. 

Comparative experimental results are presented in section 5 including also a discussion. 

Section 6 concludes by summarizing the contribution of this work. Finally, the Appendix 

summarizes useful mathematical definitions and proofs. 

 

2. Measurable paths and metrics 

This section introduces useful metric distances between sets in a metric space; the latter 

emerges from measurable paths in a graph. The Appendix lists useful definitions. 

 

2.1. Measurable paths 

Inspired from measure theoretic analysis for path-planning in robotics [44], this section 

introduces useful terminology. Consider the following definition regarding a path. 

Definition 2.1. Let X be a set and D be a totally-ordered “indexing set” with least- and 

greatest- elements O and I, respectively. A path from a∈X to b∈X, symbolically a→b, is a 

function pab(.): D→X such that pab(O)=a and pab(I)=b. ■ 

We point out that the indexing set D implies a totally-ordered complete lattice (D,≤), whose 

cardinality may be either finite, e.g. D= {0,1,2,…,M}, or infinite; in turn, the latter could be 

either countable, e.g. D= {0,1,2,…}, or uncountable, e.g. D=[0,1] or D=R≥0 − We assume that 

both infinite sets {0,1,2,…} and R≥0 have greatest element I=+∞. 

Our interest is in “measurable” paths pab(.): D→X such that a measure space (D,ΣD, mΣD
) can 

be defined with 0< mΣD
(D)<+∞. The σ-algebra ΣD includes intervals [t1,t2], where t1,t2∈D with 

t1≤t2. In particular, mΣD
(D) = mΣD

([O,I]) is called length (of the path a→b from a∈X to b∈X). 
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A measure function mΣD
: ΣD→R≥0 is induced from a measure space (X,ΣX,

X
mΣ ) as follows. 

Number mΣD
(D) is calculated from a partition {D1,…,DN} of D such that there are no x≠y 

with pab(x) = pab(y), i.e. there are no “cycles” on the path a→b. In conclusion, mΣD
(D) = 

X
mΣ (pab(D1))+ …+

X
mΣ (pab(DN)), where pab(Di) denotes the image (set) of Di, i=1,…,N − We 

point out that any partition of D results in the same number mΣD
(D). 

Measure space (D,ΣD, mΣD
) implies complete lattice (ΣD,⊆) with least and greatest elements ∅ 

and D, respectively; moreover, function mΣD
: ΣD→R≥0 is a positive valuation in lattice (ΣD,⊆) 

[40]. Our interest, next, focuses on the (complete) indexing lattice (D,≤). 

Function vD(x)= mΣD
([O,x]), x∈D is a positive valuation in the indexing lattice (D,≤) because 

1) vD(x)+vD(y) = mΣD
([O,x])+ mΣD

([O,y]) = mΣD
([O,x∨y])+ mΣD

([O,x∧y]) = vD(x∨y)+vD(x∧y), 

and 2) x<y ⇒ mΣD
([O,x])< mΣD

([O,y]) ⇒ vD(x)<vD(y). Hence, a metric dD: D×D→R≥0 is 

given by dD(x,y) = vD(x∨y)-vD(x∧y) = mΣD
([O,x∨y])- mΣD

([O,x∧y]). 

The greatest lower bound of all path pab(.) lengths we call distance between a and b, 

symbolically dX(a,b). That is, distance dX(a,b) is the length of a shortest path from a∈X to 

b∈X. Note that uniqueness of number dX(a,b) does not imply uniqueness of the shortest path 

between a and b since more than one path can have the same (shortest) length. In conclusion, 

a metric space (X,dX) emerges from measurable paths between set X elements. 

Definition 2.2. A subset V⊆X in a metric space (X,dX) is called convex if and only if it 

includes all shortest paths between set V elements. ■ 

In the context of this work, a convex set is interpreted as an information granule [50]. 

We define distance(s) between sets in a metric space (X,dX), next. 

 

2.2. Metrics in a σ-algebra 

The previous section has detailed how a measure space (X,ΣX,
X

mΣ ) gives rise to a metric 

space (X,dX). This section presents three metrics in a σ-algebra ΣX. 

Proposition 2.3. Function da: ΣX×ΣX→R≥0 such that da(A,B) = 0 ⇔ A = B, moreover da(A,B)= 

i j
i, j

1 ( , )
| || | Xd a b
A B ∑  is a metric. ■ 

The proof of Proposition 2.3 is shown in the Appendix. 
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We remark that Proposition 2.3 regards only sets of finite cardinality. More specifically, |A| in 

Proposition 2.3 denotes the cardinality of finite set A. In other words, |A| denotes the (integer) 

number of elements contained in set A, e.g. |A={a,b,c}| = 3. Moreover, expression 

i j
i, j

( , )Xd a b∑  in Proposition 2.3 is a simplification for 
i j

i j[ ( , )]X
a A b B

d a b
∈ ∈
∑ ∑ . 

The following two metrics employ unary operations S∨  and S∧ , which equal, respectively, 

the supremum and the infimum of a set S of real numbers. Note that expressions S∨  and S∧  

are simplifications for expressions 
x S

S
∈
∨  and 

x S
S

∈
∧ , respectively − For a finite set S, numbers 

S∨  and S∧  equal, respectively, the maximum and minimum number in S. 

Proposition 2.4. Function dM: ΣX×ΣX→R≥0 such that dM(A,B) = 0 ⇔ A = B, moreover 

dM(A,B)= i ji j
( , )Xd a b∨∨  is a metric. ■ 

The proof of Proposition 2.4 is shown in the Appendix. 

We remark that expression i ji j
( , )Xd a b∨∨  in Proposition 2.4 is a simplification for expression 

i j
i j{ { ( , )}}Xa A b B

d a b
∈ ∈
∨ ∨ . Consider the following condition. 

Condition 2.5. Let A, B, C be sets in a metric space (X,dX), and let ai∈A, bj∈B, ck∈C. For an 

index k suppose both ∃Ik: Ik = k iii
arg{ ( , )}Xd c a∧  and ∃Jk: Jk = k jjj

arg{ ( , )}Xd c b∧ . Then we 

define “Condition 2.5” as follows 
k kI J( , )Xd a b  ≤ max{ i ji j

( , )Xd a b∨∧ , j ij i
( , )Xd b a∨∧ }. ■ 

Proposition 2.6. Condition 2.5 is sufficient for a metric function dH: ΣX×ΣX→R≥0 given by 

dH(A,B)= max{ i ji j
( , )Xd a b∨∧ , j ij i

( , )Xd b a∨∧ }. ■ 

The proof of Proposition 2.6 is shown in the Appendix. 

The metrics above are different from other ones between graphs [26], [33] in that the latter 

quantify structural dissimilarity between graphs, whereas the metrics here quantify distance 

between graphs. More specifically, metric dH(.,.) is a generalization of the Hausdorf metric, 

the latter is typically defined in RN [13], [35]. Moreover, metric da is applicable solely to sets 

of finite cardinality, whereas the other two metrics dM and dH are applicable between any sets. 

 

2.3. Examples 

In this section we demonstrate computation of metrics dM(.,,) and dH(.,,) including also 

geometric interpretations. 
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Example 2.7. 

Consider intervals [a,b] and [c,d] on the real line (Fig. 1). Sufficient Condition 2.5 holds, 

therefore it follows 

dM([a,b],[c,d]) = max{|a-d|, |b-c|}, for [a,b] ≠ [c,d], and 

dH([a,b],[c,d]) = max{|a-c|, |b-d|}. ■ 

 

Example 2.8. 

We represent a circle in the normed linear space RN by a pair (c,r), where c∈RN and r≥0 is the 

(circle) radius. For instance, Fig. 2 shows circles (cA,rA) and (cB,rB) on the plane. A vector r, 

on the line defined by the centers of circles (cA,rA) and (cB,rB), is given by r(λ) = cA+λ(cB-cA), 

λ∈R. For intervals on the line r(λ) sufficient Condition 2.5 holds. Therefore, it follows 

dM((cA,rA),(cB,rB)) = rA+||cA-cB||+rB, for (cA,rA) ≠ (cB,rB), and 

dH((cA,rA),(cB,rB)) = max{|| B A
A A

B A

( )r−
−

−
c cc
c c

- B A
B B

B A

( )r−
−

−
c cc
c c

||, || B A
A A

B A

( )r−
+

−
c cc
c c

-

B A
B B

B A

( )r−
+

−
c cc
c c

||} = max{|rA+||cA-cB||-rB|, |rB+||cA-cB||-rA|}, 

where ||.|| denotes the norm of its vector operand, and |.| denotes the absolute value of its real 

number operand. ■ 

 

3. Fuzzy lattices and useful extensions 

This section introduces useful functions based on the theory of fuzzy lattices [36], [37], [40], 

[42] summarized below including novel extensions. 

 

3.1. Power-lattices 

Lattice theory was compiled creatively by Garrett Birkhoff [3]. This section considers the 

power-set 2L of a lattice (L,≤). Next, we introduce a binary relation ≤⊆2L×2L such that for U= 

{u1,…,uI} and W= {w1,…,wJ} in 2L it is U≤W if and only if ∀i∈{1,…,I}, ∃j∈{1,…,J}: ui≤wj. 

It can be shown immediately that the aforementioned binary relation, first, is a partial order 

and, second, it is a lattice order. In conclusion, the power-lattice (2L,≤) emerges with U∧W = 

i j
i, j

{ }u w∧∪  and U∨W = i j
i, j

{ }u w∨∪ . 
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3.2. Fuzzy lattices 

A fuzzy set is a pair (U,m), where U is a universe of discourse and m is a membership function 

m: U→[0,1]. In particular, the core (of fuzzy set m) is the set C⊆U for which sup ( )
x U

m x
∈

 is 

attained. Fuzzy lattices emerged in mathematics as well as in computational intelligence [36] 

by fuzzifying the binary relation “≤”in a (crisp) lattice as follows. 

Definition 3.1. A fuzzy lattice is a triple (L,≤,m), where (L,≤) is a crisp lattice and (L×L,m) is a 

fuzzy set such that m(x,y)=1 if and only if x≤y. ■ 

We remark that function m: U→[0,1] in Definition 3.1 is interpreted as a weak (fuzzy) partial 

order relation in the sense that both m(x,y)=1 and m(y,z)=1 imply m(x,z)=1, whereas if either 

m(x,y)≠1 or m(y,z)≠1 then m(x,z) could be any number in the interval [0,1]. A (complete) 

lattice can be fuzzified by an inclusion measure function defined next. 

Definition 3.2. Let (L,≤) be a complete lattice with least element O. An inclusion measure is a 

function σ: L×L→[0,1], which satisfies conditions: I0) σ(u,O)=0, u≠O; I1) σ(u,u) = 1, ∀u∈L; 

I2) u∧w < u ⇒ σ(u,w) < 1; I3) u ≤ w ⇒ σ(x,u) ≤ σ(x,w) (The Consistency Property). ■ 

We remark that σ(x,y) is interpreted as a (fuzzy) degree of inclusion of x in y. Therefore, 

notations σ(x,y) and σ(x≤y) are used interchangably. If σ: L×L→[0,1] is an inclusion measure 

in lattice (L,≤) then (L,≤,σ) is a fuzzy lattice [36], [42]. A couple inclusion measures can be 

defined based on a positive valuation function as follows [36], [42], [52]. 

Theorem 3.3. If v: L→R≥0 is a positive valuation in a complete lattice (L,≤), with v(O)=0, 

then both functions s(x,u) = v(x∧u)/v(x) and k(x,u) = v(u)/v(x∨u) are inclusion measures. ■ 

We point out that Theorem 3.3 calls for a nonnegative positive valuation function v. 

A novel inclusion measure can be introduced in a power-lattice as follows. 

Proposition 3.4. Let function σV: L×L→[0,1] be an inclusion measure in a lattice (L,≤). Then 

function σ: 2L×2L→[0,1] given by the convex combination σ({u1,…,uI}=U≤W={w1,…,wJ}) = 

λ1
j

max σV(u1≤wj)+…+λI
j

max σV(uI≤wj) is an inclusion measure. ■ 

The proof of Proposition 3.4 is shown in the Appendix. 

We remark that by “convex combination” we mean a set λ1,…,λI of positive numbers such 

that λ1+…+λI = 1. 
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3.3. Similarity measure functions 

Various similarity measures are employed/defined in applications [11], [53], [55]. A novel 

definition is proposed next. 

Definition 3.5. A similarity measure is a function μ: U×U→[0,1], which satisfies conditions: 

S1) μ(x,y) = 1 ⇔ x = y; S2) μ(x,y) = μ(y,x). ■ 

We remark that the advantage of our proposed Definition 3.5 is that it retains rigorously the 

essentials of a “common sense” notion of similarity while avoiding redundancies. 

We define a similarity space as a pair (U,μ) including a non-empty set U and a similarity 

measure function μ: U×U→[0,1]. The following proposition introduces a similarity measure 

in a (complete) lattice based on an inclusion measure function σ. 

Proposition 3.6. Let (L,≤) be a lattice with an inclusion measure σ: L×L→[0,1]. Then, 

function μσ: L×L→[0,1] given by μσ(x,y) = ( ) ( )
2

x y y xσ ≤ + σ ≤  is a similarity measure. ■ 

The proof of Proposition 3.6 is shown in the Appendix. 

The following proposition introduces a similarity measure, in a metric space. 

Proposition 3.7. Let function d: U×U→R≥0 be a metric. Then, function μd: U×U→[0,1] given 

by μd(x,y) = 1
1 ( , )d x y+

 is a similarity measure. ■ 

The proof of Proposition 3.7 is shown in the Appendix. 

 

3.4. Practical relevance 

A metric space emerges below by adding up the weights of links and nodes along shortest 

paths in a weighted master-graph M= (V,E), where V= {v1,…,vN} is the (non-empty) finite set 

of vertices (or, equivalently nodes) and E⊆V×V is the set of edges (or, equivalently, links). 

A partition, also called equivalence relation, P of the set V of vertices in a master-graph is a 

(finite) collection of subsets P1,…,PN, namely parts, of V such that both Pi∩Pj = {} for i≠j 

and P1∪…∪PN = V for an integer number N. Apparently, based on shortest path lengths, we 

can define different metric distances da(.,.), dM(.,.), and dH(.,.) between parts of partitions, 

where a part represents a subgraph − Note that different authors have already proposed 

distances beyond space RN, e.g. in metric spaces for queries [64], in spaces of convex 

/concave bodies for optimisation [7], etc. An additional, useful function is presented next. 
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Consider the family ΠV of all partitions of a set V. It is known that (ΠV,≤) is a lattice-ordered 

by (partitions’) refinement [56]. More specifically, lattice (ΠV,≤) is a sublattice of power-

lattice (2L,≤), where (L=2V,≤) is the power-set (lattice) of V. 

In this work we have considered (in a master-graph) inclusion measure “type” functions 

defined as in Proposition 3.4 with λ1=…=λI for the following choices of σV: 

1)  σV1(Pi≤Qj) = i j

i

| |
| |

P Q
P
∧

,  2)  σV2(Pi≤Qj) = j

i j

| |
| |

Q
P Q∨

, and  3)  σV3(Pi≤Qj) = i j

i j

| |
| |
P Q
P Q
∧

∨
, where 

the unary operator |.| returns the cardinality of its (set) operand; e.g. |P1={a,b,c}| = 3. 

It turns out that only functions σV1(.,.) and σV2(.,.) above are inclusion measures, according to 

Theorem 3.3; whereas, function σV3(.,.) is not an inclusion measure as demonstrated by the 

following counter-example. 

Consider the (totally-ordered) lattice (R,≤) of real numbers. For 1 = u ≤ w = 2 it is 

straightforward to confirm that the Consistency Property u ≤ w ⇒ σ(x,u) ≤ σ(x,w) of 

Definition 3.2 does not hold for x = 0.5, because 0.5∧1/0.5∨1 = 0.5 > 0.25 = 0.5∧2/0.5∨2. 

Hence, function σV3(.,.) is not an inclusion measure. Nevertheless, function σV3(.,.) has 

produced the best experimental results as demonstrated below. 

 

4. A fuzzy lattice reasoning (FLR) neural network 

Fuzzy Lattice Reasoning (FLR) has emerged as an enhanced version of the learning algorithm 

employed by fuzzy neural network σ-FLN(MAP) [42]. The latter, in turn, has emerged as a 

lattice data domain enhancement of neural network fuzzy-ART(MAP) [40]. 

The operation of FLR was originally based on an inclusion measure function [37], [39], [42] 

towards inducing descriptive, decision-making knowledge (rules). Lately, there was an effort 

to extend FLR in space RN based on a “non-rigorously defined” similarity measure function 

[12]. Inspired from the latter we introduce, in the following, a FLR version for clustering in a 

graph, based on a rigorously defined similarity measure function. 

 

4.1. The agglomerative similarity measure FLR (asmFLR) algorithm 

The agglomerative similarity measure FLR (asmFLR) algorithm for master-graph partitioning 

by clustering is presented in Fig. 3 for neural computing subgraphs, namely granules or, 

equivalently, clusters. Data processing by asmFLR repeats, conditioned on a user-defined 

Assimilation Condition (Fig. 3, Step-1), a number of cycles. Each aforementioned cycle 

carries out, in parallel, “batch processing” computations. Overall, it can be claimed that the 
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asmFLR algorithm carries out Lattice Computing (LC), the latter is defined as lattice-theory-

based Computational Intelligence [23]. 

 

4.2. Algorithm asmFLR details 

The asmFLR may set out learning without a priori knowledge; however, a priori knowledge 

can be supplied in the form of an initial set of subgraphs/clusters (Fig. 3, Step-0). In 

particular, for n=N it follows that each master-graph node constitutes a (trivial) cluster. 

There can be different user-defined Assimilation Conditions (Fig. 3, Step-1). For instance, a 

naive Assimilation Condition could be “n>1” meaning that clustering proceeds until all 

master-graph nodes are put in one cluster. Another Assimilation Condition may define a 

maximum threshold size for a computed cluster, etc. 

Generalization can be effected as follows. A cluster Q⊆V in a a weighted master-graph M = 

(V,E) defines a fuzzy set (ΣX, μd(P;Q)) such that cluster Q corresponds to the core of fuzzy set 

(ΣX, μd(P;Q)) − Note that in notation “μd(P;Q)” symbol “P” denotes a variable, whereas 

symbol “Q” denotes a parameter. Hence, generalization becomes feasible beyond core Q. 

We remark that the original FLR classifier, which employs an inclusion measure function, 

supports two different modes of reasoning, namely Generalized Modus Ponens and 

Reasoning by Analogy [42]. None of the aforementioned modes of reasoning is supported by 

asmFLR since the latter is a scheme for clustering based on a similarity measure function. 

Next, we compute the complexity of asmFLR. 

Algorithm asmFLR (Fig. 3) includes a number of O(N) cycles. Each cycle computes O(N2) 

similarity measure function values. Moreover, each of the latter (values) requires the length 

(i.e. the metric distance) of the shortest path between two master-graph nodes; nevertheless, 

there is no additional computational overhead since all aforementioned metric distances are 

computed once, in a data preprocessing step. It follows that the learning (clustering) 

complexity of asmFLR is cubic O(N3) in the number “N” of master-graph nodes. 

 

4.3. Comparative discussion 

There are inherent similarities as well as substantial differences between asmFLR and FLR. 

More specifically, a cluster computed by either algorithm corresponds to the core of a fuzzy 

set. Nevertheless, a cluster for FLR is a N-tuple FIN in space RN, the latter is the Cartesian 

product of N totally-ordered lattices R [42]; whereas, the asmFLR here is applied in the 

partially-ordered lattice (ΠV,≤) of partitions of the set V= {v1,…,vN} of vertices in a weighted 
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master-graph M= (V,E). Moreover, asmFLR is a data-order-independent extension of the data-

order-dependent FLR such that asmFLR is based on a similarity measure function, whereas 

FLR is based on an inclusion measure function. In addition, the FLR learns rapidly with 

complexity O(n) in the number n of data, whereas the learning complexity of asmFLR is 

O(N3) in the number N of master-graph nodes as shown above. 

 

5. Comparative experimental results 

We applied (neural) algorithm asmFLR, comparatively, on metric spaces emerged from 

master-graphs as described above. Master-graphs were generated as described next. 

 

5.1. Artificial data generation and preprocessing 

A user defined a number of parameters for generating, randomly, a dataset. The 

aforementioned parameters included: the number M of master-graphs in a dataset, the number 

C of graph-clusters in a master-graph, both the minimum number vmin and the maximum 

number vmax of vertices per graph-cluster and, finally, both an intra-connection ratio rin∈[0,1] 

and an inter-connection ratio rout>0. A single master-graph was generated as detailed next. 

For a graph-cluster c∈{1,…,C}, a number vc∈[vmin,vmax] of vertices was drawn randomly. 

Then, we computed the number nin of intra-cluster links between a vertex and different ones 

in graph-cluster c such that nin equals the integer nearest to real number rin(vc-1). Next, we 

randomly selected (eligible) intra-cluster links from the list of all links in graph-cluster c. 

Hence, a total number C of graph-clusters were computed. 

The graph-clusters computed above were connected by randomly generated inter-cluster links 

as follows. We computed the (constant) number nout of links between a vertex in graph-cluster 

c∈{1,…,C} with vertices in different graph-clusters such that nout equals the smallest integer 

above real number rin(vc-1)rout. In addition, we required vertex intra-connectivity (within a 

cluster) to be larger than the corresponding vertex inter-connectivity (with different clusters) 

in order to produce clearly separated graph-clusters (in a master-graph) − Note that different 

authors often generate inter-cluster links “probabilistically” [49] resulting in, unfortunately, 

“not clearly separated” graph-clusters. Finally, we randomly drew (eligible) inter-cluster links 

from the list of all links in the master-graph. Hence, a master-graph was generated. 

We repeated the above procedure M times. In conclusion, one dataset was generated 

including M (different) master-graphs. The next example demonstrates dataset generation. 
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Example 5.1. 

Fig. 4 (as well as Fig. 5) displays a dataset with M=2 different master-graphs; each of the 

aforementioned master-graphs includes C=5 identical graph-clusters with vmin=3, vmax=5. Note 

that it is rin=1.0 in both Fig. 4 and Fig. 5, i.e. each graph-cluster is completely intra-connected. 

A user defined rout=0.3 for the dataset in Fig. 4, and rout=0.6 for the dataset in Fig. 5. 

Due to the master-graph generation procedure detailed above, it turns out that the (actual) rout 

of a specific vertex is, typically, different than the user-defined rout. Therefore, for each 

vertex, we computed the (actual) rout as the ratio of (number of) inter-cluster links over 

(number of) intra-cluster links. Finally, we computed both the average rout and the 

corresponding standard deviation in a master-graph in Fig. 4 as well as in Fig. 5 − It turns out 

that the average rout is different than the user-defined rout, as expected. ■ 

As soon as a master-graph was generated, we used (in a data-preprocessing step) Floyd’s 

algorithm [17] in order to compute the distances between any two nodes in the master-graph. 

We point out that Floyd’s algorithm receives as input the corresponding master-graph’s 

“adjacency matrix” and outputs the required “distance matrix” with cubic complexity O(N3) 

in the number N of master-graph nodes. Note that in our experiments we considered master-

graph links of “unit” length, moreover the vertices in a master-graph did not have a weight. 

 

5.2. Comparative experiments 

We generated 5 (different) datasets ds1, ds2, ds3, ds4, ds5, respectively, for rout∈{0.5, 0.7, 

0.9, 1.0, 1.2}. A master-graph in a dataset included C=10 (identical) graph-clusters with vmin= 

5 and vmax= 15. Table 1 summarizes various dataset statistics including average cluster size as 

well as the corresponding standard deviation 11.6 and 3.565, respectively. Table 1 also shows 

the user-defined intra-connection ratio rin = 1, that is each vertex in a graph-cluster was 

connected to all other vertices. The next column in Table 1 indicates the user-defined inter-

connection ratio rout. The last two columns in Table 1 display the actual (average) rout as well 

as the corresponding standard deviation in a dataset. 

In a data-preprocessing step we calculated (and stored) the metric distances between all pairs 

of nodes in a master-graph, for fast access. 

We employed algorithm asmFLR using a similarity measure μd(.,.) based on three different 

metrics, namely da(.,.), dM(.,.), and dH(.,.). Notation asmFLR(dX) below means algorithm 

asmFLR based on metric dX, X∈{a, M, H}. For comparison, we implemented and applied four 

alternative graph clustering algorithms, namely MajorClust [61], MinCutTrees [10], [16], 
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Modularity [49], and SingleLink [30]. Where applicable, the aforementioned algorithms were 

executed until 10 graph-clusters were computed. 

Table 2 through Table 6 summarize our experimental results regarding datasets ds1, ds2, ds3, 

ds4, and ds5, respectively. Algorithms MajorClust and MinCutTrees terminated by 

computing a small number C≤3 of graph-clusters. The other algorithms terminated when a 

total number of C=10 graph-clusters were computed as shown in the second column of Tables 

2 through Table 6. The next four columns in Tables 2 through Table 6 display size statistics 

regarding graph-clusters computed by an algorithm. Symbol “NaN”, i.e. Not-a-Number, 

appears in the std (standard deviation) column in a Table when a single cluster was computed, 

hence computation of std is meaningless. Column “#trivials” in a Table indicates the 

(average) number of trivial graph-clusters in a total number of C=10 graph-clusters computed 

by an algorithm. The last three columns in a Table show the corresponding values of (graph-

clustering) indices Purity [67], Entropy [68], and similarity measure μσ(.,.) − Note that we 

used a different similarity measure function μσ(.,.) as an index than the similarity measure 

function μd(.,.) used by algorithm asmFLR towards producing unbiased results. 

Fig. 6, as well as Fig. 7, demonstrates comparatively the performance of algorithms 

asmFLR(da) and Modularity using three indices, namely Purity (curve in light gray color), 

Entropy (curve in dark gray color), and index μσ(.,.) (curve in black color), versus a 

(decreasing) number of computed graph-clusters for dataset ds1. First, Fig. 6 (a) and (b) 

correspond to algorithms asmFLR(da) and Modularity, respectively, where both 

aforementioned figures use index μσ(.,.) based on inclusion measure σV2(Pi≤Qj)= |Qj|/|Pi∨Qj| − 

Note that similar curves were obtained by the aforementioned alternative graph clustering 

algorithms, also for σV1(Pi≤Qj) = |Pi∧Qj|/|Pi|, for other datasets as well. Second, Fig. 7 (a) and 

(b) correspond to algorithms asmFLR(da) and Modularity, respectively, where both 

aforementioned figures use index μσ(.,.) based on σV3(Pi≤Qj)= |Pi∧Qj|/|Pi∨Qj| − Note that 

similar curves were obtained also by the aforementioned alternative graph clustering 

algorithms, for other datasets as well. 

 

5.3. Discussion of the results 

Our computational experiments have clearly demonstrated a favorable comparison for our 

proposed asmFLR algorithms. In addition, our experimental work has confirmed the value of 

our proposed index function μσ(.,.) as detailed next. 

First, an index value (in Fig. 6 and Fig. 7) was calculated by comparing a partition, computed 

by a graph clustering algorithm, to an “optimum” partition − The latter was the one, which 
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included the C=10 graph-clusters used for generating a master-graph as described above. Note 

that index Purity, by definition, indicates the average largest percentage of a computed cluster 

inside an “optimum” cluster; hence, larger values of Purity are preferable. Whereas, index 

Entropy, by definition, is (roughly) the complement of index Purity; hence, smaller values of 

Entropy are preferable. 

A disadvantage of both indices Purity and Entropy is that “more” graph-clusters may be 

characterized by better (index) values than the optimum number of C=10 graph-clusters as 

demonstrated in both Fig. 6 and Fig. 7. Whereas, index μσ(.,.) has a global optimum value at 

C=10 graph-clusters as demonstrated in both Fig. 6 and Fig. 7. Note in both Fig. 6 and Fig. 7 

that the Purity index drops sharply for fewer than C=10 graph-clusters, as expected, since 

“10” is the optimum number of clusters. Moreover, the Purity index in both Fig. 6 and Fig. 7 

is less than 1 at C=10 due to the fact that the computed 10 clusters are not identical to the 

original (“optimal”) ones in a dataset. An inherent drawback of index Purity is its trustworthy 

capacity mainly for comparing partitions of the same cardinality. Whereas, by definition, 

index μσ(.,.) is also reliable for comparing partitions of different cardinalities. 

Index μσ(.,.) based on σV3(Pi≤Qj) = |Pi∧Qj|/|Pi∨Qj| (Fig. 7) is preferable to index μσ(.,.) based 

on σV2(Pi≤Qj) = |Qj|/|Pi∨Qj| (Fig. 6) because the index μσ(.,.) curves in Fig. 7 have a “sharper” 

global maximum than the corresponding curves in Fig. 6 − Hence, the graph-clustering 

algorithms in Tables 2 through 6 were arranged in the order of “decreasing” values of index 

μσ(.,.) based on σV3(Pi≤Qj) = |Pi∧Qj|/|Pi∨Qj|. Note also that, in our computational experiments, 

only index μσ(.,.) based on σV3 has retained nearly the same ordering in the performance of 

the alternative four algorithms Modularity, MajorClust, MinCutTrees, and SingleLink as the 

popular Purity index; whereas, index μσ(.,.) based on either σV1 or σV2 has produced different 

orderings. The latter is one more reason for preferring σV3. Furthermore, note that function 

σV3, also known in the literature as Jaccard (similarity measure) coefficient, has demonstrated 

a superior performance as compared to seven well-known similarity measure functions in a 

series of computational experiments elsewhere [45]. The extensive experimental evidence 

presented in this work has confirmed the superiority of the Jaccard coefficient σV3. 

Second, algorithm asmFLR(da) invariably tops all the other algorithms in Tables 2 through 6. 

In the second and third places appear algorithms Modularity and asmFLR(dM). In the fourth 

and fifth place appear algorithms MajorClust and asmFLR(dH). Finally, algorithm 

MinCutTrees is always in the sixth place, whereas algorithm SingleLink is always in the last 

(seventh) place in all Tables 2 through 6. It is remarkable that the aforementioned 

arrangement of algorithms essentially remains the same (with minor differences) in Tables 2 

through 6, for either index Purity or Entropy. Therefore, based on experimental evidence, it 
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can be claimed that algorithm asmFLR(da) approaches the “optimum” graph clustering better 

than any other graph clustering algorithm in this work. Furthermore, it is a remarkable 

advantage that algorithm asmFLR(da) typically avoids computing trivial graph-clusters. 

We, further, pursued computation of convex subgraphs in a master-graph. In a large number 

of experiments, using various indices of performance, we recorded a “non-statistically 

significant” deterioration of performance for the same number of computed subgraphs. In 

addition, the time required for computing convex subgraphs grew significantly (i.e. 

exponentially) in the number of nodes. Therefore, we conclude that convex subgraphs do not 

improve performance here. The explanation is that the artificial master-graphs, generated in 

the context of this work, as described above, were not convex in the first place. 

 

6. Conclusion 

This work has introduced novel mathematical perspectives and tools for clustering in a 

general metric space. In conclusion, the agglomerative similarity measure FLR (asmFLR) 

neural computing algorithm was introduced for partitioning-by-clustering. In addition, our 

work introduced a novel index for evaluating the quality of clustering. 

A metric space emerged here from a weighted graph. Experimental results have confirmed, 

comparatively, the viability of our proposed techniques/tools on artificial data (graphs) 

generated randomly. A real-world application of practical interest is to partition a master-

graph, whose link-weights represent Web-traffic, towards Web-navigation support [14], [51], 

[60], [63]. The preliminary experimental work in [43] will be extended in the future using the 

tools here. Future work may also consider alternative weighted graph partitioning problems 

including an approximate solution to the “minimum cut” problem [16]. 
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Appendix 

This Appendix lists useful definitions. It also includes the proofs of six novel propositions. 

 

A.1. Lattice theory, basic definitions 

For elementary definitions regarding lattice theory the reader may refer to [3], [24], and [39]. 

The following definition is important in the sequel. 

Definition A.1. A positive valuation in a lattice (L,≤) is a real function v: L→R, which 

satisfies both v(x)+v(y) = v(x∧y)+v(x∨y) and x<y ⇒ v(x)<v(y). ■ 

A positive valuation v: L→R in a lattice (L,≤) implies a metric function d: L×L→R≥0 given by 

d(a,b) = v(a∨b) - v(a∧b) (E1) 

− For definition of a metric function see below. 

It is remarkable that the latter metric (distance) is used implicitly in the “graph literature” 

without reference to lattice theory. More specifically, (metric) distance dmcs1(G0,G1) = |V0| + 

|V1| - 2|V01| is used in [33], which (distance dmcs1), in the context of lattice theory, can be 

produced as follows. Function v(G(V,E,l)) = v(V) = |V| is a positive valuation in the power-set 

(lattice) of vertices. Hence, dmcs1(G0,G1) = v(G0∨G1) – v(G0∧G1) = v(V0∨V1) – v(V0∧V1), where 

both V0∧V1 = V01 and v(V0∨V1) + v(V0∧V1) = v(V0) + v(V1) hold. It follows, dmcs1(G0,G1) = 

v(V0) + v(V1) - 2v(V0∧V1) = |V0| + |V1| - 2|V01|. 

 

A.2. Measure spaces, basic definitions 

Consider the following definition [28]. 

Definition A.2. A σ-algebra ΣX over a set X is a collection of subsets of X that satisfies: 

Σ1) ∅∈ΣX, 

Σ2) A∈ΣX implies (X-A)∈ΣX, and 

Σ3) for a collection of sets Ai∈ΣX indexed by a countable indexing set D it follows 

( ii∈∪ A
D

)∈ΣX. ■ 

In words, a σ-algebra includes the empty set and it is closed under both complementation and 

countable (including finite) unions. 
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A measure is a set function mS: S→R≥0, which assigns a size to every “measurable set” 

element in S. Note that a measure mS is required, by definition, to satisfy: 1) mS(∅)=0, and 2) 

for any countable (including finite) indexing set D, and any collection or pairwise disjoint sets 

Ai∈S indexed by i∈D it holds i
i

( )Sm A
∈
∪

D
= i

i
( )Sm A

∈
∑

D
. In this work S is a σ-algebra, i.e. S = ΣX. 

A measure space (X,ΣX,
X

mΣ ) includes a set X, a σ-algebra ΣX over X, and a measure 
X

mΣ  over 

ΣX. We remark that a probability space is a measure space such that 
X

mΣ (X)=1. 

 

A.3. Metric spaces, basic definition 

Consider the following definition. 

Definition A.3. A metric in a set U is a nonnegative real function d: U×U→R≥0, which 

satisfies the following laws. 

M0) d(x,y) = 0 ⇒ x = y; 

M1) d(x,x) = 0; 

M2) d(x,y) = d(y,x); 

M3) d(x,y) ≤ d(x,z)+d(z,y)   (Triangle Inequality). ■ 

 If only conditions M1) to M3) are satisfied in Definition A.3 then d is called pseudo-metric. A 

metric space is a pair (U,d) including both a set U and a metric d: U×U→R≥0. 

 

A.4. Proofs of novel propositions 

This section presents the proofs of six novel propositions. 

 

Proposition 2.3. Function da: ΣX×ΣX→R≥0 such that da(A,B) = 0 ⇔ A = B, moreover da(A,B)= 

i j
i, j

1 ( , )
| || | Xd a b
A B ∑  is a metric. 

Proof 

Let A,B,C∈ΣX. Real function da(A,B) is nonnegative. We show next that function da(A,B) 

satisfies the four laws of a metric (in Definition A.3). 

M0) and M1) hold by definition. 
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M2) da(A,B) = i j
i, j

1 ( , )
| || | Xd a b
A B ∑  = j i

j,i

1 ( , )
| || | Xd b a
B A ∑  = da(B,A). 

M3) Given (ai,bj)∈A×B it follows dX(ai,bj) ≤ dX(ai,ck) + dX(ck,bj), for ck∈C. Summing up for 

all ck∈C it follows i j
k

( , )Xd a b∑  ≤ i k k j
k

[ ( , ) ( , )]X Xd a c d c b+∑  ⇒ dX(ai,bj) ≤ 

i k k j
k

1 [ ( , ) ( , )]
| | X Xd a c d c b
C

+∑ . Furthermore, summing up for all pairs (ai,bj)∈A×B it 

follows i j
i, j

( , )Xd a b∑  ≤ i k k j
i, j k

1 [ ( , ) ( , )]
| | X Xd a c d c b
C

+∑ ∑ . Hence, 

i j
i, j

1 ( , )
| || | Xd a b
A B ∑  = da(A,B) ≤ i k k j

i, j,k

1 [ ( , ) ( , )]
| || || | X Xd a c d c b
A B C

+∑  = 

= i k
i,k

1 ( , )
| || | Xd a c
A C ∑  + k j

k, j

1 ( , )
| || | Xd c b
C B ∑  = da(A,C) + da(C,B). 

 ■ 

Proposition 2.4. Function dM: ΣX×ΣX→R≥0 such that dM(A,B) = 0 ⇔ A = B, moreover 

dM(A,B)= i ji j
( , )Xd a b∨∨  is a metric. 

Proof 

Let A,B,C∈ΣX. Real function dM(A,B) is nonnegative. We show next that function dM(A,B) 

satisfies the four laws of a metric (in Definition A.3). 

M0) and M1) hold by definition. 

M2) dM(A,B) = i ji j
( , )Xd a b∨∨  = j ij i

( , )Xd b a∨∨  = dM(B,A). 

M3) Let ai∈A, bj∈B, and ck∈C. Apparently, dX(ai,bj) ≤ dX(ai,ck) + dX(ck,bj). Since both 

inequalities dX(ai,ck) < i ki k
( , )Xd a c∨∨  and dX(ck,bj) < k jk j

( , )Xd c b∨∨  hold, it follows 

dX(ai,bj) ≤ i ki k
( , )Xd a c∨∨  + k jk j

( , )Xd c b∨∨ . Furthermore, since the latter inequality holds 

for any (ai,bj)∈A×B it follows i ji j
( , )Xd a b∨∨  ≤ i ki k

( , )Xd a c∨∨  + k jk j
( , )Xd c b∨∨ . Hence, 

dM(A,B) ≤ dM(A,C) + dM(C,B). 

 ■ 

Proposition 2.6. Condition 2.5 is sufficient for a metric function dH: ΣX×ΣX→R≥0 given by 

dH(A,B)= max{ i ji j
( , )Xd a b∨∧ , j ij i

( , )Xd b a∨∧ }. 
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Proof 

Let A,B,C∈ΣX. Real function dH(A,B) is nonnegative. We show next that function dH(A,B) 

satisfies the four laws of a metric (in Definition A.3). 

M0) dH(A,B) = 0 ⇒ max{ i ji j
( , )Xd a b∨∧ , j ij i

( , )Xd b a∨∧ } = 0. Therefore, ∀ai∈A, ∃bj∈B: 

dX(ai,bj) = 0, and ∀bj∈B, ∃ai∈A: dX(bj,ai) = 0. Hence, ∀ai∈A, ∃bj∈B such that ai=bj, and 

∀bj∈B, ∃ai∈A such that bj=ai. In conclusion, A = B. 

M1) dH(A,A)= max{
i j

i j( , )
∈ ∈
∨ ∧ Xa A b A

d a b , 
j i

j i( , )
∈ ∈
∨ ∧ Xb A a A

d b a } = 0. 

M2) dH(A,B) = max{ i ji j
( , )Xd a b∨∧ , j ij i

( , )Xd b a∨∧ } = max{ j ij i
( , )Xd b a∨∧ , i ji j

( , )Xd a b∨∧ } = 

dH(B,A). 

M3) Let ai∈A, bj∈B, and ck∈C. Consider, first, Condition 2.5 
i iK J( , )Xd c b  ≤ 

max{ k jk j
( , )Xd c b∨∧ , j kj k

( , )Xd b c∨∧ } and, second, triangle inequality dX(ai,bj) ≤ dX(ai,ck) 

+ dX(ck,bj) ⇒ i jj
( , )Xd a b∧  ≤ i kk

( , )Xd a c∧  + dX(
iKc ,

iJb ). Hence, i ji j
( , )Xd a b∨∧  ≤ 

i ki k
( , )Xd a c∨∧ +

i iK Ji
( , )Xd c b∨  ≤ i ki k

( , )Xd a c∨∧ + max{ k jk j
( , )Xd c b∨∧ , j kj k

( , )Xd b c∨∧ }. 

 By rotating sets A and B we obtain j ij i
( , )Xd b a∨∧  ≤ j kj k

( , )Xd b c∨∧ + max{ k ik i
( , )Xd c a∨∧ , 

i ki k
( , )Xd a c∨∧ }. Hence, max{ i ji j

( , )Xd a b∨∧ , j ij i
( , )Xd b a∨∧ } ≤ max{ i ki k

( , )Xd a c∨∧  + 

max{ k jk j
( , )Xd c b∨∧ , j kj k

( , )Xd b c∨∧ }, j kj k
( , )Xd b c∨∧  + max{ k ik i

( , )Xd c a∨∧ , 

i ki k
( , )Xd a c∨∧ }}. 

 We consider four cases, next. 

 1) Both k jk j
( , )Xd c b∨∧  ≥ j kj k

( , )Xd b c∨∧  and k ik i
( , )Xd c a∨∧  ≥ i ki k

( , )Xd a c∨∧ . 

 Hence, max{ i ki k
( , )Xd a c∨∧  + k jk j

( , )Xd c b∨∧ , j kj k
( , )Xd b c∨∧  + k ik i

( , )Xd c a∨∧ } ≤ 

k jk j
( , )Xd c b∨∧  + k ik i

( , )Xd c a∨∧ . 

 2) Both k jk j
( , )Xd c b∨∧  ≥ j kj k

( , )Xd b c∨∧  and k ik i
( , )Xd c a∨∧  < i ki k

( , )Xd a c∨∧ . 

 Hence, max{ i ki k
( , )Xd a c∨∧  + k jk j

( , )Xd c b∨∧ , j kj k
( , )Xd b c∨∧  + i ki k

( , )Xd a c∨∧ } = 

i ki k
( , )Xd a c∨∧  + k jk j

( , )Xd c b∨∧ . 
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 3) Both k jk j
( , )Xd c b∨∧  < j kj k

( , )Xd b c∨∧  and k ik i
( , )Xd c a∨∧  ≥ i ki k

( , )Xd a c∨∧ . 

 Hence, max{ i ki k
( , )Xd a c∨∧  + j kj k

( , )Xd b c∨∧ , j kj k
( , )Xd b c∨∧  + k ik i

( , )Xd c a∨∧ } = 

j kj k
( , )Xd b c∨∧  + k ik i

( , )Xd c a∨∧ . 

 4) Both k jk j
( , )Xd c b∨∧  < j kj k

( , )Xd b c∨∧  and k ik i
( , )Xd c a∨∧  < i ki k

( , )Xd a c∨∧ , 

 Hence, max{ i ki k
( , )Xd a c∨∧  + j kj k

( , )Xd b c∨∧ , j kj k
( , )Xd b c∨∧  + i ki k

( , )Xd a c∨∧ } = 

i ki k
( , )Xd a c∨∧  + j kj k

( , )Xd b c∨∧ . 

 In conclusion, dH(A,B) = max{ i ji j
( , )Xd a b∨∧ , j ij i

( , )Xd b a∨∧ } ≤ max{ i ki k
( , )Xd a c∨∧  + 

max{ k jk j
( , )Xd c b∨∧ , j kj k

( , )Xd b c∨∧ }, j kj k
( , )Xd b c∨∧ +max{ k ik i

( , )Xd c a∨∧ , i ki k
( , )Xd a c∨∧ }} 

= max{ i ki k
( , )Xd a c∨∧ , k ik i

( , )Xd c a∨∧ } + max{ k jk j
( , )Xd c b∨∧ , j kj k

( , )Xd b c∨∧ } = dH(A,C) 

+ dH(C,B). 

 ■ 

Proposition 3.4. Let function σV: L×L→[0,1] be an inclusion measure in a lattice (L,≤). Then 

function σ: 2L×2L→[0,1] given by the convex combination σ({u1,…,uI}=U≤W={w1,…,wJ}) = 

λ1
j

max σV(u1≤wj)+…+λI
j

max σV(uI≤wj) is an inclusion measure. 

Proof 

First, we prove the following Lemma (by contraposition). 

Lemma: U∧W<U ⇒ ∃i∈{1,…,I} such that ∀j∈{1,…,J} it is ui∧wj<ui. 

Proof of the Lemma: NOT[∃i∈{1,…,I} such that ∀j∈{1,…,J} it is ui∧wj<ui] ⇒ ∀i∈{1,…,I}, 

∃j∈{1,…,J} such that ui∧wj=ui ⇒ ∀i∈{1,…,I}, ∃j∈{1,…,J} such that ui≤wj ⇒ 

NOT[U∧W<U]. It follows, U∧W<U ⇒ ∃i∈{1,…,I} such that ∀j∈{1,…,J} it is ui∧wj<ui. 

Next, we resume the proof of Proposition 3.4. More specifically, we show that function 

σ(U≤W) satisfies the four laws of an inclusion measure (in Definition 3.2). 

I0) σ(U≤O) = λ1
j

max σV(u1≤O)+…+λI
j

max σV(uI≤O) = λ10+…+λI0 = 0. 

I1) σ(U≤U) = λ1
i

max σV(u1≤ui)+…+λI
i

max σV(uI≤ui) = λ1+…+λI = 1. 
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I2) From the above Lemma we have  U∧W<U ⇒ ∃i∈{1,…,I} such that ∀j∈{1,…,J} it is 

ui∧wj<ui. Hence, U∧W<U ⇒ ∃i∈{1,…,I} such that ∀j∈{1,…,J} it is σ(ui,wj)<1. In 

conclusion, σ(U≤W) = λ1
j

max σV(u1≤wj)+…+λI
j

max σV(uI≤wj) < λ1+…+λI = 1. 

I3) U ≤ W ⇒ ∀i∈{1,…,I}, ∃j∈{1,…,J}: ui≤wj ⇒ σV(xk≤ui) ≤ σV(xk≤wj), ∀k∈{1,…,K} ⇒ 

∀k∈{1,…,K}, 
i

max σV(xk≤ui) ≤ 
j

max σV(xk≤wj) ⇒ λ1
i

max σV(x1≤ui)+ 

…+λK
i

max σV(xK≤ui) ≤ λ1
j

max σV(x1≤wj)+ …+λK
j

max σV(xK≤wj) ⇒ σ(X,U) ≤ σ(X,W). 

 ■ 

Proposition 3.6. Let (L,≤) be a lattice with an inclusion measure σ: L×L→[0,1]. Then, 

function μσ: L×L→[0,1] given by μσ(x,y) = ( ) ( )
2

x y y xσ ≤ + σ ≤  is a similarity measure. 

Proof 

We show next that function μσ(x,y) satisfies the two laws of a similarity measure (in 

Definition 3.5). 

S1) μσ(x,y) = ( ) ( )
2

x y y xσ ≤ + σ ≤  = 1 ⇔ σ(x≤y) = 1 = σ(y≤x) ⇔ x≤y and y≤x ⇔ x=y. 

S2) μσ(x,y) = ( ) ( )
2

x y y xσ ≤ + σ ≤  = ( ) ( )
2

y x x yσ ≤ + σ ≤  = μσ(y,x). 

 ■ 

Proposition 3.7. Let function d: U×U→R≥0 be a metric. Then, function μd: U×U→[0,1] given 

by μd(x,y) = 1
1 ( , )d x y+

 is a similarity measure. 

Proof 

We show next that function μσ(x,y) satisfies the two laws of a similarity measure (in 

Definition 3.5). 

S1) μd(x,y) = 1
1 ( , )d x y+

 = 1 ⇔ d(x,y) = 0 ⇔ x = y. 

S2) μd(x,y) = 1
1 ( , )d x y+

 = 1
1 ( , )d y x+

 = μd(y,x). 

 ■ 
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Figure Captions 

 

Fig. 1. (a) Non-overlapping intervals [a,b] and [c,d] on the real line. 

 (b) Overlapping intervals [a,b] and [c,d] on the real line. 

 

Fig. 2. (a) Non-overlapping circles (cA,rA) and (cB,rB) on the plane. 

 (b) Overlapping circles (cA,rA) and (cB,rB) on the plane. 

 

Fig. 3. The agglomerative similarity measure FLR (asmFLR) neural computing algorithm for 

partitioning the nodes of a master-graph by clustering. 

 

Fig. 4. A dataset including two master-graphs, i.e. M=2, each of whom has C=5 identical 

graph-clusters with 3, 4, or 5 vertices. A master-graph has both a user-defined intra-

connection ratio rin=1.0 and a user-defined inter-connection ratio rout=0.3. (a) A 

master-graph with average rout equal to 0.38 and standard deviation 0.23. (b) A 

master-graph with average rout equal to 0.36 and standard deviation 0.24. 

 

Fig. 5. A dataset including two master-graphs, i.e. M=2, each of whom has C=5 identical 

graph-clusters with 3, 4, or 5 vertices. A master-graph has both a user-defined intra-

connection ratio rin=1.0 and a user-defined inter-connection ratio rout=0.6. (a) A 

master-graph with average rout equal to 0.63 and standard deviation 0.10. (b) A 

master-graph with average rout equal to 0.62 and standard deviation 0.13. 

 

Fig. 6. Values of (graph clustering) indices Purity (curve in light gray color), Entropy (curve 

in dark gray color), and index μσ(.,.) (curve in black color), the latter is based on 

inclusion measure σV2(Pi≤Qj) = |Qj|/|Pi∨Qj|, versus a (decreasing) number of graph-

clusters for dataset ds1 by 

(a) neural algorithm asmFLR(da), and 

(b) algorithm Modularity. 

 

Fig. 7. Values of (graph clustering) indices Purity (curve in light gray color), Entropy (curve 

in dark gray color), and index μσ(.,.) (curve in black color), the latter is based on 
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function σV3(Pi≤Qj) = |Pi∧Qj|/|Pi∨Qj|, versus a (decreasing) number of graph-clusters 

for dataset ds1 by 

(a) neural algorithm asmFLR(da), and 

(b) algorithm Modularity. 
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Table Captions 

 

Table 1 Statistics regarding five datasets ds1, ds2, ds3, ds4, and ds5 

 

Table 2 Statistics of experimental results regarding dataset ds1 by various graph clustering 

algorithms. The results are arranged in the order of decreasing similarity measure 

μσ(.,.) values 

 

Table 3 Statistics of experimental results regarding dataset ds2 by various graph clustering 

algorithms. The results are arranged in the order of decreasing similarity measure 

μσ(.,.) values 

 

Table 4 Statistics of experimental results regarding dataset ds3 by various graph clustering 

algorithms. The results are arranged in the order of decreasing similarity measure 

μσ(.,.) values 

 

Table 5 Statistics of experimental results regarding dataset ds4 by various graph clustering 

algorithms. The results are arranged in the order of decreasing similarity measure 

μσ(.,.) values 

 

Table 6 Statistics of experimental results regarding dataset ds5 by various graph clustering 

algorithms. The results are arranged in the order of decreasing similarity measure 

μσ(.,.) values 
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Step-0: Consider a partition P = {P1,…,Pn} of the vertices V= {v1,…,vN} of a weighted 

master-graph M = (V, E), where clusters Pi⊆V, i=1,…,n are such that both n
ii 1

P
=∪  = 

V and Pi∩Pj = {} for i≠j. 

 

Step-1: While (a user-defined Assimilation Condition is satisfied) do 

 

Step-2: Compute, in parallel, the similarity measure values μd(Pi,Pj) = 1/(1+d(Pi,Pj)), 

i,j∈{1,…,n}. 

 

Step-3: Competition among pairs of clusters. 

 Winner in pair (I,J)∈P×P such that (I,J) ≐ arg
i, j

max  μd(Pi,Pj), where I ≠ J. 

Step-4: Merge PI and PJ by replacing them with the (single) cluster PI∪PJ; n ← n-1. 

 

 

 

 

Fig. 3.  
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Table 1          

Statistics regarding five datasets ds1, ds2, ds3, ds4, and ds5 

dataset #clusters cluster size rin user-defined rout 

 C vmin vmax average std.  rout average std. 

ds1 10 5 15 11.6 3.565 1 0.5 0.532 0.031 

ds2 10 5 15 11.6 3.565 1 0.7 0.755 0.051 

ds3 10 5 15 11.6 3.565 1 0.9 0.937 0.043 

ds4 10 5 15 11.6 3.565 1 1.0 0.996 0.031 

ds5 10 5 15 11.6 3.565 1 1.2 1.255 0.046 

 



 

 

 

 

 

 

 

 

 

Table 2          

Statistics of experimental results regarding dataset ds1 by various graph clustering algorithms. The results are 
arranged in the order of decreasing similarity measure μσ(.,.) values 

Algorithm #clusters cluster size #trivials Purity Entropy similarity 

name C min max average std.    measure μσ(.,.) 

asmFLR (da) 10 4.8 16 11.6 3.818 0 0.957 0.062 0.921 

asmFLR (dM) 10 3.7 33.7 11.6 9.049 0 0.731 0.252 0.665 

Modularity 10 1 22.5 11.6 7.529 2.5 0.816 0.156 0.659 

MajorClust 3 9 92 38.6 46.285 0 0.336 0.698 0.510 

asmFLR (dH) 10 1 90.2 11.6 27.704 3.2 0.309 0.729 0.269 

MinCutTrees 1 116 116 116 NaN 0 0.129 0.979 0.114 

SingleLink 10 1 107 11.6 33.520 9 0.206 0.899 0.111 

 



 

 

 

 

 

 

 

 

 

Table 3          

Statistics of experimental results regarding dataset ds2 by various graph clustering algorithms. The results are 
arranged in the order of decreasing similarity measure μσ(.,.) values 

Algorithm #clusters cluster size #trivials Purity Entropy similarity 

name C min max average std.    measure μσ(.,.) 

asmFLR (da) 10 5 17.9 11.6 3.818 0 0.888 0.148 0.817 

Modularity 10 1 23.7 11.6 7.529 2.1 0.824 0.147 0.705 

asmFLR (dM) 10 2.1 38.4 11.6 9.049 0.3 0.606 0.375 0.512 

MajorClust 2 32 84 58 46.285 0 0.258 0.723 0.261 

asmFLR (dH) 10 1 94.3 11.6 27.704 3.8 0.282 0.780 0.220 

MinCutTrees 1 116 116 116 NaN 0 0.129 0.979 0.114 

SingleLink 10 1 107 11.6 33.520 9 0.206 0.899 0.111 

 



 

 

 

 

 

 

 

 

 

Table 4          

Statistics of experimental results regarding dataset ds3 by various graph clustering algorithms. The results are 
arranged in the order of decreasing similarity measure μσ(.,.) values 

Algorithm #clusters cluster size #trivials Purity Entropy similarity 

name C min max average std.    measure μσ(.,.) 

asmFLR (da) 10 5.6 18.4 11.6 4.109 0 0.869 0.176 0.788 

Modularity 10 1 24.4 11.6 8.269 2.7 0.787 0.190 0.623 

asmFLR (dM) 10 1.5 49.2 11.6 14.720 0.6 0.517 0.470 0.429 

asmFLR (dH) 10 1 98.5 11.6 30.562 4.4 0.256 0.819 0.185 

MajorClust 1 116 116 116 NaN 0 0.129 0.979 0.114 

MinCutTrees 1 116 116 116 NaN 0 0.129 0.979 0.114 

SingleLink 10 1 107 11.6 33.520 9 0.206 0.899 0.111 

 



 

 

 

 

 

 

 

 

 

Table 5          

Statistics of experimental results regarding dataset ds4 by various graph clustering algorithms. The results are 
arranged in the order of decreasing similarity measure μσ(.,.) values 

Algorithm #clusters cluster size #trivials Purity Entropy similarity 

name C min max average std.    measure μσ(.,.) 

asmFLR (da) 10 4.2 21 11.6 5.296 0.3 0.804 0.246 0.697 

Modularity 10 1 22.4 11.6 7.281 2.4 0.799 0.185 0.629 

asmFLR (dM) 10 1.2 54.3 11.6 16.323 1.1 0.466 0.532 0.370 

asmFLR (dH) 10 1 96.4 11.6 29.841 4 0.274 0.794 0.207 

MajorClust 1 116 116 116 NaN 0 0.129 0.979 0.114 

MinCutTrees 1 116 116 116 NaN 0 0.129 0.979 0.114 

SingleLink 10 1 107 11.6 33.520 9 0.206 0.899 0.111 

 



 

 

 

 

 

 

 

 

 

Table 6          

Statistics of experimental results regarding dataset ds5 by various graph clustering algorithms. The results are 
arranged in the order of decreasing similarity measure μσ(.,.) values 

Algorithm #clusters cluster size #trivials Purity Entropy similarity 

name C min max average std.    measure μσ(.,.) 

asmFLR (da) 10 3.4 21.6 11.6 5.566 0.3 0.800 0.258 0.687 

Modularity 10 1 23.5 11.6 7.175 2.1 0.806 0.197 0.649 

asmFLR (dM) 10 1.2 62.8 11.6 19.133 1.1 0.402 0.602 0.317 

asmFLR (dH) 10 1 94.1 11.6 29.032 3.7 0.287 0.786 0.214 

MajorClust 1 116 116 116 NaN 0 0.129 0.979 0.114 

MinCutTrees 1 116 116 116 NaN 0 0.129 0.979 0.114 

SingleLink 10 1 107 11.6 33.520 9 0.206 0.899 0.111 

 


