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Personalized Multi-Student Improvement Based on Bayesian Cybernetics

Abstract

This work presents innovative cybernetics (feedback) techniques based on Bayesian statistics 

for drawing questions from an Item Bank towards personalized multi-student improvement. A 

novel software tool, namely Module for Adaptive Assessment of Students (or, MAAS for 

short), implements the proposed (feedback) techniques. In conclusion, a pilot application to 

two Computer Science courses during a period of four years demonstrates the effectiveness of 

the proposed techniques. Statistical evidence strongly suggests that the proposed techniques 

can improve student performance. The benefits of automating a quicker delivery of University 

quality education to a large body of students can be substantial as discussed here.

Keywords: Architectures for educational technology systems; Intelligent tutoring systems; 

Interactive learning environments; Teaching/learning strategies

1. Introduction

The total number as well as the distribution of students admitted (from secondary) to tertiary 

education in Greece is currently regulated by central government policies. In this context, a 

number of higher educational institutions face the challenge of providing education to large 

numbers of students given limited teaching resources. For instance, the fairly new department 

of Industrial Informatics at Technological Educational Institution of Kavala has started its 

operation in academic year 1999-2000 by admitting a total number of 226 students. In the 

following years the number of admitted students steadily increased to reach the not-easily 

manageable, due to a disadvantageous studentteacher ratio, number of 349 students in 

academic year 2002-2003 (Kaburlasos et al., 2003). Currently, the aforementioned number 

has stabilized to over 300 students per year.

A similar situation also arises elsewhere, where it was reported that the number of students in 

higher education may rise faster than an increase in teaching resources including academic 

staff (Daly & Horgan, 2004; Davies, 1999; Smailes, 2003; Valenti, 2003). Hence, the 

aforementioned challenge remains. A more ambitious challenge would be to improve, in 

addition, the quality of supplied education while, at the same time, increase student 

throughput; the latter is defined here as the percentage of students who pass the final exam. 

* Manuscript -- nothing identifying the author should be listed
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The benefits, including economic ones, of automating a quicker delivery of high quality 

education to a large body of students can be substantial. In particular, a quicker delivery of 

University quality education can imply substantial financial savings; moreover, the graduating 

students can contribute to production sooner. This work reports on both the development and 

pilot application of innovative techniques to meet the aforementioned challenges.

One popular instrument for dealing with the problem of academic staff shortage is Computer-

Based Assessment (CBA), also referred to as Computer Assisted Assessment (CAA). 

CBA/CAA uses computerized testing for assessing student knowledge level and, thus, 

reducing scoring workload. More specifically, instead of receiving a test with a fixed set of 

Items (i.e. questions), students receive a set of Items randomly selected from an Item Bank 

(Brown et al., 1999; Thelwall, 2000; Sclater & Howie, 2003). Several pedagogic as well as 

strategic advantages of CBA over Paper-and-Pencil Tests have been presented comparatively 

including both unbiased and accurate scoring, containment of cheating, and immediate 

feedback regarding student performance (Harvey & Mogey, 1999; Russell & Haney, 2000).

However, other studies, regarding equivalence of CBA with paper-and-pencil exams, give 

conflicting results. In particular, individual differences may still affect the aforementioned 

equivalence, even though student familiarity with computers is increasing rapidly (McDonald, 

2002). Therefore, CBA tests have not thoroughly replaced paper-and-pencil tests. Of 

particular interest here is an employment of feedback techniques towards student 

improvement. Consider the following definition regarding cybernetics (Wiener, 1965).

Cybernetics is the study of feedback and derived concepts such as communication and control

in living organisms, machines and organizations. Its focus is how an entity (digital, 

mechanical, or biological) processes information, reacts to information, and changes to better 

accomplish its tasks.

Inspired from the above definition, we developed feedback techniques for student 

improvement as follows. We presented the “learning state” of an individual student by a 

vector of probabilities computed by Bayesian statistics as detailed below. Then, the “learning 

state” vector was used to compute a (student) customized focus-of-attention vector of 

probabilities. The latter (vector) was used to randomly draw questions from an Item Bank 

which (questions) were fed back to an individual student towards improving incrementally a 

student’s “learning state”. We review potentially useful technology for student testing, next.

In Adaptive Testing, which is also referred to as tailored testing, tests are adjusted to the 

competence level of individual students (Lord, 1980). In Computer Adaptive Testing (CAT), 

in particular, adaptive tests are administered by computers (Lilley et al., 2004; Linacre, 2000).



3

Items are administered one-at-a-time such that the selection of an Item depends on student 

response to previous Items.

Adaptive assessment retains the advantages of CBA; additional benefits include accurate as 

well as reliable estimation of student competence, reduction of testing time, and avoidance of 

easy/difficult Items that may cause boredom/stress of students. It is recognized that CAT may 

facilitate integration of assessment with learning. Also, CAT has been used as a diagnostic 

module in personalized e-learning environments such as in KOD (Sampson et al., 2002), 

INSPIRE (Papanikolaou et al., 2002), PEL-IRT (Chen et al., 2004) as well as to Web-based 

tutoring systems including ELM-ART (Weber & Brusilovsky, 2001) and SEATS (Davidovic 

et al., 2003). Of particular interest here is self-assessment towards student improvement. Note 

that the employment of self-assessment for student improvement was pursued lately, but not 

conclusively (Pérez et al., 2005). Furthermore, different authors have reported encouraging 

results regarding student improvement by self-assessment, nevertheless without feedback 

(Guzmán et al., 2007).

Critical in the design of CAT for large-scale educational tests is content balancing, the latter 

is a prespecified percentage of Items from each (different) content area, including the popular 

constrained CAT (CCAT) procedure for Item selection (Kingsbury and Zara, 1989). In 

particular, CCAT selects an “optimal” Item from the content area whose current exposure rate 

is the furthest under its corresponding (prespecified) percentage. The modified constrained 

CAT (MCCAT) was proposed for eliminating predictability of the sequence of content areas of 

CCAT by selecting an optimal Item from all the content areas that still have quota not fully 

used up (Leung et al., 2000). A more recent work has presented a study that compares those 

content balancing methods with the modified multinomial model (MMM), which incorporates 

randomness (Leung et al., 2003). The results indicate a systematic effect of content balancing 

method on Item Bank (or pool) utilization, whereas MMM appears to reduce both the 

predictability of Item contents sequence and the number of overexposed Items.

Frequently, CAT employs Item Response Theory (IRT) as a supportive model (Lord, 1980). 

For instance, IRT was used to determine the probability of a correct response, update student 

level, and select the next Item. A three parameter logistic (3-PL) IRT model was used to 

calculate the probability of a correct response to a given Item, based on both student 

competence and three Item parameters, namely Item difficulty, Item discrimination, and a 

pseudo-guessing parameter. IRT was also applied to personalized e-learning environments.

During the last two decades, commercially available software for implementing IRT-based 

CAT was developed including FastTEST Pro and MicroCAT (Assessment Systems 

Corporation, 2001). Furthermore, the feasibility of IRT in the Graduate Record Examination 

(GRE) was investigated (McKinley & Kingston, 1987).



4

Adaptive Mastery Testing (AMT) is a CAT that measures the mastery of a set of skills. The 

decision is to either classify an individual into one of two “status” categories, i.e. master or 

nonmaster, or to continue testing. Both the Item selection and the stopping rule are adaptive. 

At least two IRT-based strategies were primarily used in AMT for Item selection. First, the 

Bayesian Item selection strategy selects an Item that minimizes posterior variance of a 

student’s last ability estimate (Owen, 1975)  Note that posterior variance may be obtained 

via Owen’s Bayesian scoring algorithm, or other numerical techniques developed later. 

Second, the Item to be selected next is the one that maximizes the amount of information in a 

student’s last ability estimate (Kingsbury & Weiss, 1983). Both aforementioned IRT-based 

Item selection strategies use confidence intervals of student’s latent ability either to decide 

student categorization or to continue testing.

Sequential Mastery Testing (SMT) is another type of mastery testing, where the next Item is 

selected randomly, moreover the stopping rule is adaptive. A binomial distribution was 

proposed assuming that Items have identical properties (Ferguson, 1969). Moreover, a 

varying Item difficulty and discrimination was proposed with an IRT-model (Reckase, 1983). 

Errors in SMT can be of either Type-I (i.e. classify a master as nonmaster) or Type-II (i.e. 

classify a nonmaster as master)  Note that a Type-II error is considered more serious than a 

Type-I error. Various studies have proposed different “expert-defined” Type- I and II error 

costs (Ferguson 1969; Lewis & Sheehan 1990; Reckase 1979). In case that more than two 

student categories are considered, the cost of assigning a student of category j to category i

can be given by function |i-j| for all i,j (Rudner, 2002). The latter error cost function was 

employed in this work because we also consider several student categories.

Another approach in SMT applies Bayesian Decision Theory (BDT) (Lewis & Sheehan, 

1990; Vos, 2000; Rudner, 2002, 2003). BDT assumes prior probabilities for a student before 

starting a test. Then, each time a single Item is answered, a new student competence level is 

estimated “a posteriori” using the aforementioned Item answer as well as prior probability 

values. Note also that response behaviour was modelled in this context using a 3-PL model 

from IRT (Lewis & Sheehan, 1990). An alternative application of BDT was proposed such 

that a random- rather than a ITR- based adaptive Item selection procedure is employed (Vos, 

2000; Rudner, 2002, 2003).

Using simulated Item response data, adaptive BDT testing procedures were compared with 

IRT, in terms of classification accuracy, with favourable results for BDT (Rudner, 2002). 

Furthermore, a pilot study using real world data has demonstrated that simple BDT using 

Maximum A posteriori Probability (MAP) – for selecting the category with the highest 

posterior probability – as a decision rule can yield high classification accuracies compared to 

IRT (Rudner, 2003). Minimum expected cost defines the optimal Item to be selected next as 
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the Item with the lowest expected cost. The latter approach is often employed in SMT (Lewis 

& Sheehan, 1990; Vos, 2000; Rudner, 2002, 2003). An important comparative advantage of 

BDT is that the latter (BDT) does not need IRT’s formalities such as confidence intervals of 

student ability and prespecified cut-offs, furthermore BDT does not assume student 

competence to be normally distributed. The only limitation of BDT is Item independence1, 

which, however, is outweighed by the simplicity of BDT.

Bayesian decision-making is instrumental in this work. Note that a number of education-

related publications have employed Bayes formula, e.g. for modelling student behaviour 

(Xenos, 2004) as well as for detecting student learning styles (García et al., 2007) based on 

Bayesian networks. The latter (networks) were also used together with CAT for improving 

estimation of a student’s cognitive state, which is assumed to be “stationary” (Millán and 

Pérez-de-la-Cruz, 2002). Moreover, Bayes formula was used for (intelligent) classification 

that supports Web-based thematic learning (Huang et al., 2007). Nevertheless, the 

employment of Bayes formula here is different since it is used for computing the entries of a 

student “learning state” vector, which (vector) directs student learning as detailed below.

This work reports on the development and application of a novel software tool, namely 

Module for Adaptive Assessment of Students (MAAS), for personalized adaptive multi-student 

improvement based on innovative Bayesian cybernetics, i.e. feedback, techniques. MAAS is 

embedded in a software platform, namely Platform for Adaptive and Reliable Evaluation of 

Students (PARES). A preliminary version of PARES, was implemented in the Delphi 

programming language (Kaburlasos et al., 2003). The first version of PARES was developed 

in the Java programming language (Kaburlasos et al., 2004; Marinagi et al., 2004). The 

second version of PARES here incorporates MAAS.

The paper is organized as follows. Section 2 presents terminology and definitions. Section 3, 

after introducing a simplifying index notation, describes different types of student assessment. 

Section 4 outlines software platform PARES with emphasis on (module) MAAS. Section 5 

presents a pilot application and statistical hypothesis testing results. Section 6 concludes by 

summarizing the contribution of this work including future work. Appendix A details 

initialization of useful parameter values, and Appendix B details the computation of two 

useful vectors.

                                               
1 In particular, it is assumed that the response to an Item is independent of the responses to other Items.
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2. Preliminaries and terminology

This section summarizes clearly the definitions of a number of notions to be employed in the 

following chapter for describing our proposed student assessment techniques.

The person who takes a test is often called examinee, participant, user, or learner. Here we, 

alternatively, employ the term student because higher education students are involved.

Definition 1. An Item is a piece of information including both a Question and a set of 

alternative Answers.

Fig. 1 shows an Item example regarding a course in Software Engineering.

Item Type may be multiple-choice, multiple-response, matching, true/false, fill-in-the-blanks, 

etc. This work employed solely multiple-choice and multiple-response Item Types. In 

particular, first, for a multiple-choice Item Type we assume that a student response is “right” 

when the unique correct answer is selected, whereas it is “wrong” otherwise. Second, for a 

multiple-response Item Type we assume that a student response is “right” when all the correct 

answers are selected, whereas it is “wrong” otherwise. A “blank” response is also acceptable 

and treated differently from a “wrong” one. In conclusion, a student response an to an Item n

may take on three values, namely an=R for right, an=W for wrong, and an=B for blank.

Item Difficulty quantifies how difficult it is considered to provide the correct answer to an 

Item. Item Difficulty values range in the interval [0,100], where 0 and 100 correspond, 

respectively, to the easiest and most difficult Items to answer as explained in Appendix A.2.

Experts, i.e. (typically) course instructors, compose Items and store them in an Item Bank 

(IB).

Definition 2. An Item Bank (IB) is a repository of Items regarding an educational subject.

We remark that an educational subject may alternatively be called course.

Items in an IB are grouped in Units “uniform” in the sense that all the Items in a Unit are both 

thematically similar and have similar difficulty values calculated as detailed in Appendix A.2. 

Moreover, Units are grouped in Chapters. Hence, a tree-structured IB is produced per course.

Fig. 1, Fig. 2, and Fig. 3 illustrate how an Item may appear under different circumstances. In 

particular, Fig. 1 shows how an Item is stored in the Item Bank (IB). Note that Fig. 1 displays 

a Question with four alternative Answers; for each answer the corresponding correctness 

value (yes/no) is specified followed by a Comment including documentation and/or a URL 

address for further information. An Item has two properties, namely Item Type and Item 

Difficulty shown at the top of Fig. 1. Fig. 2 shows how the Item of Fig. 1 is displayed on a 

student monitor. Finally, Fig. 3 shows what the software feeds (back) when a student provides 
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a “wrong” answer during self-assessment; more specifically, Fig. 3 displays the correct 

answer, the (wrong) student answer, and a comment regarding the student’s wrong answer.

We have assumed J levels (intervals) of student competence denoted by L1,...,LJ. For example, 

given a range of student scores in the interval [0,10], and assuming J = 20, level Lj may be the 

interval Lj = [0.5(j-1),0.5j) for j=1,…,19 and level L20 may be the interval L20 = [9.5,10].

Before introducing additional terminology, recall Bayes formula next.

( / ) ( )
( / )

( )
j j

j

p d m p m
p m d

p d
 , (1)

where mj, j=1,…,J is a model which may produce datum d; p(d/mj), namely likelihood, is the 

probability of observing datum d given model mj; p(mj), namely prior, represents all that is 

known before any data becomes available; p(d), namely evidence, describes the probability of 

observing datum d. In conclusion, Bayes formula computes posterior p(mj/d), i.e. the 

probability of a specific model mj, j=1,…,J given datum d. In this work, a model mj in Bayes 

formula above corresponds to a student competence level (interval) Lj. For convenience we 

introduce the following definitions.

Definition 3. Likelihood p(an|Lj) is the probability that a student, of competence level Lj, 

j{1,…,J}, responds an{R,W,B} to Item n.

Definition 4. Prior p(Lj) is the probability that a student is of competence level Lj, j{1,…,J}.

We assume that the events “a student is of competence level Lj, j{1,…,J}” are mutually 

exclusive, moreover their corresponding probabilities sum up to one.

Definition 5. Evidence p(an) is the probability that a student responds an{R,W,B} to Item n.

Definition 6. Posterior p(Lj|an) is the probability a student is of competence level Lj, 

j{1,…,J}, given the student’s response an{R,W,B} to Item n.

Let a = 
1n a ,…,

Kn a be a series of student responses to Items 
1n τ ,…,

Kn τ , respectively. Then, 

p(Lj|a) denotes the (posterior) probability that the student is of competence level Lj, 

j{1,…,J} given a. Furthermore, p(a|Lj) denotes the (likelihood) probability that a student 

produces a series a of responses 
1n a ,…,

Kn a  to Items 
1n τ ,…,

Kn τ , respectively, given that the 

aforementioned student is of competence level Lj, j{1,…,J}. In this work, we assume 

independence of student responses to different Items; hence, p(a|Lj)= 
1

( | )
k

K

n j
k

p a L

 .
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Definition 7. Let Se be the number of students tested in a course e. Then, the competence state

vector of a student i{1,…,Se} is defined as se(i) = (p(L1|a),…,p(LJ|a)).

We remark that the entries of vector se(i) in definition 7 are computed by Eq. (B1), in 

Appendix B, and they quantify a student’s competence by the probabilities the student in 

question belongs to different competence levels.

Definition 8. Let se(i) = (p(L1|a),…,p(LJ|a)) be a student competence state vector. Then, the 

corresponding student score is calculated as ge(i) = 
J

1

( | )j
j

p L

 j β a , where jLj.

We remark that in the context of this work we have used j = sup{x: xLj}, where sup denotes 

the supremum (least upper bound) of the set {x: xLj}; e.g. sup{x: x[3.5,4)} = 4.

Definition 9. Unit-content (ui) is the percentage of Items in a test to be selected from Unit ui.

3. Student assessment techniques

In the first place, we introduce a simplifying index notation regarding both Items and Units.

Let the Item Bank IBe in a specific educational subject (i.e. course) e include Ce Chapters. 

Moreover, let a Chapter c, c{1,…,Ce} include Uc Units. Finally, let a Unit c,u, 

c{1,…,Ce}, u{1,…,Uc} include Ic,u Items.

First, a Unit c,u is uniquely identified by two indices, namely c{1,…,Ce} and u{1,…,Uc}. 

Therefore, a single index m results in for a Unit c,u as follows

m= u +




1

1

c

k
kU . (2)

Second, an Item c,u,i is uniquely identified by three indices, namely c{1,…,Ce}, 

u{1,…,Uc} and i{1,…,Ic,u}. Hence, a single index n results in for an Item c,u,i as follows

n= i +
1

,
1

u

c j
j

I



 +



 

1

1 1
,

c

k

U

j
jk

k

I . (3)

In conclusion, an Item will be denoted as n, where n{1,…,Ne= ,
1 1

e kC U

k j
k j

I
 
 }, whereas a Unit

will be denoted as m, where m{1,…,Me=
1

eC

k
k

U

 }.

The following example demonstrates the computation of indices m and n.
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Example

Let a tree-structured Item Bank IBe in a course e include three Chapters, namely 1, 2, and 3

(hence, Ce=3). Furthermore, let Chapter 1 include three Units 1,1, 1,2 and 1,3 (hence, 

U1=3); let Chapter 2 include two Units 2,1 and 2,2 (hence, U2=2); and, let Chapter 3

include four Units 3,1, 3,2, 3,3 and 3,4 (hence, U3=4). Finally, let each Unit include (the 

same number of) four Items (hence, Ic,u=4, where c{1,2,3} and u{1,…,Uc}). Then,

1) The single index of the second Unit 3,2 of the third Chapter 3 equals

m = 2 + U1 + U2 = 7, and

2) The single index of the first Item 3,2,1 in second Unit 3,2 of the third Chapter 3 equals

n = 1 + (I3,1) + (I1,1 + I1,2 + I1,3 + I2,1 + I2,2) = 25.

■

We point out that a single index is preferable because it allows the development of simpler 

expressions for computing useful parameters below.

3.1. Types of student assessment

In the context of this work we have assumed two types of student assessment, namely exam-

assessment and self-assessment. First, exam-assessment regards a scheduled exam whose 

objective is to give marks to students. Here, a focus-of-attention vector is defined by an 

instructor and it remains constant during an exam, the same for all participating students. 

Hence, in the context of this work, exam-assessment is always non-adaptive. Second, self-

assessment regards an individual student’s self-motivated study towards self-improvement. 

Here, a focus-of-attention vector is updated, after each student response, towards improving 

student competence. Hence, in the context of this work, self-assessment is always adaptive. 

The utility of a focus-of-attention vector is explained next.

A focus-of-attention vector fAt = (p(μ1),…,p(
eMμ )) is used to randomly draw Items from the 

Item Bank as follows. Let an Item Bank include seven Units and let a focus-of-attention

vector be fAt= (0.2,0.18,0.15,0.25,0.22,0,0)  Note that 0.2+0.18+0.15+0.25+0.22+0+0 = 1. 

Then, an Item is selected from Unit 1 with probability 0.2, from Unit 2 with probability 0.18, 

from Unit 3 with probability 0.15, from Unit 4 with probability 0.25, from Unit 5 with 

probability 0.22, whereas no Item can be selected from Units 6 and 7. Within a Unit, an Item 

is selected randomly according to the uniform probability distribution.

3.2. Exam-assessment

The major advantage of using a focus-of-attention vector for selecting Items during an exam 

is that different tests of a similar level of difficulty can be drawn. Therefore, it becomes 

feasible to alleviate “fairly” the problem of plagiarism regarding students who sit in front of 
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computer monitors tightly next to one another. An exam-assessment lasts a number of 

minutes, which (number) is calculated based on Item duration UID(m) (see in Appendix A.2).

We point out that we have used PARES only for midterm exam-assessment(s). In other 

words, we have carried out the final exam in the traditional manner using paper-and pencil.

3.3. Self-assessment based on Bayesian cybernetics

Consider the block-diagram in Fig.4. An instructor-defined “reference score” R is compared 

with the “measured score” ge(i) of a student-i. For nonpositive error R-ge(i)  0  R  ge(i) 

the closed-loop opens; hence, self-assessment stops because the objective of increasing a 

student score to level R (or above) was met. Otherwise, for positive error R-ge(i) > 0  R > 

ge(i), the corresponding student’s focus-of-attention vector is updated as detailed in Appendix 

B.2. Based on the latter vector, an Item (question) is drawn randomly from the Item Bank and 

is posed to the student. The student response is employed to compute the new student 

competence state vector. The latter is used to compute the new score ge(i). The previous cycle 

repeats. Fig. 5 details in a flow-chart the corresponding algorithm.

The major advantage of using a focus-of-attention vector for generating the next Item during

self-assessment is that we can direct student-learning towards a “passing” student score R (in 

this work we used R = 5) by concentrating student attention on where a student mostly needs 

to be improved on.

Useful parameters including likelihoods p(an|Lj) and Unit Item Delays UID(m), m=1,…,Me

are initialized as detailed in Appendix A. Moreover, a student competence state vector se(i) = 

(p(L1|a),…,p(LJ|a)) can be computed as detailed in Appendix B.1.

Each time a student responds to an Item then 1) the student competence state vector se(i) is 

recomputed by Eq. (B1) using all of the student’s previous answers, and 2) “personalized” 

student evidence (probabilities) pp(an) are computed by the following version of Eq. (A1).

pp(an) = 
1

( | ) ( | )
J

n j j
j

p a L p L

 a , (4)

where an{R,W,B}.

We remark that the likelihoods p(an|Lj) in Eq. (4) are computed in Appendix A.1, whereas the 

posteriors p(Lj|a) are computed by Eq. (B1) and are used in Eq. (4) as “personalized” student 

priors. In conclusion, evidence pp(an) is different from evidence p(an) of Eq. (A1) in that 

pp(an) regards an individual student, whereas p(an) regards the whole body of students in a 

course. In conclusion, evidence pp(an) is used to compute the focus-of-attention vector fAt(i) = 

(p(μ1),…,p(
eMμ )) for a student i{1,…,Se} by Eq. (B5).
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4. The PARES software platform

This section outlines the architecture of software Platform for Adaptive and Reliable 

Evaluation of Students (or, PARES for short), which enables an implementation of the 

assessment techniques above. Here we summarize information useful for reproducing our 

techniques. For further details see in (Kaburlasos et al., 2003, 2004; Marinagi et al., 2004).

4.1. PARES modules

PARES is an interactive software including three modules, namely Administrator Module, 

Instructor Module, and Module for Adaptive Assessment of Students (or, MAAS for short) 

used by administrators, course instructors, and students, respectively. In the following we 

summarize the functions of PARES modules with emphasis on the novel MAAS.

An administrator uses the Administrator Module to keep track of useful “logistics” in the 

system DB (database) as well as to assign “access privileges” to instructors/students.

Course instructors use the Instructor Module, first, to update an Item Bank (IB) in a course 

and, second, to compose tests. An instructor may also define here useful “test parameters”.

Students use (Module) MAAS either for exam-assessment or for self-assessment. Pull-down 

menus enable students to: connect to the server after entering their username and password, 

choose the course to be examined in, and choose between exam-assessment or self-

assessment. When questions appear on the screen (Fig. 2) students may supply answers to 

individual Items (questions), submit a test and, finally, print out a test report. Note that 

MAAS differs from other tools for adaptive assessment in that it applies Bayesian decision-

making. A number of additional (minor) novelties include: MAAS considers not only 

right/wrong answers but also blank answers; students may be assigned different competence 

levels Lj, j=1,…,J; moreover, MAAS can combine adaptive Item selection with uniform 

(random) Item selection. Finally, MAAS uses a repository of Items organized hierarchically.

4.2. Application details

A system administrator had installed both the system DB and the Administrator Module on an 

Internet-accessed server. More specifically, the Administrator Module was installed on the 

server of a Computer Lab, whereas the modules used by instructors and students were 

installed either on a client machine at the Computer Lab or on a workstation with network 

access to the server. Since PARES is a client/server application, the aforementioned three 

modules can connect simultaneously to the system DB. Note that a large number of different 

students can access PARES simultaneously as well as “asynchronously” either for exam-

assessment or for self-assessment. Username/password can secure user authentication.
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For each course, an instructor may store a number of exams, however only one exam is active

at a time. Exam duration is calculated automatically by summing up the corresponding Unit 

Item Delays (see in Appendix A.2)  We point out that Unit Item Delays remain constant 

during successive years of application. At the beginning of a test the “on screen” timer starts 

counting down. If time expires before deliberate student submission then student answers are 

submitted automatically. After all students have submitted their answers, the instructor prints 

an evaluation report including a list of participating students together with their scores.

It is possible to assign a different exam to each student thus to contain plagiarism during an 

exam. Moreover, the (random) Item selection techniques of PARES based on Unit-contents 

guarantee that all students will receive exams of similar difficulty.

Exam-assessment here is always non-adaptive, whereas self-assessment is always adaptive. 

Students may install MAAS on their home PCs and use a client application to connect to the 

laboratory server. Self-assessment may be customized by course instructors who initialize 

Unit-contents (see in Appendix A.3). An alternative is to allow students choose chapters for 

their self-assessment. However, in the latter case students cannot define Unit-contents.

During self-assessment, useful parameters are initialized based on massive student responses 

(see in Appendix A). Then, testing becomes adaptive based on (continually) updated, after 

each student response, competence state vectors (see in Appendix B.1). Self-assessment 

continues until certain termination criteria are met (Fig.5, step 3.5). Each time a student 

answers an Item, the student is informed of his/her personal score “on line” in order to 

encourage self-improvement.

4.3. Implementation details

PARES is a client/server software application developed in the Java programming language, 

which has the advantage of easy installation to various environments. The database of the 

application was developed on the DBMS Oracle Database Server 9i. Hence, the application of 

PARES does not depend on a particular operating system platform. The Oracle Database 

Server and the client/server application can be installed on Windows environment as well as 

on either Unix or Linux environments. Moreover, the environment where the PARES 

client/server application is installed is independent of the environment where the Oracle 

Database Server is installed.
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5. Pilot application and results

We carried out experiments in classroom environment at the Department of Industrial 

Informatics of the Technological Educational Institution of Kavala, Greece for four 

consecutive academic years from 2002/2003 to 2005/2006 as follows.

5.1. Conditions

We employed PARES in two courses including, first, the 3rd semester course (Introduction to) 

Software Engineering, which emphasizes methodologies for analysis, design, coding, testing, 

and maintenance of software and, second, the 5th semester course Intelligent Systems, which 

emphasizes analysis and design of expert and neural/fuzzy systems.

We minimized the effects of confounding variables as follows. Each year included, on the 

average, students of similar social and economic status. To avoid the effect of different 

teachers, the same researcher/author of this work taught one course during the four academic 

years from 2002/2003 to 2005/2006. The time given to a student to answer a specific Item 

(question) was constant as explained in section 5.2. Furthermore, extensive pretesting 

confirmed that two different years included, at the beginning of an experiment, students of 

similar capacity. Therefore, we can be reasonably confident that the statistical tests below are 

detecting the effect of our treatment and not some other significant difference between 

students of two different years.

The Item Bank (IB) of a course included around 200 Items. In the first academic year 

2002/2003 we carried out only one final exam per course; whereas, in the following years we 

carried out, in addition, two midterm exam-assessments per course. A midterm exam, 

including 15 Items on the average, was meant for formative assessment (Cowie & Bell, 1999); 

that is, the results of a midterm exam were used by a course instructor for corrective 

(teaching) actions towards improving average student score in the next exam. The final exam 

was always carried out in a traditional manner using paper-and-pencil.

A student was trained, during a semester, to use PARES software fluently. Self-assessment 

was carried out regularly once a week in scheduled sessions. The last time for self-

assessment, before an exam, was one week. Both the content and the degree of difficulty of 

the questions in a midterm exam were similar to the corresponding ones in the final exam.

5.2. Academic year 2002/2003

The first version of PARES was available in the Spring of 2003. Therefore, PARES was 

employed during academic year 2002/2003 only for computing initial estimates of useful 
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parameter values as explained in Appendix A. In particular, values for Unit Difficulties

UD(m), hence values for Unit Item Delays UID(m), m=1,…,Me were computed during 

academic year 2002/2003 and kept constant thereafter.

A total number of 17 out of 26 students passed the Software Engineering course, therefore the 

corresponding student throughput was ~65% (Table 1, first line); whereas, 24 out of 71 

students passed the Intelligent Systems course, therefore the corresponding student throughput 

was ~34% (Table 2, first line). The first line of Tables 1 and 2 also displays the corresponding 

final exam score statistics.

5.3. Academic year 2003/2004

The first version of PARES was available in the Fall of 2003 including self-assessment with a 

uniform (random) selection of Items from an Item Bank (IB). However, for comparison 

reasons, self-assessment was not used during academic year 2003/2004. In particular, during 

academic year 2003/2004, module MAAS was used only in two midterm exam-assessments.

Student throughput was ~67% in the Software Engineering course (Table 1, second line), 

whereas it was ~37% in the Intelligent Systems course (Table 2, second line). The second line 

of Tables 1 and 2 summarizes the corresponding midterm/final exam score statistics.

5.4. Academic year 2004/2005

The first version of PARES was used during academic year 2004/2005 including module 

MAAS for self-assessment with a uniform (random) selection of Items from an IB.

Student throughput was ~73% in the Software Engineering course (Table 1, third line), 

whereas it was ~56% in the Intelligent Systems course (Table 2, third line). The third line of 

Tables 1 and 2 summarizes the corresponding midterm/final exam score statistics.

Regarding the Software Engineering course, in particular, we remark that even though student 

throughput increased from academic year 2003/2004 (~67%) to academic year 2004/2005 

(~73%), nevertheless the corresponding average student score in the final exam decreased 

from 5.54 to 5.20, respectively. We attributed the latter to the fact that several Software 

Engineering classes were missed during academic year 2004/2005; in conclusion, a larger 

number of students passed the corresponding course but with a smaller average score. Hence, 

we call the latter academic year “singular”, regarding the Software Engineering course only.

5.5. Academic year 2005/2006

The second version of PARES was used during academic year 2005/2006 including module 

MAAS for self-assessment with adaptive Bayesian selection of Items from an IB.
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Fig. 6, in the foreground and the background, respectively, displays the percentage-wise 

distribution of 64 students over the range (0-10) of scores in steps of 0.5 in the 2nd midterm 

exam and the final exam of the Software Engineering course. Likewise, Fig. 7 displays the 

corresponding distributions of 133 students in the Intelligent Systems course. Note that 

student throughput was ~75% in the Software Engineering course (Table 1, last line), whereas 

it was ~62% in the Intelligent Systems course (Table 2, last line). The last line of Tables 1 and 

2 summarizes the corresponding midterm/final exam score statistics.

5.6. Tests of statistical significance and discussion

Tables 1 and 2 suggest an increase of average student score in both the 2nd midterm exam and 

the final exam. In the following we substantiate, rigorously, any significance of our proposed 

treatment (i.e. student improvement techniques) by statistical hypothesis testing.

We tested statistically various combinations of two student groups, namely treatment group

and control group. Each group regarded student scores in an exam in a course. The treatment 

group corresponded to a “later” year than the control group; for instance, had a control group 

been chosen in academic year 2003/2004 then a treatment group ought to be in a “later” 

academic year including 2004/2005 and 2005/2006. Quantile plots, reasonably linear for both 

groups, confirmed normality. In conclusion, the employment of a t-test was justified. More 

specifically, we used a t-test for two population means with variances both unknown and 

unequal (Kanji, 2006). The corresponding test statistic was t = 
2 2
t c

t c
t c

( ) /
s s

x x
n n

  , which 

may be compared with Student’s t-distribution t(df) with degrees of freedom given by df = 

2 2 22 2 2 2
t c t c

t c t t c c

1 1
/

1 1

s s s s

n n n n n n

      
                    

, where two independent random samples of size nt

and nc were taken (i.e. one sample per student group) with sample means tx  and cx , and 

variances 2
ts  and 2

cs  regarding the treatment group and the control group, respectively. Since 

we hope to show that the treatment group (with mean t) scored better than the control group 

(with mean c) we tested statistically the following hypotheses

Null hypothesis H0: t = c

Alternative hypothesis Ha: t > c

The (1-a)-confidence interval in the one-tailed test of significance above regarding the mean 

amount of improvement was computed by t c( )x x 
2 2

* t c

t c

s s
t

n n
 , where t

*
 is the upper (1-a) 

critical value for the t(df) distribution.
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Table 3 displays statistical hypothesis testing results regarding Final Exam Scores, whereas 

Table 4 displays the corresponding results regarding 2nd Midterm Exam Scores. A cell in 

either Table 3 or Table 4 shows the values of statistic t, degrees of freedom (df), and 

95%/99% confidence intervals. All aforementioned values were computed by the formulas 

above based on the entries of Tables 1 and 2. Moreover, confidence% (in the alternative 

hypothesis Ha: t>c) values in a cell of either Table 3 or Table 4 were computed by a 

statistical computer package.

Table 3 shows that, first, any increase of student score in the Final Exam of the Software 

Engineering course is not statistically significant at level a=5%. Therefore, the null 

hypothesis H0 cannot be rejected. In other words, our proposed treatment (i.e. student 

improvement techniques) does not appear to improve student performance in the Software 

Engineering course. Second, an increase of student score in the Final Exam of the Intelligent 

Systems course is statistically significant (usually) at level a=1%. Therefore, the null 

hypothesis H0 cannot be accepted. In other words, our proposed treatment (techniques) 

appears to improve student performance in the Intelligent Systems course.

We point out that even though the null hypothesis H0 cannot be rejected for the Software 

Engineering course, nevertheless the confidence% (in the alternative hypothesis Ha: t>c) in 

Table 3 typically increases from academic year 2003/2004 to academic year 2005/2006 (with 

the exception of the “singular” academic year 2004/2005). The aforementioned increase can 

be interpreted as “weak” statistical evidence for the effectiveness of our proposed treatment 

(techniques).

Table 4 shows that an increase of student score in the 2nd Midterm Exam of both courses 

Software Engineering and Intelligent Systems is statistically significant at level a=1%. Hence, 

the null hypothesis H0 cannot be accepted. In other words, our proposed treatment 

(techniques) appears to improve student performance in a midterm exam in both courses.

In conclusion, Tables 3 and 4 present strong statistical evidence for the effectiveness of our 

proposed treatment, i.e. student improvement techniques. In particular, the incremental 

(functional) enhancements of PARES module MAAS from academic year 2002/2003 to 

academic year 2005/2006 described from section 5.2 to section 5.5, respectively, have 

resulted in a sustained improvement in 1) final exam student scores in the Intelligent Systems

course (Table 3), and 2) midterm exam student scores in both courses Software Engineering

and Intelligent Systems (Table 4). Note that a “95%/99% confidence interval” in either Table 

3 or Table 4 should be interpreted as follows. For example, consider the confidence interval 

“0.860.43/0.61” in the down-right corner of Table 3 regarding the Intelligent Systems

course. Then, the corresponding “95% confidence interval” is [0.86-0.43, 0.86+0.43] = [0.43, 
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1.29]; furthermore, the corresponding “99% confidence interval” is [0.86-0.61, 0.86+0.61] = 

[0.25, 1.47]. Nevertheless, an improvement in final exam student scores of the Software 

Engineering course was not statistically significant at level a=5% (Table 3). Finally, note that 

student throughput as well as the largest student score in an exam improved incrementally as 

shown in both Tables 1 and 2.

A comparison of the application of PARES module MAAS to the 3rd semester Software 

Engineering course, on one hand, with application to the 5th semester Intelligent Systems

course, on the other hand, showed statistically significant improvements regarding midterm 

exam student scores in both courses (Table 4). The aforementioned improvements were 

attributed to self-assessment since the latter (self-assessment) was the only significant 

difference between a control student group and a treatment student group. More specifically, 

students in a treatment group can focus their attention on where they mostly need to be 

improved on. Furthermore, the statistical significance regarding improvements in the final 

exam student scores was “weak” for the Software Engineering course, whereas it was 

“strong” for the Intelligent Systems course (Table 3). The latter discrepancy, regarding final 

exam student scores in the two courses, was attributed to the specific contents of a course as 

well as to the much larger margin for potential improvement in the Intelligent Systems course.

Finally, we also remark that the majority of students appeared to enjoy using PARES.

6. Conclusion and future work

This work has presented easily-transferable, innovative feedback techniques (based on 

Bayesian statistics) for drawing questions from an Item Bank towards personalized multi-

student improvement. The proposed techniques were implemented by a modular software 

tool, namely Platform for Adaptive and Reliable Evaluation of Students (or, PARES for short) 

for distance assessment. PARES includes three software modules, which were briefly 

described above. The emphasis here was on student self-assessment by software Module for 

Adaptive Assessment of Students (or, MAAS for short). A pilot application in two Computer 

Science courses during four consecutive academic years has demonstrated statistically 

significant incremental improvements from year to year.

The benefits of automating a quicker delivery of University quality education to a large body 

of students can be substantial. For instance, a quicker delivery of University quality education 

can result in substantial financial savings in the supporting funds for education; moreover, the 

sooner graduating students can contribute sooner to production. Potential future work is 

discussed in the following.
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Plagiarism during the exams is a considerable problem in the Greek higher education. A 

potential side-advantage of PARES is its capacity to contain plagiarism by presenting a 

different exam, of similar difficulty level as well as of similar content, to each student. 

Moreover, a PARES-based midterm exam can be used in order to “filter” a limited number of 

students to the final exam. Currently, PARES is employed “locally” for assessment in a 

supervised lab environment. Future plans include an extension of PARES for Web-based 

assessment. Furthermore, a course Item Bank (IB), which currently includes around 200 Items 

is expected to increase in the future. Future work might also consider designing analytically 

the “controller” block, in the closed (feedback) loop in Fig. 4, using techniques from 

automatic control systems in engineering (Houpis et al., 2005).
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Appendix A

This Appendix describes initialization of useful parameters. The first step is to administer the 

Items of an Item Bank IBe, regarding a specific educational subject (i.e. course) e, to a 

random group of students at the end of a semester. Then, the student responses are massively 

recorded in order to initialize useful parameters for the students in the following semester. We 

point out that an initialization needs to be carried out as described previously in order to 

ensure that students have been fully exposed to the teaching material required for being able 

to answer to all Items in IBe. Moreover, in order to compute “dependable” initial estimates, 

we have pursued a random selection of each Item n, n{1,…,Ne} in IBe at least ten times.

A.1. Initializing priors, likelihoods, and evidences

Given the scores of the abovementioned group of students, one can compute the proportion 

p(Lj) of students in each level Lj, j=1,…,J of student competence. Hence, priors p(L1),…,p(LJ) 

are initialized.

Given the scores of the abovementioned group of students, we can compute the proportion of 

students that responded correctly (i.e. an=R), wrongly (i.e. an=W), or did not respond at all 

(i.e. an=B) to an Item n, n=1,…,Ne, given student’s level of performance. Hence, for each 

Item n the likelihoods p(an|L1), …, p(an|LJ), where an{R,W,B}, are initialized.
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Based on the priors and likelihoods above, the evidences p(an), an{R,W,B} are computed as

p(an) = 
J

1

( | ) ( )n j j
j

p a L p L

 ,   n=1,…,Ne (A1)

A.2. Initializing Unit Difficulty (UD) and Unit Item Delay (UID)

A partition of Item Bank IBe in Units is proposed initially by a course instructor such that the 

Items in a Unit are both thematically similar and have similar (in the instructor’s judgement) 

difficulty. Further splitting of certain Units might occur based on evidence as detailed next.

Let m, m{1,…,Me} be a Unit in a course e including Im items. We compute the average 

probability av(m) of correct responses in unit m as follows: av(m)= 
1

1
( R)

m

k

I

n
km

p a
I 

 , 

where 
kn m  Note that the evidence probabilities p(an=R), n{1,…,Ne} are already known 

from Appendix A.1. We define the corresponding Unit Difficulty UD(m) as

UD(m) = (1-av(m))100 (A2)

Note that in case the standard deviation of the series ( R)
knp a  , k=1,…,Im is larger than an 

instructor-defined threshold T then the instructor manually splits Unit m to “uniform” (sub-

)Units such that the standard deviation in each Unit is less than T. In conclusion, the Item 

Bank IBe is partitioned in sets of Items (i.e. Units) characterized by the same difficulty value 

UD(m). Then, UD(m) is fixed for all subsequent semesters.

In order to compute the expected test duration, we have estimated the time a student needs to 

respond to a single item of a Unit m, m{1,…,Me}, namely Unit Item Delay or UID(m) for 

short, as follows. A course instructor measures the time a student needs to respond to the 

easiest and the most difficult Item in Item Bank IBe, respectively, tmin and tmax. In conclusion, 

we define the expected time UID(m) a student needs to respond to an Item of Unit m as

UID(m) = tmin + (tmax-tmin)UD(m)/100 (A3)

Since UD(m) is fixed, as explained above, it follows that UID(m) is, likewise, fixed.

A.3. Initializing Unit-contents

The Unit-contents (percentages) (ui) of Definition 9, where i=1,…,Me, are initialized by a 

course instructor/advisor according to teaching priorities.
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Appendix B

This Appendix describes the computation of both a competence state vector and a focus-of-

attention vector fAt(i) for a student i{1,…,Se} in an educational subject (i.e. course) e.

B.1. Computation of a student competence state vector

Consider a specific student i{1,…,Se}. In order to initialize the corresponding student

competence state vector se(i), during a self-assessment session, a series 
1n τ ,…,

Kn τ  of a 

number “K” of Items is drawn randomly from the Item Bank IBe. Let, respectively, the 

student supply a series a = 
1n a ,…,

Kn a  of responses, where 
kn a {R,W,B} for k=1,…,K. We 

apply Bayes formula to compute the posteriors (probabilities) p(Lj|a), j{1,…,J} next.

p(Lj|a)=

1

( | ) ( )

( | ) ( )

j j

J

i i
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p L p L

p L p L
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
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, j{1,…,J}, (B1)

where all priors p(Lj) and likelihoods p(an|Lj), n{1,…,Ne}, j{1,…,J} are known from 

Appendix A.1.

An estimate of a student competence state vector se(i) is given by se(i) = (p(L1|a),…,p(LJ|a)).

B.2. Computation of a student focus-of-attention vector

A focus-of-attention vector fAt(i) equals fAt(i) = (p(μ1),…,p(
eMμ )), where a vector entry 

p(μm), m=1,…,Me is the probability of selecting an Item from Unit μm  Note that, within a 

Unit, an Item is selected randomly (uniformly). An entry probability p(μm) is calculated as

p(μm) = 

1

( ) ( )

( ) ( )
e

m m
M

i i
i

Cost μ μ

Cost μ μ





, m=1,…,Me, (B2)

where percentage (m) was initialized by a course instructor as described in Appendix A.3. 

The objective of function Cost(μm) is to modify the instructor-defined percentages (m), 

m=1,…,Me based on individual student competence. More specifically, Eq. (B2) changes an 

instructor-defined percentage (m) in “proportion to” the corresponding Cost(μm). The 

following equations Eq. (B3)-(B5) were meant to produce larger costs for Units not 

characterized by right student answers. Hence, the focus-of-attention vector tends to direct 

student attention to the aforementioned Units by “more often” drawing (randomly) Items 

from those Units. Apparently, different functions Cost(μm) can be proposed.
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In the interest of reducing computations, since a Unit in IBe is “uniform” as explained in 

Appendix A.2, we considered a function r: {1,…,Me}{1,…,Ne} in order to represent a Unit 

μm by a randomly selected Item r(m)μm, m=1,…,Me. Let c(i,j) be the cost/error of assigning 

competence level Li to a student whose true competence level is Lj. Let ar(m){R,W,B} be the 

student response to Item r(m). The corresponding cost C(ar(m)) was calculated as follows

C(ar(m)) = 
J J

( ) ( )
1 1

( ) ( | ) ( | )i r m j r m
i j

c i, j p L a p L a
 
 , (B3)

where, c(i,j) = |i-j| (Rudner, 2002); furthermore, posterior p(Lj/ar(m)) was calculated as follows

p(Lj|ar(m))= ( )

J

( )
1

( | ) ( | )

( | ) ( | )

r m j j

r m k k
k

p a L p L

p a L p L



a

a
,   j{1,…,J}, (B4)

where the likelihoods p(ar(m)|Lj) are known from Appendix A.1, whereas posteriors p(Lj|a) are 

computed by Eq. (B1) and are used as “personalized” student priors. In conclusion,

Cost(μm) = 
( )

p ( ) ( )
{R ,W,B}

( ) ( )
r m

r m r m
a

p a C a

 (B5)

where the “personalized” student evidence probabilities pp(ar(m)) are computed by Eq. (4).

We remark that the above calculations are significantly reduced in practice because an 

advisor/instructor typically defines (ui) = 0 for many Unit-contents.
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Figure Legends

Fig. 1. An Item, as it is stored in the Item Bank (IB) regarding a course in Software 
Engineering.

Fig. 2. The Item (QUESTION 1) of Fig. 1, as it is displayed on a student’s monitor. Line 
“ANWERS ( correct : 1 )”, underneath the block-diagram, informs a student that only 
one answer is correct.

Fig. 3. Feedback displayed on a student monitor when a student supplies a wrong answer to 
the question in Fig. 2: The correct answer, the (wrong) student answer, and a 
comment regarding the student’s wrong answer are displayed.

Fig. 4. Improvement of the score of student-i in a course e during self-assessment based on 
closed-loop (feedback) techniques. In this work we have used a positive/nonpositive 
error driven controller for computing a focus-of-attention vector; the latter is used to 
randomly select an Item (question) from the Item Bank IBe. More specifically, the 
controller either computes deterministically a focus-of-attention vector (for a positive
error) or it opens the loop for a nonpositive error R-ge(i)  0  R  ge(i). In the latter 
case self-assessment stops.

Fig. 5. The algorithms for both student exam-assessment and student self-assessment. For 
computational details see in the Appendices A and B.

Fig. 6. Foreground: Percentage-wise distribution of 64 students over the range (0-10) of 
scores in the 2nd midterm exam of the Software Engineering course during academic 
year 2005/2006. Background: The corresponding final exam distribution.

Fig. 7. Foreground: Percentage-wise distribution of 133 students over the range (0-10) of 
scores in the 2nd midterm exam of the Intelligent Systems course during academic year 
2005/2006. Background: The corresponding final exam distribution.
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Table Legends

Table 1

A summary of statistics regarding the Software Engineering course

Table 2

A summary of statistics regarding the Intelligent Systems course

Table 3

Statistical significance test values for various (academic year) combinations of 
control/treatment groups regarding Final Exam Scores in two courses

Table 4

Statistical significance test values for various (academic year) combinations of 
control/treatment groups regarding 2nd Midterm Exam Scores in two courses



Item Type: Multiple-choice
Item Difficulty: 30

Question: 
What kind of relationship between classes is represented by the following UML notation? 

Employee Manager

Answers:
1) Aggregation
Correct: No
Comment: In UML notation the aggregation is drawn as solid lines from the aggregates 
(parts) to the aggregator (whole) with a diamond arrowhead on the aggregator’s part. 
See also: http://iiu.teikav.gr/courses/soft_eng/ch7

2) Association
Correct: No
Comment: In UML notation, association is drawn as a solid line between two classes. 
Symbols indicating multiplicity are drawn at both ends of a line. In bidirectional association 
no arrows appear, while in unidirectional association a black arrow indicates the target class. 
Optionally, the association name is placed next to the middle of the line and a role name is 
attached to either or both ends of a line.
See also: http://iiu.teikav.gr/courses/soft_eng/ch7

3) Generalization/specialization
Correct: Yes
Comment:
See also: http://iiu.teikav.gr/courses/soft_eng/ch7

4) Composition
Correct: No
Comment: In UML notation, composition is drawn as solid lines from the components to the 
whole with a solid (filled-in) diamond arrowhead on the whole.
See also: http://iiu.teikav.gr/courses/soft_eng/ch7

Fig. 1.

Figure(s)

http://iiu.teikav.gr/courses/soft_eng/ch7
http://iiu.teikav.gr/courses/soft_eng/ch7
http://iiu.teikav.gr/courses/soft_eng/ch7
http://iiu.teikav.gr/courses/soft_eng/ch7
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Fig. 5.

1. An instructor compiles a tree-structured Item Bank IBe in a specific educational subject
(i.e. course) e by definining a set of Ne Items n, n{1,…,Ne} partitioned in Me Units 
m, m{1,…,Me} such that each Unit includes Items of similar difficulty.

2. Option #1: Exam-assessment.
2.1. The instructor defines a Unit-content percentage (m) for each Unit m.
2.2. Students sit in front of computer monitors in the lab.
2.3. The focus-of-attention vector fAt = ((μ1),…,(

eMμ )) is used to randomly select an 

instructor-defined number “Q” of Items (questions) for each student.
2.4. A student is required to respond within a defined time to all questions.

3. Option #2: Self-assessment.
3.0. Process the responses, of a randomly selected group of students, to all Items n in 

the Item Bank IBe in order to initialize priors p(Lj), likelihoods p(an|Lj), evidences
p(an), Unit Difficulties UD(m), and Unit Item Delays UID(m), where j{1,…,J}.

3.1. An advisor proposes a unit-content percentage (m) for each Unit m for student-i.
3.2. Student i{1,…,Se} may sit in front of a computer monitor, any time.
3.3. Initialize student competence state vector se(i) = (p(L1|a),…,p(LJ|a)) based on a 

series a of student-i responses to a number of Items drawn randomly from IBe.
3.4. A student advisor defines a reference score R. Initially, assume ge(i) = 0.
3.5. If R  ge(i) then stop self-assessment; else, compute a student focus-of-attention

vector fAt(i) = (p(μ1),…,p(
eMμ )).

3.6. Use the focus-of-attention vector fAt(i) to randomly select an Item (question) from 
the Item Bank IBe.

3.7. Consider the response of student-i to the last Item (question) in order to compute a 
new competence state vector se(i) = (p(L1|a),…,p(LJ|a)).

3.8. Compute the new student score ge(i).
3.9. Go to step 3.5.

Figure(s)
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Table 1

A summary of statistics regarding the Software Engineering course

2nd midterm exam score statistics final exam score statisticsacademic

year

no. of 
students

range average standard 
deviation

range average standard 
deviation

student

throughput

(approx.)

2002/03 26 ─ ─ ─ [0.7, 9] 5.13 2.14 ~65%

2003/04 54 [0, 6.5] 2.44 1.57 [1.8, 8.6] 5.44 1.44 ~67%

2004/05 59 [0, 9] 3.85 2.12 [1.0, 9.5] 5.20 2.18 ~73%

2005/06 64 [0, 10] 5.48 2.07 [2.5, 10] 5.65 2.07 ~75%

Table(s)



Table 2

A summary of statistics regarding the Intelligent Systems course

2nd midterm exam score statistics final exam score statisticsacademic

year

no. of 
students

range average standard 
deviation

range average standard 
deviation

student

throughput

(approx.)

2002/03 71 ─ ─ ─ [0, 6.5] 3.26 1.78 ~34%

2003/04 81 [0, 5.6] 1.97 1.74 [0.1, 7.2] 3.89 1.61 ~37%

2004/05 88 [0, 7.5] 2.88 2.24 [0, 8] 4.48 1.60 ~56%

2005/06 133 [0, 8.8] 4.09 2.61 [0, 9] 5.34 2.30 ~62%

Table(s)



Table 3

Statistical significance test values for various (academic year) combinations of 
control/treatment groups regarding Final Exam Scores in two courses

Statistic t / degrees of freedom df / confidence% (in the alternative hypothesis Ha: t>c)
(the 95%/99% confidence interval)

Course: Software Engineering
Treatment

Control  Group 2003-04 2004-05 2005-06
2002-03 0.669 / 36.27 / 74.62% 0.138 / 48.70 / 55.46% 1.054 / 45.03 / 85.14%

(0.31  0.78/1.12) (0.07  0.84/1.21) (0.52  0.82/1.18)
2003-04 -0.695 / 101.29 / 24.40% 0.646 / 112.14 / 74.052%

(-0.24  0.57/0.81) (0.21  0.53/0.76)
2004-05 1.171 / 118.87 / 87.816% 

(0.45  0.63/0.90)

Course: Intelligent Systems
Treatment

Control  Group 2003-04 2004-05 2005-06
2002-03 2.275 / 142.34 / 98.78% 4.493 / 142.34 / 99.99% 7.159 / 176.17 / 99.99%

(0.63  0.45/0.65) (1.22  0.44/0.63) (2.08  0.48/0.68)
2003-04 2.387 / 165.66 / 99.09% 5.412 / 207.85 / 99.99%

(0.59  0.40/0.58) (1.45  0.44/0.62)
2004-05 3.277 / 218.42 / 99.93% 

(0.86  0.43/0.61)

Table(s)



Table 4

Statistical significance test values for various (academic year) combinations of 
control/treatment groups regarding 2nd Midterm Exam Scores in two courses

Statistic t / degrees of freedom df / confidence% (in the alternative hypothesis Ha: t>c)
(the 95%/99% confidence interval)

Course: Software Engineering
Treatment

Control  Group 2004-05 2005-06
2003-04 4.039 / 106.49 / 99.99% 9.059 / 114.77 / 99.99%

(1.41  0.57/0.82) (3.04  0.55/0.79)
2004-05  4.308 / 119.65 / 99.99%

(1.63  0.62/0.89)

Course: Intelligent Systems
Treatment

Control  Group 2004-05 2005-06
2003-04 2.961 / 162.50 / 99.82% 7.122 / 210.22 / 99.99%

(0.91  0.50/0.72) (2.12  0.49/0.69)
2004-05  3.677 / 204.65 / 99.98%

(1.21  0.54/0.77)

Table(s)




