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A Granular Extension of the Fuzzy-ARTMAP (FAM) Neural Classifier Based on Fuzzy 

Lattice Reasoning (FLR) 

 

Abstract 

The fuzzy lattice reasoning (FLR) classifier was introduced lately as an advantageous 

enhancement of the fuzzy-ARTMAP (FAM) neural classifier in the Euclidean space RN. This 

work extends FLR to space FN, where F is the granular data domain of Fuzzy Interval 

Numbers (FINs) including (fuzzy) numbers, intervals, and cumulative distribution functions. 

Based on a fundamentally improved mathematical notation this work proposes novel 

techniques for dealing, rigorously, with imprecision in practice. We demonstrate a favorable 

comparison of our proposed techniques with alternative techniques from the literature in an 

industrial prediction application involving digital images represented by histograms. 

Additional advantages of our techniques include a capacity to represent statistics of all orders 

by a FIN, an introduction of tunable (sigmoid) nonlinearities, a capacity for effective data 

processing without any data normalization, an induction of descriptive decision-making 

knowledge (rules) from the training data, and the potential for input variable selection. 

 

Keywords: Digital image histogram; Fuzzy-ARTMAP (FAM); Fuzzy lattice reasoning 

(FLR); Granular computing; Industrial classification application 

 

1. Introduction 

It turns out that disparate types of data including logic values, numbers, sets, symbols, and 

graphs are partially(lattice)-ordered. In conclusion, a cross-fertilization was proposed, lately, 

in Computational Intelligence (CI) towards unified knowledge representation and modelling 

based on lattice theory with emphasis on clustering, classification, and regression [19]. 

Especially successful, within CI, was the employment of lattice theory in neural computing 

based on either the lattice (partial) ordering relation [19], [26], [27] or the lattice algebraic 

operations meet and join [38], [39], [40], [47]. In the interest of simplicity, the former 

employment of lattice theory is called here “order-based” (employment), whereas the latter 

one is called “algebra-based”. On one hand, an algebra-based employment of lattice theory in 

neural computing typically involves morphological neural networks, which grew out of the 

theory of image algebra [37], [41], [44], [45]; the latter neural networks were extended, lately, 

based on fuzzy set theory techniques [46], [48]. On the other hand, an order-based 
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employment of lattice theory in neural computing has stemmed from the adaptive resonance 

theory, or ART for short, as explained next. 

ART has evolved from studies of the brain and mind during the 1970s [16], [17]. In 

conclusion, a biologically inspired neural paradigm was proposed for clustering binary 

patterns [6]. An analog (pattern) extension of ART, namely fuzzy-ART, was proposed later in 

the unit hypercube [7]. The corresponding neural network for classification is fuzzy-ARTMAP, 

or FAM for short [8]. It turns out that FAM operates by conditionally inducing lattice-ordered 

hyperboxes from point inputs in the N-dimensional unit hypercube [19]. 

The original work on ART has spurred a lasting research activity. A number of authors have 

successfully employed FAM in various data-mining and information-processing applications 

of neural computing [1], [9], [10], [51], [57]. In the meanwhile, the min-max neural networks 

were introduced for clustering and classification based on hyperboxes [42], [43]. Note that, 

lately, “granular computing” [2] was pursued by min-max computing [3]. We point out that 

neither FAM nor min-max neural networks employ lattice theory explicitly. Nevertheless, 

different authors have pursued min-max computing based on mathematical morphology 

applications of lattice theory for pattern recognition [34], [55]. 

Yet, different authors have introduced fuzzy lattice neurocomputing (FLN) models applicable 

in disparate partially(lattice)-ordered data domains. In particular, the σ-FLNMAP neural 

network was introduced as an extension of FAM to a lattice data domain [26]. The 

corresponding learning/generalization algorithm of σ-FLNMAP, namely fuzzy lattice 

reasoning (FLR) algorithm, was detailed with emphasis to rule induction [21]. In addition, the 

FLR has enhanced σ-FLNMAP in two ways. First, by applicability to the whole Euclidean 

space RN and, second, by an introduction of tunable (sigmoid) nonlinearities. 

Of particular interest in practice is the totally-ordered lattice (R,≤) of real numbers, which has 

emerged “historically” from the conventional measurement process of successive 

comparisons [19]. It is known that (R,≤) gives rise to a hierarchy of lattices including, 

ultimately, the lattice (F,≤) of fuzzy interval numbers, or FINs for short [20], [31]. Note that a 

FIN is a unifying data representation including (fuzzy) numbers, intervals, and cumulative 

distribution functions [18], [19], [20], [22], [24], [25], [31]; therefore, a FIN can be 

interpreted as an information granule towards granular computing as explained next. 

Granular computing is an emerging computational paradigm [2], which is roughly defined as 

a set of theories, methodologies, techniques and tools that make use of information granules. 

The latter can be conceived as a collection of entities grouped together by similarity, 

functional adjacency, coherency, etc. The basic notions and principles of granular computing 

have appeared under different names in related fields such as information hiding in 
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programming, granularity in artificial intelligence, divide-and-conquer in theoretical 

computer science, interval computing, cluster analysis, fuzzy and rough set theories, etc. [3], 

[28], [33]. This paper pursues granular computing rigorously based on FINs. In particular, 

this paper builds on previous work including substantial novelties as explained next. 

A previous version of FLR dealt only with N-dimensional hyperboxes [21]; whereas, this 

work extends the applicability of FLR to the space of FINs. Note that recent works have 

employed FINs towards classification [25], [31]. Nevertheless, the latter employ interval-

FINs characterized by both theoretical and practical drawbacks regarding FINs with largest 

height less than 1. More specifcally, on one hand, the work in [25] uses an agglomerative 

clustering algorithm based on a metric function, whereas the work here employs a FLR 

algorithm based on an inclusion measure function. On the other hand, the work in [31] 

employs a FLR algorithm based on a similarity measure function, whereas the FLR here 

employs an inclusion measure function for carrying out tunable inferences. 

Another, substantial novelty of this work includes a novel mathematical formulation 

regarding FINs. More specifically, both this as well as previous works represent a FIN as a 

collection of generalized intervals. Nevertheless, previous works represented a generalized 

interval as a positive/negative “pulse-shaped” function of height h∈(0,1] resulting in FINs 

with both positive and negative membership functions [18], [19], [22], [23], [24], [25], [31]. 

This work abandons negative (FIN) membership functions altogether in order to avoid 

confusion. Hence, a FIN is represented here as a collection of only positive generalized 

intervals, which may be interpreted as conventional α-cuts in fuzzy set theory. Furthermore, 

fuzzy set theory’s “resolution identity theorem” [56] is invoked here as a valid mathematical 

result in order to represent a general FIN by either a set of (positive) generalized intervals or a 

membership function [20]. Another advantage of our proposed (novel) mathematical 

formulation is that it permits a unified treatment of the Euclidean space RN with its 

isomorphic unit hypercube as explained below. In addition, no data normalization in the 

interval [0,1] is required here due to the employment of sigmoid (positive valuation) 

functions. Moreover, a sigmoid positive valuation here suggests a method for input variable 

selection. Furthermore, the FLR algorithm here can deal “in principle” with both “missing” 

data and “don’t care” data. 

Previous work has used a mass function in order to define a positive valuation function by the 

computation of an integral [22], [23], [24]. Despite an insightful interpretation of a mass 

function as a weight function, the calculation of an integral is computationally expensive. 

Therefore, in the interest of simplicity, here we employ directly a parametric (sigmoid) 

strictly increasing function as a (tunable) positive valuation function. 



 5

Furthermore, we demonstrate new experimental results regarding an industrial prediction 

application, where a FIN represents a digital image histogram. The results compare favorably 

with the results by different k-nearest-neighbor (kNN) classifiers. Moreover, the FLR 

classifier induces descriptive, decision-making knowledge (rules) for classification. 

The layout is as follows. Section 2 presents a hierarchy of popular lattices including a novel 

mathematical formulation, which is employed in section 3 for introducing a granular 

extension of the FAM classifier. Section 4 describes comparatively an industrial application. 

Section 5 concludes by summarizing the contribution of this work. Finally, the Appendix 

summarizes basic lattice theory notions and useful results including a novel theorem proof. 

 

2. A hierarchy of popular lattices 

Basic lattice theory notions and useful results, including a novel theorem proof, are shown in 

the Appendix in order to make this work “self-contained”. This section focuses on the totally-

ordered lattice (R,≤) of real numbers as well as on a hierarchy of popular lattices stemming 

from (R,≤) thus introducing a fundamentally improved mathematical notation. 

2.1. The complete lattice (Δ,≤) of generalized intervals and extensions 

According to some authors, lattice (R,≤) is noncomplete [12]. For technical reasons, 

pertaining to compatibility with previous work, we augmented (R,≤) to a complete lattice 

with least and greatest elements denoted, respectively, by O= –∞ and I= +∞. Using a strictly 

increasing function f: R→[0,1], e.g. a sigmoid f(x)= 1/(1+e-x), we can establish an (order) 

isomorphism (R,≤) ≅ (I=[0,1],≤) − For definition of “isomorphism” see in the Appendix. 

Consider the complete product lattice (Δ,≤) = (R,≤∂)×(R,≤) = (R×R,≥×≤) of generalized 

intervals. A generalized interval will be denoted by [x,y], x,y∈R. The corresponding meet and 

join in lattice (Δ,≤) are given, respectively, by [a,b]∧[c,d] = [a∨c,b∧d] and [a,b]∨[c,d] = 

[a∧c,b∨d] − We point out that a∧c denotes the minimum of real numbers a and c, whereas 

a∨c denotes the corresponding maximum. The set of positive (negative) generalized intervals 

[a,b], characterized by a≤b (a>b), will be denoted by Δ+ (Δ-). Note that lattice (Δ+,≤) of 

positive generalized intervals is isomorphic to the lattice (τ(R),≤) of intervals (sets) in the set 

R, i.e. (τ(R),≤) ≅ (Δ+,≤). We have augmented lattice (τ(R),≤) by a least (empty) interval, 

denoted by O= [+∞,-∞], as explained in [26] − Note that a greatest interval I= [-∞,+∞] 

already exists in τ(R). Hence, the complete lattice (τO(R)= τ(R)∪{O},≤) emerged. The 

previous analysis also applies to isomorphic lattice (I,≤) ≅ (R,≤) resulting in the complete 

lattice (τO(I)=τ(I)∪{O},≤) ≅ (τO(R),≤). In the interest of simplicity we use identical symbols O 
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and I to denote the least and greatest element, respectively, in all complete lattices including 

(R,≤) ≅ (I,≤) as well as (τO(R),≤) ≅ (τO(I),≤). 

A (strictly) decreasing bijective, that latter means “one-to-one”, function θR: R→R implies an 

isomorphism (R,≤) ≅ (R,≥); i.e. x<y ⇔ θR(x)>θR(y), for x,y∈R. Furthermore, a strictly 

increasing function vR: R→R is a positive valuation in lattice (R,≤). Therefore, function vΔ: 

Δ→R given by vΔ([a,b])= vR(θR(a))+vR(b) is a positive valuation in lattice (Δ,≤) [21]. It 

follows metric dΔ: Δ×Δ→ 0
+R  given by dΔ([a,b],[c,d]) = [vR(θR(a∧c))-vR(θR(a∨c))] + [vR(b∨d)-

vR(b∧d)]. Note that metric dΔ is valid, in particular, in lattice (Δ+∪{O},≤) ≅ (τO(R),≤) ≅ 

(τO(I),≤). For reasons explained in the Appendix (see Theorem A.10) our interest here is, in 

particular, in positive valuation functions vR: R→ 0
+R  such that 0= vR(O=-∞) < vR(I=+∞) <+∞. 

It is straightforward to define an inclusion measure in the complete lattice (τO(R),≤) as 

follows. Consider the aforementioned positive valuation function vΔ: Δ→ 0
+R  given by 

vΔ([a,b])= vR(θR(a))+vR(b) in complete lattice (Δ,≤). Since the conditions of Theorem A.10 (in 

the Appendix) are satisfied, there follow two inclusion measures, namely k(.,.) and s(.,.). The 

latter inclusion measures are valid, in particular, in lattice (Δ+∪{O},≤) ≅ (τO(R),≤) ≅ (τO(I),≤). 

Functions θR(.) and vR(.) can be selected in many different ways. For instance, choosing both 

θR(x)= -x and vR(.) such that vR(x) = -vR(-x) it follows positive valuation function vΔ([a,b]) = 

vR(b) - vR(a); hence, it follows metric dΔ([a,b],[c,d])= [vR(a∨c)-vR(a∧c)] + [vR(b∨d)-vR(b∧d)] 

[22]. In particular, for θR(x)= -x and vR(x)= x it follows metric dΔ([a,b])= |a-c| + |b-d|. In 

general, parametric functions θR(.) and vR(.) imply tunable nonlinearities, where the 

corresponding parameters may be estimated optimally by various techniques such as 

stochastic search including genetic algorithms. 

Another lattice of practical interest is the Cartesian product (τO(RN)= [τ(R)]N∪{O},≤). Both a 

metric and an inclusion measure function can be defined in the complete lattice (τO(RN),≤), of 

N-dimensional hyperboxes, based on the Cartesian product (Δ,≤)×…×(Δ,≤) = (Δ,≤)N, in two 

different ways. First, one can regard (Δ,≤)N as a (single) complete lattice (ΔN,≤) with positive 

valuation function NvΔ : ΔN→ 0
+R  given by NvΔ ([a1,b1]×…×[aN,bN]) = vΔ,1([a1,b1])+…+ 

vΔ,1([aN,bN]) = 
N

,i ,i i ,i i
i 1

[ (θ ( )) + ( )]v a v b
=
∑ R R R ; hence, a metric and an inclusion measure function 

can be defined, respectively, by equation (E1) and Theorem A.10 in the Appendix. Second, 

one can regard (Δ,≤)N as a product of N constituent lattices. Hence, a metric and an inclusion 

measure can be defined, respectively, by equation (E2) and Theorem A.11 in the Appendix. 
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2.2. The lattice (F,≤) of fuzzy interval numbers (FINs) and extensions 

A fundamental result of fuzzy set theory is the “resolution identity theorem”, which states that 

a fuzzy set can, equivalently, be represented either by its membership function or by its α-cuts 

[56]. The aforementioned theorem was given little attention in practice, to-date. However, 

some authors have capitalized on it by designing effective as well as efficient fuzzy inference 

systems (FIS) based on α-cuts of fuzzy numbers, i.e. based on intervals in τ(R) [49], [50]; 

more specifically, advantages include faster (parallel) data processing “level-by-level” as well 

as “orders-of-magnitude smaller” computer memory requirements for representing, 

equivalently, fuzzy sets with arbitrary membership functions. This work builds on the 

resolution identity theorem as follows. 

In the first place, we drop a possibilistic interpretation for a (fuzzy) membership function 

regarding fuzzy numbers. Then, we consider the corresponding “α-cuts representation”. In 

conclusion, a fuzzy interval number (FIN) emerges as a function F: (0,1]→(Δ+∪{O},≤) ≅ 

(τO(R),≤) as detailed below. A more general number type is defined first. 

Definition 1. A generalized interval number (GIN) is a function f: (0,1]→Δ. ■ 

Let G denote the set of GINs. It follows that (G,≤) is a complete lattice since (G,≤) is the 

Cartesian product of complete lattices (Δ,≤). Our interest here focuses on the sublattice of 

fuzzy interval numbers defined next − For definition of “sublattice” see in the Appendix. 

Definition 2. A fuzzy interval number (FIN) F is a GIN such that both F(h)∈[Δ+∪{O}] and 

h1≤h2 ⇒ F(h1)≥F(h2), for all h∈(0,1]. ■ 

For graphical illustrations regarding FIN interpretations the interested reader may refer to 

[18], [24], [35]. Let F denote the set of FINs. Apparently, it is F⊆G. Moreover, F,E∈F imply 

both (F∨E)∈F and (F∧E)∈F as follows: h1≤h2 implies both F(h1)≥F(h2) and E(h1)≥E(h2); 

hence, first, (F∨E)(h1) = F(h1)∨E(h1) ≥ F(h2)∨E(h1) ≥ F(h2)∨E(h2) = (F∨E)(h2) ⇒ (F∨E)∈F; 

second, (F∧E)(h1) = F(h1)∧E(h1) ≥ F(h2)∧E(h1) ≥ F(h2)∧E(h2) = (F∧E)(h2) ⇒ (F∧E)∈F. 

Therefore, poset (F,≤) is a lattice. 

Previous work has shown that the cardinality of set F equals ℵ1, that is the cardinality of the 

set R of real numbers [22]; in other words, there are as many FINs as there are real numbers. 

However, previous work [18], [19], [22], [23], [24], [25], [31] employed “box-shaped” 

generalized intervals of height h∈(0,1]. Whereas, this work employs a fundamentally 

improved, novel mathematical notation based on the lattice (Δ,≤) = (R×R,≥×≤) of generalized 

intervals. Hence, using the notation here, FINs can directly be associated with α-cuts of fuzzy 

numbers towards a wider proliferation of FINs in practical applications. 
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A FIN will typically be denoted by a capital letter in italics, e.g. F∈F. Moreover, a N-tuple 

FIN will typically be denoted by a capital letter in bold italics, e.g. F=(F1,…,FN)∈FN. 

A FIN F can be written as the set union of generalized intervals, e.g. F= 
(0,1]

{[ , ]}h h
h

a b
∈
∪ , 

where both interval-ends ah and bh are functions of h∈(0,1]. A FIN may admit different 

interpretations including a (fuzzy) number, an interval, and a cumulative distribution function. 

For instance, a FIN F= 
(0,1]

{[ , ]}
h

a b
∈
∪  represents interval [a,b] including real numbers for a=b. 

Moreover, a FIN can represent a probability distribution function such that interval F(h) 

includes 100(1-h)% of the distribution, whereas the remaining 100h% is split even both below 

and above interval F(h) [18], [19], [23], [24] − For general transformations between 

probability- and possibility- distributions the interested reader may refer to [29]. In any case, a 

FIN can be interpreted as an (information) granule. The size of a FIN is defined next. 

Definition 3. Assuming that the following integral exists, the size of a FIN, with respect to a 

positive valuation vR: R→ 0
+R , is a function ZF: F→ 0

+R  given by ZF(F) = 
1

0

( ( ))Z F h dh∫ R . ■ 

We remark that ZR(F(h)) in Definition 3 is the size of (positive) interval F(h), which (size) is 

computed as shown in the Appendix. Alternatively, the size of FIN F= 
(0,1]

{[ , ]}h h
h

a b
∈
∪  can be 

computed as ZF(F) = 
1

0

( , )h hd a b dh∫ , where d(ah,bh) = v(bh)-v(ah) = ZR(F(h)) is the distance 

between interval F(h) = [ah,bh] ends. The size Z: FN→ 0
+R  of a N-tuple FIN F=(F1,…,FN)∈FN 

is computed as  Z(F) = ZF(F1)+…+ ZF(FN). 

Assuming that the following integral exists, a metric function dF: F×F→ 0
+R  is given by 

dF(F1,F2) = 
1

1 2
0

( ( ), ( ))d F h F h dh∫ Δ  [18], [23]; furthermore, an inclusion measure σF: F×F→ 

[0,1] is given by σF(F1,F2) = 
1

1 2
0

( ( ), ( ))F h F h dhσ∫ Δ  [18]. 

To enable an easy implementation of the techniques proposed in section 3, we summarize 

useful formulas in the following. 

2.3. A list of useful formulas 

It was explained at the end of section 2.1 that there are at least two different ways of defining 

a metric as well as an inclusion measure function in the complete lattice (τO(RN),≤) of N-
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dimensional hyperboxes. Hence, in this section, we define both a metric and an inclusion 

measure function in the complete lattice (FN,≤) of N-tuple FINs in two different ways. 

First, we define a metric as well as an inclusion measure function by equation (E1) and 

Theorem A.10, respectively, in lattice (ΔN,≤). 

• d1(F,E) = N

1

0

( ( ), ( ))d h h dh∫ Δ F E  = N N

1

0

[ ( ( ) ( )) ( ( ) ( ))]v h h v h h dh∨ − ∧∫ Δ ΔF E F E  = 

 =
1 N

,i ,i i, i, ,i ,i i, i, ,i i, i, ,i i, i,
i 10

[ ( ( )) - ( ( )) + ( ) - ( )]h h h h h h h hv a c v a c v b d v b d dh
=

θ ∧ θ ∨ ∨ ∧∑∫ R R R R R R , 

• σ1(F,E) = N

1

0

( ( ), ( ))h h dhσ∫ Δ F E  = 
N

N

1

0

( ( ))
( ( ) ( ))
v h

dh
v h h

Δ

Δ ∨∫
E

F E
 = 

 = 

N

1 ,i ,i i, ,i i,
i 1

N
0

,i ,i i, i, ,i i, i,
i 1

[ ( ( )) ( )]

[ ( ( )) ( )]

h h

h h h h

v c v d
dh

v a c v b d

=

=

θ +

θ ∧ + ∨

∑
∫
∑

R R R

R R R

, where 

F=(F1,…,FN)=( 1, 1,
(0,1]

{[ , ]}h h
h

a b
∈
∪ ,…, N, N,

(0,1]
{[ , ]}h h

h
a b

∈
∪ ), E=(E1,…,EN)= ( 1, 1,

(0,1]
{[ , ]}h h

h
c d

∈
∪ , 

…, N, N,
(0,1]

{[ , ]}h h
h

c d
∈
∪ ); bijective functions θR,i: R→R are strictly decreasing; and, functions 

vR,i: R→ 0
+R  are strictly increasing with 0=vR,i(O=-∞)<vR,i(I=+∞)<+∞, i∈{1,…,N}. 

Second, we define a metric as well as an inclusion measure function by equation (E2) and 

Theorem A.11, respectively, in lattice (Δ,≤)N. 

• d2(F,E) = d2((F1,...,FN),(E1,...,EN)) = 
1/ pp p

,1 1 1 ,N N N( , ) ( , )d F E d F E⎡ ⎤+ +⎣ ⎦…F F , where p∈R, and a 

metric dF,i(Ei,Fi), i=1,…,N is computed as 

dF(F,E) = 
1

0

( ( ), ( ))d F h E h dh∫ Δ  = 
1

0

([ , ],[ , ])h h h hd a b c d dh∫ Δ  = 

 = 
1

0

[ ( ( )) ( ( )) ( ) ( )]h h h h h h h hv a c v a c v b d v b d dhθ ∧ − θ ∨ + ∨ − ∧∫ R R R R R R . 

• σ2(F,E) = σ2((F1,...,FN),(E1,...,EN)) = λ1σF,1(F1,E1)+…+λNσF,N(FN,EN), where λ1,…,λN > 0 

such that λ1+…+λN = 1; moreover, an inclusion measure σF,i(Fi,Ei), i=1,…,N is computed as 
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σF(F,E)= 
1

0

( ( ), ( ))F h E h dhσ∫ Δ = 
1

0

([ , ],[ , ])h h h ha b c d dhσ∫ Δ  = 
1

0

( ( )) ( )
( ( )) ( )

h h

h h h h

v c v d dh
v a c v b d

θ +
θ ∧ + ∨∫ R R R

R R R
, 

where bijective function θR: R→R is strictly decreasing, and function vR: R→ 0
+R  is strictly 

increasing such that 0= vR(O=-∞) < vR(I=+∞) <+∞. 

We remark that, due to the “linearity property” of the integral operator, i.e. [ ]dh∑∫ …  = 

[ ]dh∑∫ … , it follows that d1(.,.) is a special case of d2(.,.) for p = 1. Nevertheless, inclusion 

measures σ1(.) and σ2(.) are, in general, different from each other for N > 1. 

2.4. Practical representation issues 

From a practical viewpoint we represented a FIN F in the computer memory by a L×2 matrix 

[a1 b1; a2 b2;…; aL bL] of real numbers, where L is a user-defined number of levels h1,h2,…,hL 

such that 0 < h1≤h2≤…≤hL = 1. In our experiments we usually used either L=16 or L=32 

levels spaced equally in the interval [0,1]. Note that a similar number of 16 or 32 levels is also 

proposed in fuzzy inference applications based on α-level sets [49]. 

 

3. A granular extension of FAM 

From an information processing point of view, the well-known FAM (fuzzy-ARTMAP) 

neural classifier is applicable in the atomic lattice of N-dimensional hyperboxes [19] − For 

definition of atomic lattice see in the Appendix. Fuzziness is introduced in FAM by 

calculating a (fuzzy) degree of inclusion of a trivial hyperbox, i.e. a N-dimensional point, to 

another hyperbox and vice-versa [26]. We point out that the hyperboxes, induced by FAM, 

constitute the cores of fuzzy sets in the unit hypercube. However, FAM cannot deal with 

fuzzy set inputs per se. Our work here extends the applicability of FAM to the space of FINs 

including (fuzzy) numbers, intervals, and cumulative distribution functions. More 

specifically, our work here extends the applicability of the fuzzy lattice reasoning (FLR) 

classifier, the latter is a lattice data domain extension of FAM [21], to the space of FINs. 

3.1. Granular FLR 

Granular FLR for training is presented in Fig.1 followed by granular FLR for testing in Fig.2. 

Both algorithms are applied on N-tuple FINs, namely granules or, equivalently, clusters. 

The granular FLR is a leader-follower classifier [21], which learns rapidly in a single pass 

through the training data. The (granular) FLR classifier may set out learning without a priori 

knowledge; however, a priori knowledge can be supplied to the FLR classifier in the form of 

an initial number of rules in RB (Fig.1). 
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3.2. Granular FLR details 

The FLR was interpreted as a rule-based classifier [21]. Regarding the granular FLR, in 

particular, a “learned” granule El∈FN is assigned a class label cl, l∈{1,…,L} thus 

corresponding to the rule “IF granule El THEN class cl”, symbolically El→cl. 

The total number of rules is not known a priori but, rather, it is determined “on-line” during 

learning. Further training of the FLR classifier, using additional training data, does not wash 

away previous learning. More specifically, retraining the FLR classifier with a new data set 

either enhances previously learned rules (step FLR-5 in Fig. 1) or it creates new rules (step 

FLR-2 in Fig. 1). The maximum threshold size Zcrit regulates the granularity of learning; the 

latter means the number of induced rules. It turns out that, in general, larger values of Zcrit 

result in fewer (i.e. more generalized) rules, whereas smaller values of Zcrit result in more (i.e. 

more specific) rules. 

Generalization can be effected in two manners. First, based on the Assimilation Condition, 

rule induction can be effected by replacing a granule EJ by a larger granule Fi∨EJ (Fig.1, step 

FLR-5). Hence, there are FINs within the larger granule Fi∨EJ which (FINs) are assigned 

category label cJ inductively, without explicit evidence. The latter is called here Type I 

Generalization and may result in granule overlapping, which can be avoided by conditionally 

augmenting the Assimilation Condition (Fig.1, step FLR-4) at the expense of longer computer 

processing times. Second, a pair (El,cl), l=1,…,L defines a fuzzy set (FN,σ(F≤El)) such that 

granule El corresponds to the core of fuzzy set (FN,σ(F≤El)) − Apparently, different positive 

valuations imply different fuzzy membership functions; hence, generalization becomes 

feasible beyond core El. The latter is called here Type II Generalization. 

An inclusion measure σ: FN×FN→[0,1] in both algorithms shown in Fig.1 and Fig.2 can be 

either σ1 or σ2 (see in section 2.3). Note that an inclusion measure σ may retain Occam razor 

semantics [21] as detailed in the following. 

Let vR,i: R→ 0
+R  and θR,i: R→R be, respectively, a strictly increasing function and a 

(bijective) strictly decreasing function. A sufficient condition for Occam razor semantics is to 

choose vR,i and θR,i such that equation v([a,b]) = C+Z([a,b]) is satisfied, where a,b,C∈R with 

a≤b, and C>0 constant. On one hand, regarding FAM, two popular functions vR,i and θR,i in 

the complete lattice unit-interval I=[0,1] are, respectively, vR,i(x) = x and θR,i(x) = 1-x [26]. 

Hence, vR,i(θR,i(ci,h)) + vR,i(ci,h) = vR,i(1-ci,h) + vR,i(ci,h) = 1; in conclusion, vΔ,i([ci,h,di,h]) = 

vR,i(θR,i(ci,h)) + vR,i(di,h) = 1 + [vR,i(di,h)-vR,i(ci,h)] = 1 + ZR,i([ci,h,di,h]). We point out that function 

θR,i(x) = 1-x corresponds to ART’s celebrated complement coding technique. Apparently, 

choosing a different function than θR,i(x)=1-x may result in a different “coding technique” 
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[19], [26]. On the other hand, two popular functions vR,i and θR,i in the complete lattice R are, 

respectively, vR,i(x) = i i( )
i /(1 )x mA e−λ −+  and θR,i(x) = 2mi-x [21]. Hence, vR,i(θR,i(ci,h)) + 

vR,i(ci,h) = vR,i(2mi -ci,h) + vR,i(ci,h) = Ai; in conclusion, vΔ,i([ci,h,di,h])= vR,i(θR,i(ci,h))+vR,i(di,h) = 

[Ai-vR,i(ci,h)]+vR,i(di,h) = Ai + ZR,i([ci,h,di,h]). Note that the derivative of sigmoid function vR,i(x) 

equals i i i i( ) ( ) 2
i i /(1 )x m x mA e e−λ − −λ −λ +  with a global maximum value of Aiλi/4 attained at x=mi. 

For example, Fig.3(b) displays the derivative 6e-3(x-4)/(1+e-3(x-4))2 of sigmoid function vR(x) = 

2/(1+e-3(x-4)) shown in Fig.3(a). We reformulate the expression for σ1 (in section 2.3), next. 

σ1(F,E) = 

N
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, where 

A = A1+…+AN, moreover N ( ( ))Z hΔ E  = ZR,1([c1,h,d1,h])+…+ZR,N([cN,h,dN,h]) in the numerator, 

and likewise in the denominator. Occam razor semantics is interpreted next. 

Let El∈FN, l∈{1,…,L} be granules (i.e. rule El→cl antecedents) competing over an input 

granule F0, i.e. the largest σ(F0≤El) is sought. It follows that winner EJ among granules 

E1,…,EL will be the one whose size needs to be modified, comparatively, the least (over all 

h∈(0,1]) so as to “barely” include F0. In the aforementioned sense, winner granule EJ is the 

simplest hypothesis that fits the data; that is the meaning of Occam razor semantics here. A 

similar interpretation also holds for inclusion measure σ2 (in section 2.3). 

The (granular) FLR supports two different modes of reasoning, namely Generalized Modus 

Ponens and Reasoning by Analogy [21]. More specifically, on one hand, Generalized Modus 

Ponens is a common form of deductive reasoning whereby, in the context of this work, given 

both a rule El→cl, l∈{1,…,L}, and an antecedent granule F0 such that F0≤El it follows cl; 

hence, generalized modus ponens is directly supported by the granular FLR. On the other 

hand, Reasoning by Analogy is a mode of approximate reasoning suitable for dealing with 

incomplete knowledge. More specifically, given a set of rules El→cl, l=1,…,L as well as an 

antecedent granule F0, such that F0≤El holds for no l∈{1,…L}, the granular FLR classifier 

selects the rule which best fits the data (F0) in the Occam razor sense explained above. An 

alternative interpretation is presented next. 
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Inclusion measure σ(F0≤El) can be interpreted as the degree of truth of implication “F0⇒El” 

involving the truth values F0 and El, respectively, of two propositions. Note that various 

mechanisms have been proposed for calculating a degree of truth of implication “F0⇒El” 

given the truth values F0 and El [30]. The novelty here is that the truth values F0 and El of the 

two propositions involved in implication “F0⇒El” take values in a general complete lattice 

[14] rather than taking values solely in the unit interval [0,1]. However, the truth of 

implication “F0⇒El” here takes values in the unit interval [0,1]. In particular, we define the 

truth of implication “F0⇒El” to be equal to σ(F0≤El). Therefore, the granular FLR classifier 

carries out tunable inferences. As a special case consider the truth table of the implication 

function “A⇒B” in Table 1, where both A and B take on (binary) values in the set {0,1}. 

Apparently, the inclusion measure function “σ(A≤B)” is identical to function “A⇒B”. In 

conclusion, the inclusion measure function “σ(A≤B)” can be interpreted as the degree of truth 

of implication “A⇒B”. Next, we compute the complexity of granular FLR. 

When a data pair (Fi,ci)∈FN×C, i=1,...,n is presented for training then the fuzzy inclusion 

measure σ(Fi≤El), l=1,…,L is calculated for all L granules El in RB. The worst-case training 

scenario is to keep “resetting” all L pairs in RB for every input. Since both 1) the largest value 

for L is L=n, and 2) a single pass through the data suffices for learning, it follows that the 

training complexity is quadratic O(n2) in the number n of the data for training. Likewise, it 

can be shown that the testing complexity of the FLR classifier is linear O(n). 

3.3. Comparative discussion 

The granular FLR carries out lattice computing, or LC for short, where LC was (roughly) 

defined as lattice-theory-based Computational Intelligence [15]. More accurately, LC is 

defined as an evolving collection of tools and methodologies that can process disparate types 

of data including logic values, numbers, sets, symbols, and graphs based on mathematical 

lattice theory with emphasis on clustering, classification, regression, pattern analysis, and 

knowledge representation applications. LC is currently used by different authors in various 

domains including Logic and Reasoning [53], Mathematical Morphology [37], Computational 

Intelligence [19], and Formal Concept Analysis [13]. 

There are inherent similarities as well as substantial differences between FAM and the 

granular FLR. For instance, both FAM and granular FLR learn rapidly in a single pass 

through the training data by applying, in principle, the same algorithm. A cluster computed by 

either algorithm corresponds to the core of a fuzzy set. Nevertheless, a cluster for granular 

FLR is a N-tuple FIN in FN, including N-dimensional hyperboxes, the latter are the only type 

of clusters computable by FAM solely in the unit hypercube. Moreover, only the (granular) 

FLR can deal “in principle” with “missing” data and/or “don’t care” data in a constituent 
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(complete) lattice by replacing the aforementioned data, respectively, by the least and the 

greatest element O and I in the corresponding constituent lattice [26]. 

The granular FLR is interpreted as a reasoning scheme, which supports two different modes 

of reasoning, namely Generalized Modus Ponens and Reasoning by Analogy as it was 

explained above; whereas, FAM makes a decision based on an “objective function” such as a 

Choice (Weber) function or a Match function. 

A substantial advantage of the granular FLR is its capacity to optimally tune either a strictly 

increasing (positive valuation) function v(x) or a (bijective) strictly decreasing function θ(x) in 

a data dimension in the Euclidean space RN; whereas FAM uses, implicitly as well as quite 

restrictively, only v(x)=x and θ(x)=1-x in a data dimension in the unit hypercube. A couple of 

granular FLR drawbacks are presented next. 

FAM’s proliferation problem, regarding clusters, is inherited to granular FLR. However, the 

granular FLR is equipped with such tools as a tunable inclusion measure as well as a tunable 

metric function to reduce “in principle” the number of hyperboxes. Another drawback of the 

granular FLR, also inherited from FAM, is that the learned clusters (in particular their total 

number, size, and location) depend on the order of presenting the training data. A potential 

solution is to employ an ensemble of granular FLRs in order to boost performance [19]. 

 

4. An industrial prediction application 

This section demonstrates prediction-by-classification in an industrial application. 

4.1. The physical problem 

The Phosphoric Fertilizers Industry (PFI) in N. Karvali, Greece produces industrial fertilizer 

by spraying Ammonium Nitrate (AN) solution on small solid particles inside a rotating pan 

granulator mill [23]. The end-product consists of small fertilizer granules each having size in 

the range of a few millimeters (Fig. 4). High quality fertilizer specifications demand at least 

95% of the granules to be in the range 2-5 mm having as spherical shape as possible; 

moreover, fertilizer granules should be covered “uniformly” with Ammonium Nitrate (AN). 

In order to retain a “granular” fertilizer product during both storage and transportation, the 

stiffness of fertilizer granules should be above a threshold value. Hence, the aforementioned 

stiffness is sampled during production and, if necessary, corrective control actions are taken. 

However, a problem arises as the measurement of stiffness takes time (around one hour) since 

it is carried out mechanically in the lab using a small “vibrating” cylinder including eight 

sieves (with successively increasing grid size from 1 mm up to 4.5 mm). Therefore, in the 
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mean time, a good deal of fertilizer product may go to waste. It is of interest to develop a 

reliable predictive model for stiffness towards taking corrective control actions much sooner. 

The development of a “first principles” prediction model was phased out due to the inherent 

complexity of the industrial process. Instead, we focused our efforts on inducing a predictive 

classification model from real-world measurements − Note that prediction by classification is 

a common practice in machine learning [19]. More specifically, our objective here is to 

induce a stiffness class label in the set {“small”, “medium”, “large”} from populations of 

measurements obtained by digital image processing techniques as explained next. 

4.2. Data acquisition 

An “unbiased” population sample including a variable number of up to a few hundred 

fertilizer granules was collected every 8 hours in March 2005 for 14 consecutive days during 

steady state production of fertilizer type CaN27. An aforementioned population was spread 

on a black background at a specific distance from an image grabber; in conclusion, grayscale 

digital images were obtained under white light. The area (in mm2) as well as an index of 

circularity (in the interval [0,1]) were computed for each fertilizer granule by digital image 

processing techniques [11] as follows. 

The images were thresholded using histogram processing techniques; hence, binary images 

were produced. Both the area and perimeter of each fertilizer granule in an image were 

computed. For each fertilizer granule, a diameter da was computed as the diameter of an equal 

area circle. Another diameter dp was computed for each granule as the diameter of an equal 

perimeter circle. Ratio da/dp was a granule’s circularity index CI ≤ 1. 

In addition, the “Ammonium Nitrate (AN)” sprayed on a fertilizer granule was quantified by 

the grayscale brightness difference under white light (Fig. 4(a)) from under ultraviolet light 

(Fig. 4(b)). Hence, for each fertilizer population (sample), one distribution of measurements 

was produced per variable area, circularity, and brightness difference. The latter three 

distributions represented the corresponding digital image(s). 

Compared to the mechanical measurement technique described in section 4.1, the proposed 

digital image processing techniques were clearly superior for several reasons. First, as soon as 

a population (sample) of fertilizer granules becomes available, digital image processing 

techniques were at least 10 times faster than the aforementioned mechanical measurement 

technique. Second, the resolution of measurements by the former techniques was at least 2 

orders of magnitude finer than the 0.5 mm resolution of mechanical measurement. Third, 

mechanical measurement is questionable because longer fertilizer granules tend to slip 

through a sieve, hence actual fertilizer granule size tends to be (slightly) larger than what it is 
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measured mechanically. Fourth, another advantage for the digital image processing 

techniques is that the circularity index CI of individual fertilizer granules can be measured. 

Fertilizer granule stiffness was measured manually (hence slowly) for each granule in a 

population as follows. We measured the peak force (in the range 10 N to 40 N) required to 

crush a fertilizer granule using a special force-meter device. However, in the context of this 

work, we did not use a distribution of stiffness measurements. Instead, an expert from the 

industry classified a stiffness distribution in one of the three class labels “small”, “medium”, 

and “large”. In conclusion, our data consisted of 42 triplets of distributions, each triplet was 

given together with its corresponding class (stiffness) label. 

4.3. FIN representation and interpretation issues 

A popular representation of a distribution (of real number measurements) is by a histogram. 

For practical reasons one can claim that when the number of samples in a distribution 

becomes “large enough” then a histogram goes to a probability density function (pdf). Due to 

a bijection (i.e. one-to-one correspondence) between pdfs and CDFs (cumulative distribution 

functions) there follows a bijection between histograms and CDFs. In the following we show 

representation of a CDF by a FIN. 

It is well known that a FIN F: (0,1]→τO(R) can represent a CDF P(x) as follows: mF(x)=2P(x) 

for x≤x0, furthermore mF(x)=2[1-P(x)] for x≥x0, where P(x0)=0.5 and mF: R→(0,1] is the 

membership function of FIN F [18], [19], [24]. Hence, a FIN represents a histogram. 

In practice, a FIN can be computed from a distribution of measurements by algorithm 

CALFIN [18], [19], [23] for any number of samples in a distribution. A statistical 

interpretation of a FIN follows. If a “large” number of samples is drawn independently 

according to a pdf p0(x) and a FIN F is constructed by algorithm CALFIN then interval F(h) 

constitutes an interval of confidence at level-h in the sense that a random number drawn 

according to p0(x) is expected to fall 1) inside interval F(h) with probability 100(1-h)%, and 

2) either below or above interval F(h) with probability 50h% [18], [19], [23], [24]. For 

graphical illustrations regarding the computation of a FIN by algorithm CALFIN the 

interested reader may refer to [18], [24], [35]. A subtle practical advantage of using a FIN 

(computed by algorithm CALFIN) is explained next. 

A popular practice in the literature for representing a distribution of measurements is using up 

to second order statistics including both the corresponding average and standard deviation. 

However, the aforementioned practice is error-prone because potentially important “higher 

order statistics”, such as skewness, etc. are ignored. Note that the need to employ higher-order 

statictics was already acknowledged in practice including climate modeling [5], [36]. 
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Different authors have already proposed new techniques, including the ordered weighted 

averaging (OWA), for considering certain statistics [54]. Due to the aforementioned bijection 

between FINs and CDFs, a comparative advantage of a FIN is that a FIN can consider 

statistics of all orders [19], [23], [24]. 

A FIN can represent a fuzzy number with an arbitrary membership function. It is noteworthy 

that other authors have also pursed an induction of fuzzy sets with arbitrary membership 

functions using different lattice theory techniques based on fuzzy logic [52]. A comparative 

advantage here is the capacity to introduce tunable nonlinearities towards improving 

performance as demonstrated below using stochastic search optimization techniques. 

4.4. Computational experiments and results 

In our computational experiments, described in this section, we employed 42 labeled (3-tuple) 

FIN data induced from industrial digital images as detailed above. The data were numbered in 

the order recorded. We used the first 25 data for training, the next 10 data for validation, and 

the last 7 data for testing. Table 2 displays the distribution of the aforementioned data for 

training/validation/testing in three categories labeled small, medium, and large (stiffness). 

In our experiments we confirmed that the granular FLR always learned fast in a single pass 

through the training data, as expected. We employed one (sigmoid) positive valuation 

function vR,i(x) = i i( )
i /(1 )x mA e−λ −+  with three parameters Ai, λi, mi per (data) dimension in 

three dimensions i=1,2,3. An additional parameter included the granule threshold size Zcrit 

(Fig. 1). In conclusion, we pursued optimal estimation of 10 parameters by a genetic 

algorithm (GA) immediately after training the granular FLR, as explained next. 

We represented an individual GA solution of the granular FLR using 10 parameters. Hence, 

the chromosome of an individual solution consisted of 10 genes. Each gene used 16 bits to 

encode a single parameter value. In conclusion, a chromosome was 160 bits long. The 

population of the genetic algorithm included 100 individuals. The genetic algorithm employed 

multipoint crossover and roulette wheel selection for reproduction, elitism, multipoint 

mutation, and adaptive crossover-mutation rates. Genetic optimization was enhanced by 

specialized operators including both the Adaptive SEarch space Range (ASER) and the 

microgenetic one [24]. Objective function f(Ptrn,Pval,Q;w,ε)= wPtrn+(1-w)Pval+ε/Q calculated 

the fitness of an individual (solution), where Ptrn is the “training data” classification accuracy, 

Pval is the “validation data” classification accuracy, Q is the total number of granules 

(clusters), w is a parameter in the open interval (0,1), and ε is a small positive parameter. Note 

that we chose the aforementioned form of objective function f(Ptrn,Pval,Q;w,ε) empirically. In 

particular, we chose w=0.1 so as to consider both the training- and the validation- data with 
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emphasis on the validation data; furthermore, we chose a small value ε=0.001 so as to break 

“ties” in favor of solutions with smaller Q. Evolution terminated when the fitness of the elite 

individual (solution) did not improve for 100 generations in a row. 

Table 3 displays the training data parameter ranges, which we fed the GA with as well as the 

corresponding optimally estimated parameter values. We point out that the data in our 

experiments were not normalized. The optimally estimated sigmoid functions are displayed, 

over a domain of interest, in Fig. 5 (a), (b), and (c). It is remarkable that a positive valuation 

in Fig.5 changes by a different amount over a domain of interest. The latter signifies the 

“discriminatory capacity” of the corresponding input variable as explained below. 

Using the optimal parameter estimates of Table 3, the granular FLR induced one granule 

(cluster) per class. Each one of the latter clusters can be interpreted as a rule for classification 

(Fig. 5). For instance, rule R1 can be interpreted as 

If “area is A1”.AND.“circularity is C1”.AND.“brightness difference is BD1” then “fertilizer 

granule stiffness is small” 

Note that a FIN, plotted in bold in Fig. 5, is the “envelope” of all the FINs it contains. 

The testing data were applied once, after training. We recorded a testing data classification 

accuracy of 100% as shown in the first line of Table 4. 

We remark that “envelope” FIN granules A1, A2, and A3 in Fig. 5 in rules R1, R2, and R3, 

respectively, show that all the corresponding training data FINs clearly lie inside the saturated 

region of the corresponding sigmoid positive valuation function shown in Fig. 5(a). In other 

words, the latter positive valuation function essentially remains constant over the training data 

domain. Hence, we considered the following hypothesis: “input variable area is redundant 

and it can be omitted”. We confirmed the aforementioned hypothesis by additional 

computational testing experiments using only input variables circularity and brightness 

difference. A 100% testing data classification accuracy resulted in, again. 

We repeated the testing phase using positive valuation function v(x)=x in every data 

dimension. In the latter case we recorded one misclassification as shown in the second line of 

Table 4. For a further comparison, we carried out a number of additional k-nearest neighbor 

(kNN) classification experiments for k=1 as follows. 

First, we applied kNN in metric space F3, 1) using the three sigmoid positive valuation 

functions whose (optimal) parameters are shown in Table 3, and 2) using positive valuation 

function v(x) = x in a data dimension. Second, we replaced a distribution (of measurements) 

by its corresponding median. Then, we applied kNN in the Euclidean space R3, 1) using the 

three sigmoid positive valuation functions whose (optimal) parameters are shown in Table 3, 
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and 2) using positive valuation function v(x) = x in a data dimension. In each aforementioned 

experiment we recorded one misclassification as shown in Table 4 lines 3-6, respectively. 

 

4.5. Discussion of the results 

The granular FLR here processed N-tuples of histograms, which represented digital images. 

A histogram was represented by a non-parametric FIN. FINs are preferable in practice 

because they can represent data statistics of all orders [18], [22], [23], [24], [35]. 

This work has demonstrated the advantage of introducing tunable nonlinearities resulting in a 

testing data classification accuracy of 100% as summarized comparatively in Table 4. 

However, granular FLR required significantly more time for calculating “genetically” 

optimal sigmoid function parameter values. 

Another advantage of the granular FLR is that it induced descriptive decision-making 

knowledge (rules) from the training data, whereas a kNN classifier can not produce any rules. 

Previous work has employed “hyperbolic tangent” positive valuation functions [24], 

nevertheless sigmoid ones are preferable in the context of this work for the following reasons. 

A sigmoid function vR(x)= A/(1+e-λ(x-m)) varies between 0 and A/2>0, therefore it is suitable 

for defining an inclusion measure function (σ) since the latter (function) needs to be zero for 

the least interval (see Definition A.9 in the Appendix). Another advantage is that a sigmoid 

positive valuation function, with optimally estimated parameters A, λ, and m, can avoid 

conventional “data preprocessing” (towards data normalization). Moreover, a sigmoid 

function is popular in neural computing. This work has also presented experimental evidence 

that a (sigmoid) positive valuation can suggest input variable selection as explained next. 

When a positive valuation function practically remains constant over the domain of an input 

variable, e.g. input variable area in Fig. 5, then and only then we conjecture that the 

aforementioned variable is not significant and could be omitted. The aforementioned 

conjecture, namely here null hypothesis H0, remains to be thoroughly tested statistically in a 

future work since the problem of input variable selection may be significant in practice [32]. 

Additional advantages include granular FLR’s capacity to deal “in principle” with both 

“missing” and “don’t care” data as well as its capacity to support two modes of reasoning, 

namely Generalized Modus Ponens and Reasoning by Analogy. 
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5. Conclusion  

This work has introduced the granular FLR as an extension of FAM neural classifier for 

processing granular FIN data including (fuzzy) numbers, intervals, and cumulative 

distribution functions. Based on a fundamentally improved novel mathematical notation, FINs 

can directly be associated with α-cuts of fuzzy numbers towards a wider proliferation of our 

proposed techniques in practice including fuzzy system applications. Section 4.5 summarized 

comparatively a number of advantages regarding the granular FLR.  

Experimental results have confirmed the viability of our proposed techniques. In particular, 

the effectiveness of the granular FLR classifier was demonstrated here comparatively in an 

industrial prediction-by-classification application. 

Future plans include extensive statistical testing regarding, first, the general effectiveness of 

our proposed techniques and, second, the null hypothesis H0 (see in section 4.5) towards an 

effective input variable selection. Future work also includes a further (linguistic) extension of 

the granular FLR towards a sound accommodation of interval-FINs. 
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Appendix 

This Appendix summarizes basic lattice theory notions and useful results in order to make this 

work “self-contained”. A novel theorem, as well as its proof, is also shown. 

 

A.1. Posets 

A fundamental abstract notion is “(partial) order” [4] defined next. 

Definition A.1. Let P be a nonempty set. A (partial) order (≤) is a binary relation ≤⊆P×P, 

which satisfies 1) x≤x (Reflexivity); 2) x≤y and y≤x ⇒ x = y (Antisymmetry); 3) x≤y and y≤z 

⇒ x≤z (Transitivity). 

A partial order implies a partially ordered set, or poset for short, as follows. 

Definition A.2. A poset is a pair (P,≤), where P is a set and ≤ is a partial order relation in P. 

We remark that if x≤y (or, y≤x) then x and y are called comparable; otherwise, x and y are 

called incomparable or parallel, symbolically x||y, for x,y∈P. A poset (P,≤), which includes 

solely comparable elements is called totally-ordered or, equivalently, chain. If x≤y and x≠y in 

a poset (P,≤) then one writes x<y. 

A poset can contain at most one element O, which satisfies O≤x for all x∈P. Such an element, 

if it exists, is called least element of P. The dual greatest element of P is denoted by I. 

By “a covers b” in a poset (P,≤) one means that b<a but b<x<a for no x∈P. Let (P,≤) be a 

poset with least element O. Every x∈P which covers O, if such x exists, is called atom. 

An interval [a,b], in a poset (P,≤), is defined as the set [a,b]≐{x∈P: a≤x≤b}. Let τ(P) denote 

the set of intervals in (P,≤). It follows that a trivial interval [x,x]∈τ(P) is an atom in poset 

(τO(P)= τ(P)∪{O},≤), the latter is ordered by set inclusion with least element (empty set) O. 

Definition A.3. Let (P,≤) and (Q,≤) be posets. A map ψ: P→Q is called 1) Order-preserving 

(or, simply, monotone) if x≤y in (P,≤) implies ψ(x)≤ψ(y) in (Q,≤), and 2) Order-isomorphism 

(or, simply, isomorphism) if both “x≤y in (P,≤) ⇔ ψ(x)≤ψ(y) in (Q,≤)” and “ψ is onto Q”. 

We remark that when there is an isomorphism between two posets (P,≤) and (Q,≤) then the 

aforementioned posets are called isomorphic, symbolically (P,≤) ≅ (Q,≤). 

The dual of a poset (P,≤) is another poset defined by the converse order relation, symbolically 

(P,≤)∂ ≡ (P,≤∂) ≡ (P,≥). 
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A.2. Crisp lattices 

Lattice theory was compiled creatively by Garrett Birkhoff [4]. A (mathematical) lattice can 

be defined based on a poset as follows. 

Let (P,≤) be a poset and X⊆P. An upper bound of X is a a∈P with x≤a, ∀x∈X. The least 

upper bound (l.u.b.), if it exists, is the unique upper bound contained in every upper bound. 

The l.u.b. is also called supremum or lattice join of X and denoted by supX or ∨X. The 

notions lower bound of X and greatest lower bound (g.l.b.) of X are defined dually. The g.l.b. 

is also called infimum or lattice meet of X and denoted by infX or ∧X. 

Definition A.4. A lattice, or equivalently crisp lattice, is a poset (L,≤) any two of whose 

elements have both a g.l.b., denoted by x∧y, and a l.u.b., denoted by x∨y, in L. 

A lattice (L,≤) is called complete when a subset X⊆L has both a l.u.b. and a g.l.b. in L. Setting 

X=L it follows that a nonvoid complete lattice contains both a least element and a greatest 

element denoted, respectively, by O and I. In this work we deal solely with complete lattices. 

A sublattice of a lattice (L,≤) is another lattice (S,≤) such that S⊆L. The dual of a lattice 

(L,≤), symbolically (L,≤)∂ ≡ (L,≤∂) ≡ (L,≥), is a lattice. An atomic lattice (L,≤) is one in which 

every element is a joint of atoms. 

Definition A.5. A positive valuation in a lattice (L,≤) is a real function v: L→R, which 

satisfies both v(x)+v(y) = v(x∧y)+v(x∨y) and x<y ⇒ v(x)<v(y). 

A positive valuation v: L→R in a lattice (L,≤) implies a metric function d: L×L→ 0
+R  given by 

d(a,b) = v(a∨b) - v(a∧b) (E1) 

For convenience, the definition of “metric” is shown next. 

Definition A.6. A metric in a set A is a nonnegative real function d: A×A→ 0
+R , which 

satisfies 0) d(x,y) = 0 ⇒ x = y; 1) d(x,x) = 0; 2) d(x,y) = d(y,x); 3) d(x,z) ≤ d(x,y)+d(y,z) 

(Triangle Inequality). 

If only conditions 1) to 3) are satisfied in Definition A.6 then d is called pseudo-metric. A 

metric space is a pair (A,d) including both a set A and a metric d: A×A→ 0
+R . 

Of particular interest here is a Cartesian product lattice (L,≤)= (L1,≤1)×…×(LN,≤N) of 

constituent lattices (Li,≤i), i=1,…,N. Note that each constituent lattice (Li,≤i) is characterized 

by a specific order relation ≤i, i=1,…,N. Nevertheless, a general lattice order will be denoted 

here by the same symbol ≤, in the interest of simplicity. On one hand, positive valuation 
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functions vi: Li→R in constituent lattices (Li,≤), i=1,…,N imply both a positive valuation v: 

L→R given by v(x1,…,xN)= v1(x1)+…+vN(xN) and a Minkowski metric dp: L→ 0
+R  given by 

dp(x,y) = 
1/ pp p

1 1 1 N N N( , ) ( , )d x y d x y⎡ ⎤+ +⎣ ⎦… , where x= (x1,…,xN), y=(y1,…,yN), p∈R (E2) 

On the other hand, isomorphic functions θi: Li→Li from a constituent lattice (Li,≤) to its dual 

(Li,≥) , i=1,…,N imply an isomorphic function θ: L→L from lattice (L= L1×…×LN,≤) to its 

dual (L,≥) given by θ(x1,…,xN)= (θ1(x1),…,θN(xN)). 

Poset (τO(L)= τ(L)∪{O},≤) of intervals, ordered by set inclusion, is an atomic lattice with 

least element O. 

Based on a positive valuation v: L→R, the size of an interval in (τ(L),≤) is defined as follows. 

Definition A.7. The size ZL: τ(L)→ 0
+R  of an interval [a,b]∈τ(L) in lattice (L,≤), with respect 

to a positive valuation v: L→R, is defined as ZL([a,b]) = d(a,b) = v(b) – v(a). 

 

A.3. Fuzzy lattices 

A fuzzy set is denoted here by a pair (U,m), where U is a universe of discourse and m is a 

membership function m: U→[0,1]. A fuzzy lattice [19] fuzzifies the binary relation “≤”in a 

crisp lattice as follows. 

Definition A.8. A fuzzy lattice is a triple (L,≤,m), where (L,≤) is a crisp lattice and (L×L,m) is 

a fuzzy set such that m(x,y)=1 if and only if x≤y. 

Function m: U→[0,1] in Definition A.8 is a weak (fuzzy) partial order relation in the sense 

that both m(x,y)=1 and m(y,z)=1 imply m(x,z)=1, whereas if either m(x,y)≠1 or m(y,z)≠1 then 

m(x,z) could be any number in the interval [0,1]. A (complete) lattice can be fuzzified by an 

inclusion measure function defined next. 

Definition A.9. Let (L,≤) be a complete lattice with least element O. An inclusion measure is 

a function σ: L×L→[0,1], which satisfies the following conditions 0) σ(x,O)=0, x≠O; 1) σ(x,x) 

= 1, ∀x∈L; 2) x∧y < x ⇒ σ(x,y) < 1; and, 3) u ≤ w ⇒ σ(x,u) ≤ σ(x,w) (Consistency Property). 

We remark that σ(x,y) may be interpreted as a (fuzzy) degree of inclusion of x in y. Therefore, 

notations σ(x,y) and σ(x≤y) are used interchangably. It turns out that if σ: L×L→[0,1] is an 

inclusion measure then (L,≤,σ) is a fuzzy lattice [19], [21]. A couple inclusion measures can 

be defined in a complete lattice based on a positive valuation function as shown next [19]. 



 24

Theorem A.10. If v: L→ 0
+R  is a positive valuation in a complete lattice (L,≤), with v(O)=0, 

then both functions k(x,u) = v(u)/v(x∨u) and s(x,u) = v(x∧u)/v(x) are inclusion measures. 

We point out that Theorem A.10 calls for a nonnegative positive valuation function v. 

Proposition A.11. Let function σi: Li×Li→[0,1] be an inclusion measure in a constituent 

lattice (Li,≤), i=1,…,N. Then, convex combination σ(x,y) = λ1σ1(x1,y1)+…+λNσN(xN,yN) is an 

inclusion measure in the Cartesian product lattice (L,≤)= (L1,≤)×…×(LN,≤). 

Proof 

By “convex combination” above we mean a set λ1,…,λN of positive numbers such that 

λ1+…+λN = 1. Next, we show that function σ(x,y) = λ1σ1(x1,y1)+…+λNσN(xN,yN) satisfies the 

conditions of Definition A.9. 

0) σ(x,O) = λ1σ1(x1,O)+…+λNσN(xN,O) = 0, x≠O=(O,…O); 

1) σ(x,x) = λ1σ1(x1,x1)+…+λNσN(xN,xN) = λ1+…+λN = 1, ∀xi∈Li; 

2) x∧y < x ⇒ ∃i∈{1,...,N}: xi∧yi < xi ⇒ σ(xi,yi) < 1; Hence, 

x∧y < x ⇒ σ(x,y) = λ1σ1(x1,y1)+…+ λNσN(xN,yN) < λ1+…+λN = 1; 

3) u ≤ w ⇒ ui ≤ wi, ∀i∈{1,...,N} ⇒ σ(xi,ui) ≤ σ(xi,wi); Hence, 

u ≤ w ⇒ λ1σ1(x1,u1)+…+λNσN(xN,uN) ≤ λ1σ1(x1,w1)+…+λNσN(xN,wN) ⇒ σ(x,u) ≤ σ(x,w). 

The latter completes the proof of Proposition A.11. 
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Figure Captions 

 

Fig. 1. Learning (i.e. training) by Fuzzy Lattice Reasoning (FLR). 

 

 

Fig. 2. Generalization (i.e. testing) by Fuzzy Lattice Reasoning (FLR). 

 

 

Fig. 3. (a) Sigmoid function vR(x) = 2/(1+e-3(x-4)). 

 (b) The derivative 6e-3(x-4)/(1+e-3(x-4))2 of the sigmoid function vR(x) above. A global 

maximum of 1.5 is attained at x = 4. 

 

 

Fig. 4. Grayscale digital images of fertilizer granules on black background 

 (a) under white light, and 

 (b) under ultraviolet light. 

 

 

Fig. 5. Optimally estimated sigmoid positive valuation functions in an industrial application 

 (a) vR,1(x)= 50.2839/(1+e-45.4816x) regarding input variable area. 

 (b) vR,2(x)= 0.7575/(1+e-0.9764x) regarding input variable circularity. 

 (c) vR,3(x)= 14.3893/(1+e-0.0038(x+110.5680)) regarding input variable brightness difference. 

 In addition, the following three rules are displayed: 

 Rule R1: IF A1.AND.C1.AND.BD1 THEN small. 

 Rule R2: IF A2.AND.C2.AND.BD2 THEN medium. 

 Rule R3: IF A3.AND.C3.AND.BD3 THEN large. 

 Inference is carried out by “winner-take-all” fuzzy lattice reasoning (FLR). 
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Table Captions 

 

Table 1 

In the binary case, where A,B∈{0,1}, the truth table of the implication function “A⇒B” is 

identical to the truth table of the inclusion measure function “σ(A≤B)” 

 

 

Table 2 

Distribution of industrial data, regarding (fertilizer granule) stiffness, in three categories 

small/medium/large used for training/validation/testing 

 

 

Table 3 

A line displays a considered range (min/MAX values) as well as the optimally computed 

estimate for both sigmoid parameters Ai, λi, mi in a data dimension i=1,2,3 and the overall 

critical granule size Zcrit 

 

 

Table 4 

Different classifiers, for various combinations of data types and positive valuation functions, 

have resulted in different numbers of misclassifications 

 



 

 

 

 

 

 

 

Granular FLR, for training 

FLR-0: A set of pairs RB= {(E1,c1),...,(EL,cL)} is given, where El∈FN is a granule/cluster 
and cl∈C, l=1,...,L is its corresponding class label. 

FLR-1: Do “set” all pairs in RB. Present the next input pair (Fi,ci)∈FN×C, i=1,...,n. Compute 
the degree of inclusion σ(Fi≤El) of input granule Fi to all granules El, l=1,...,L. 

FLR-2: If no more pairs are “set” in RB then store input pair (Fi,ci) in RB; L←L+1; goto 
step FLR-1. 

FLR-3: Competition among the “set” pairs in RB: Winner is pair (EJ,cJ) such that 
J≐

{ }1, ,L
arg

∈ …l
max σ(Fi≤El). In case of multiple winners, choose the one with the 

smallest (granule) size. 

FLR-4: The Assimilation Condition: Both 1) the size Z(Fi∨EJ) of granule Fi∨EJ is less than 
a user-defined threshold size Zcrit, and 2) ci = cJ. 

FLR-5: If the Assimilation Condition is not satisfied then “reset” the winner pair (EJ,cJ); 
goto step FLR-2. 

 Else, replace the winner granule EJ with granule Fi∨EJ; goto step FLR-1. 

 

 

 

Fig. 1.  
 



 

 

 

 

 

 

 

 

Granular FLR, for testing 

flr-0: Consider a set of pairs RB= {(E1,c1),...,(EL,cL)}, where El∈FN is a granule/cluster 
and cl∈C, l=1,...,L is its corresponding class label. 

flr-1: Present a granule F0∈FN. 

flr-2: Compute the degree of inclusion σ(F0≤El) of granule F0 to all granules El, l =1,...,L. 

flr-3: Competition among the pairs in RB: Winner is pair (EJ,cJ) such that 
J≐

{ }1, ,L
arg

∈ …l
max σ(F0≤El). In case of multiple winners, choose the one with the 

smallest (granule) size. 

flr-4: Granule F0 is classified to the class with label cJ. 
 
 

 

Fig. 2.  

 



 
 
 
 
 
 
 

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

(a)

1 2 3 4 5 6 7
0

0.5

1

1.5

2

(b)
 

 

Fig. 3.  

 



 

 

 
 

(a) 

 

 

 
 

(b) 

 

Fig. 4.  

 

2 cm 



 
Fig. 5.  



 

 

 

 

 

 

 

 

 

 

Table 1    

In the binary case, where A,B∈{0,1}, the truth table of the 
implication function “A⇒B” is identical to the truth table 
of the inclusion measure function “σ(A≤B)” 

A B A⇒B σ(A≤B) 

0 0 1 1 

0 1 1 1 

1 0 0 0 

1 1 1 1 

 



 

 

 

 

 

 

 

 

Table 2     

Distribution of industrial data, regarding (fertilizer granule) stiffness, in three categories 
small/medium/large used for training/validation/testing 

 categories of (fertilizer granule) stiffness TOTAL 

no. of data used for small medium large no. of data 

training 5 10 10 25 

validation 5 3 2 10 

testing 1 4 2 7 

TOTAL no. of data 11 17 14 42 

 



 

 

 

 

 

 

Table 3    

A line displays a considered range (min/MAX values) as well as the 
optimally computed estimate for both sigmoid parameters Ai, λi, mi in a 
data dimension i=1,2,3 and the overall critical granule size Zcrit 

parameter parameter range optimal parameter 

 min value MAX value estimate 

A1 0 100 50.2839 

λ1 0 100 45.4816 

m1 0 100 0.0 

A2 0 2 0.7575 

λ2 0 2 0.9764 

m2 0 2 0.0 

A3 0 600 14.3893 

λ3 0 600 0.0038 

m3 -120 600 -110.5680 

Zcrit 0 10 5.0 

 



 

 

 

 

 

 

 

 

Table 4    

Different classifiers, for various combinations of data types and positive 
valuation functions, have resulted in different numbers of misclassifications 

classifier name data type positive valuation 
function v(x) 

no. of 
misclassifications 

FLR FIN sigmoid 0 

FLR FIN v(x) = x 1 

kNN FIN sigmoid 1 

kNN FIN v(x) = x 1 

kNN number sigmoid 1 

kNN number v(x) = x 1 

 


