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Novel Fuzzy Inference System (FIS) Analysis and
Design Based on Lattice Theory. Part II: Industrial

System Modeling
Vassilis G. Kaburlasos, Member, IEEE, and Athanasios Kehagias

Abstract— We introduce novel (set- and lattice-theoretic) per-
spectives and tools for the analysis and design of fuzzy inference
systems (FIS). We present a FIS, including both fuzzification
and defuzzification, as a device for implementing a function
f : R

N
→ R

M . The family of FIS functions has cardinality
ℵ2 = 2

ℵ1 , where ℵ1 is the cardinality of the set R of real
numbers. Hence the FIS family is much larger than polynomials,
neural networks, etc.; furthermore a FIS has a capacity for local
generalization. A formulation in the context of lattice theory
allows us to define the set F∗ of fuzzy interval numbers (FINs),
which includes both (fuzzy) numbers and intervals. We present a
metric dK on F∗, which can introduce tunable nonlinearities. FIS
design based on dK has advantages such as: an alleviation of the
curse of dimensionality problem and a potential for improved
computer memory utilization. We present a new FIS classifier,
namely granular self-organizing map (grSOM), which we apply
to an industrial fertilizer modeling application.

Index Terms— Fuzzy inference system, fuzzy interval number
(FIN), lattice theory, industrial system modeling, classification

I. INTRODUCTION

AFUZZY set can be defined on any universe of discourse;
however fuzzy sets of real numbers are of particular

interest. Many applications use fuzzy numbers, i.e. convex,
normal fuzzy sets with bounded support. In particular, fuzzy
numbers are frequently used in Fuzzy Inference Systems (FISs)
which use linguistic (fuzzy) rules. Note that much of the
popularity of FISs is due to successful automatic control
applications [3], [28].

Several authors [4], [37] have employed mathematical lat-
tice theory for knowledge representation, a topic of fundamen-
tal significance in artificial intelligence. We have introduced
fuzzy lattice theory in clustering/classification applications
[13], [31], [32] as a cross-fertilization of mathematical lattice
theory and fuzzy set theory. It is remarkable that even though
an explicit connection was shown between mathematical lat-
tices and fuzzy sets since the introduction of fuzzy set theory
[44], no tools have been established for FIS analysis and
design based on lattice theory. This work engages explicitly
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mathematical lattice theory for improving FIS analysis and
design.

Several authors have compared FIS with various “learning
networks” for non-linear function approximation [6], [15]. One
way to look at the issue, is to consider a FIS (including
both its fuzzification and defuzzification procedures) as a
device which approximates a function f : R

N −→ R
M in

a least square error sense [17], [42], [45]. This can then
be compared with alternative modeling methods for function
approximation including polynomials, spline curves, ARMA
models, statistical regressors, multilayer perceptrons, etc. It is
important that, as explained below, the family of all FISs has
a higher cardinality (in the set-theoretic sense) than any of
the aforementioned alternatives. Hence FISs can implement
“many more” functions than competing families of learning
networks1; moreover a general FIS is endowed with a capacity
for local generalization. In other words, a general FIS can
implement in principle a far larger number of functions f :
R

N −→ R
M than any alternative modeling method, while

retaining a capacity for generalization. Additional advantages,
as will be explained in this paper, include an alleviation of the
“curse of dimensionality” problem, a potential for improved
computer memory utilization, etc.

The rest of the paper is organized as follows. In Section
II we present some set-theoretic remarks on fuzzy inference
systems (FISs). In Section III we present fuzzy interval
numbers (FINs). In Section IV, using FINs, we present new
perspectives and tools for improved FIS analysis and design,
as well as a new FIS classifier. Section V demonstrates
the application of these concepts to an industrial modeling
problem. We conclude by summarizing and discussing our
results in Section VI. Three Appendices summarize useful
definitions and results.

II. SOME SET-THEORETIC REMARKS ON FUZZY
INFERENCE SYSTEMS

In this section we review conventional FIS principles in-
cluding novel set-theoretic perspectives.

A FIS includes a knowledge base of fuzzy rules “if Ai then
Ci”, symbolically Ai −→ Ci, i = 1, . . . , L. The antecedent
Ai (IF part) of a rule is typically a conjunction of N fuzzy
statements involving N fuzzy sets, moreover the consequent
Ci (THEN part) of a rule may be either a fuzzy statement or an
algebraic expression. The former is employed by a Mamdani

1We make this point precise in Section II (see also [8], [10], [11]).
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type FIS [20], whereas the latter is employed by a Sugeno
type FIS [39]. The fuzzy sets involved in a FIS are typically
fuzzy numbers, i.e. convex, normal fuzzy sets with bounded
support defined on the real number universe of discourse R.

An input vector x ∈ R
N to a FIS activates, in parallel, rules

in the knowledge-base by a fuzzification procedure; next, an
inference mechanism produces the consequents of activated
rules; then, the partial results are combined; finally, a real
number vector is produced by a defuzzification procedure.
A variety of fuzzy number shapes /inference mechanisms
/(de)fuzzification procedures have been proposed in the lit-
erature [1], [22], [29], [35], [43].

Hence, a FIS implements a function f : R
N −→ R

M , where
(1) N and M are integers, and (2) function f is induced from
n pairs (x1, y1), (x2, y2), . . . , (xn, yn) of training data vectors.
It turns out that the design of a FIS typically boils down
to a parameter optimization problem, where it is required to
minimize the least squares error

√∑n
i=1 ||f(xi)− yi||2 [45],

[46]. In contrast to alternative function estimation methods
[34], [41], a FIS retains explicitly a linguistic interpretation.
Lately, neural implementations of FIS have proliferated [5],
[7], [24], [25].

Despite potential drawbacks, such as the curse of dimension-
ality, which occurs when the number of input/output variables
increases, it is widely recognized that a FIS can give in practice
better results than alternative function approximation methods
and, usually, a fuzzy logic explanation is sought. This work
proposes, in addition, a set-theoretic explanation.

First let us calculate card(F), the cardinality of the set F
of all functions f : R

N −→ R
M . Using standard cardinal

arithmetic [38] we have

card(F) = ℵℵ1
1 = (2ℵ0)ℵ1 = 2ℵ0ℵ1 = 2ℵ1 = ℵ2 > ℵ1.

Unfortunately a general function f0 in F is practically useless
because it lacks a capacity for generalization. More specifi-
cally, knowledge of function f0 values f0(x1), ..., f0(xn) at
a number of points x1, ..., xn cannot give any information
regarding the value of function f0 at a different point xn+1 6=
xi, i = 1, . . . , n.

Consider now a parametric family of models (characterized
by a capacity for generalization), e.g. polynomials, ARMA
models, statistical regressors, radial basis function (RBF)
networks, multilayer perceptrons, etc. Due to the finite number
p of parameters involved in a parametric family of models
it follows that the cardinality of any of the aforementioned
families equals ℵp

1 = (2ℵ0)p = 2ℵ0p = 2ℵo = ℵ1. It might
be thought that ℵ1 is an adequately large number of models
to choose a “good” model from, in a practical application.
Unfortunately this is not the case. Consider, for instance, the
family of polynomials, which includes ℵ1 models. It is well
known that a polynomial may not approximate usefully a set
(x1, y1), ..., (xn, yn) of training data due to overfitting; hence
a different family of models might be sought, e.g. a ARMA
model, a multi-layer perceptron, etc. In the aforementioned
sense the cardinality ℵ1 (of a family of models) may be
inherently restrictive.

What about the cardinality of the set of all FISs? To compute
this, let us first compute the cardinality of the set F of

fuzzy numbers. The next proposition shows the non-obvious
result that there are as many fuzzy numbers as there are real
numbers.

Proposition 2.1: It is card (F) = ℵ1, where ℵ1 is the
cardinality of the set R of real numbers.

Proof: The proof appears in [11]. The case of fuzzy
numbers with continuous membership has been proved in [8].

Now consider, Mamdani type FISs: the rules in a Mamdani
type FIS can be interpreted as samples of a function m :
F

N −→ F
M . Using standard cardinal arithmetic [38] it follows

that the cardinality of the set M of Mamdani type FISs is
card (M) = ℵℵ1

1 = ℵ2 > ℵ1. Likewise, the rules in a
Sugeno type FIS can be interpreted as samples of a function
s : F

N −→ Pp, where Pp is a family of parametric models
(e.g. polynomial linear models) with p parameters. It follows
that the cardinality of the set S of Sugeno type FISs is
card (S) =

(
ℵℵ1

1

)p

= ℵ
(2ℵ0 )p

1 = ℵ2pℵ0

1 = ℵ2ℵ0

1 = ℵℵ1
1 = ℵ2.

Also, a FIS (of either Mamdani or Sugeno type) has a capacity
for local generalization due to the non-trivial (interval) support
of the fuzzy numbers involved in FIS antecedents. In other
words, an input vector x = (x1, . . . , xn) within the support of
a fuzzy rule activates the aforementioned rule.

In conclusion, a FIS (of either Mamdani or Sugeno type)
can implement, in principle, ℵ2 functions and in addition it
has a capacity for generalization. Hence the class of FISs is
preferable to both the “general” class F of functions (which
lacks a capacity for generalization) and to parametric families
of models (which have a smaller cardinality). It is understood
that the aforementioned advantage of the family of FIS models
is theoretical. Nevertheless substantial practical advantages are
shown in the context of this work, based on fuzzy interval
number (FIN) analysis presented in the following section.

Proposition 2.1 also suggests an interesting proposal regard-
ing the preferable fuzzy number membership function shape.
A variety of such shapes have been proposed in the literature
including triangular, trapezoidal, polynomial, bell-shaped, etc.
[5], [22], [29], [36], [43]. Any of the aforementioned shapes
is described by a finite number p of parameters; for instance
a triangular membership function is described using p =
3 parameters. Hence there exist ℵ3

1 = ℵ1 fuzzy numbers
of triangular shape. Likewise, there exist ℵp

1 = ℵ1 fuzzy
numbers of any particular parametric shape. Moreover, since
the number of different parametric shapes (e.g. triangular,
Gaussian, trapezoidal, etc.) in practice is finite, it follows that
we have a set of ℵ1 parametric fuzzy numbers altogether.
It follows that using any of the aforementioned families we
can generate ℵ2 functions f : F

N → F
M , each function

characterized by a (local) capacity for generalization. Hence,
in conclusion, proposition 2.1 ultimately implies that any
membership function shape enables a FIS to implement, in
principle, ℵ2 different functions. In practice triangular mem-
bership function shapes are frequently preferable due to their
convenient representation using only p = 3 parameters.

III. FUZZY INTERVAL NUMBERS (FINS) AND METRICS

In this section we define FINs and equip them with a metric
which will be used in Section IV to introduce metric-based



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 0, NO. 00, NOVEMBER 2006 3

FIS.
A fuzzy set F on R is called a fuzzy number if it satisfies

the following properties [16, p.97]:
A1 It is normal (i.e. ∃x0 : F (x0) = 1);
A2 The a-cut Fa = {x : F (x) ≥ a} is a closed interval for

all a ∈ (0, 1];
A3 The support of F (i.e. the set {x : F (x) > 0} =

∪a∈(0,1]Fa) is bounded.
It is well known that every fuzzy set is uniqely represented

by its a-cuts. Hence, we can define fuzzy numbers in terms
of their a-cuts as follows.

Definition 3.1: A fuzzy number is a family of sets
{Fa}a∈[0,1] which satisfy the following conditions.

F1 F0 = R.
F2 For every a, b ∈ [0, 1] we have: a ≤ b⇒ Fb ⊆ Fa.
F3 For every set A ⊆ [0, 1], letting b = supA, we

have: ∩a∈AFa = Fb.
F4 For every a ∈ (0, 1], Fa is a closed interval.
F5 ∪a∈(0,1]Fa is a bounded interval.
F6 F1 6= ∅.
We denote the set of fuzzy numbers by F .
In the above definition we could have substituted “. . . is a

family of sets. . . ” by “. . . can be uniquely represented by a
family of sets. . . ”. Properties F1-F3 are the usual properties
satisfied by the a-cuts of every fuzzy set; F4 corresponds to
A2, F5 corresponds to A3 and, F6 corresponds to A1.

As pointed out above, a FIS implements a mapping from
fuzzy numbers to either fuzzy numbers (for Mamdani type
FIS) or algebraic expressions (for Sugeno type FIS). From a
computational aspect, a FIS can operate with either numerical
representations of functions or, using the “a-cuts point of
view”, with numerical representations of families of closed
intervals [40]. We propose to enhance the advantages of the
interval representation by operating with a wider class of sets.
In particular we propose FIS which operate on generalized
intervals. We introduce the proposed generalization in two
steps: First, we discuss fuzzy intervals, and then generalized
intervals.

Many definitions of fuzzy interval have appeared in the
literature. We choose one (in terms of a-cuts) which has
maximum compatibility with the definition of fuzzy number.

Definition 3.2: A fuzzy interval is a family of sets
{Fa}a∈[0,1] which satisfy the conditions F1 - F5 above. We
denote the set of fuzzy intervals by Fint .

In the above definition we could have substituted “. . . is a
family of sets. . . ” by “. . . can be uniquely represented by a
family of sets. . . ”. Every fuzzy number satisfies F1-F5, hence
F ⊆ Fint.

We can operate on fuzzy intervals F and G using the a-cuts
representation, i.e. for every a ∈ (0, 1] we can operate on the
a-cuts Fa, Ga. Hence it is natural to study the family I of all
closed intervals on R. More accurately we define

I = {[a, b] : a, b ∈ R, a ≤ b} ∪ {∅}

It is known [26] that (I,⊆,∪,∩) is a lattice, where the
order relationship is set inclusion (with minimum element ∅)2.

2For convenience, elements from lattice theory are summarized in Appendix
A; furthermore, Appendix B summarizes elements from fuzzy lattice theory.

Especially for nonempty intervals [a, b] and [c, d] the join ∪
and meet ∩ operations are

[a, b] ∪ [c, d] = [a ∧ c, b ∨ d], [a, b] ∩ [c, d] = [a ∨ c, b ∧ d]

where a ∧ c = min{a, c} and a ∨ c = max{a, c};
furthermore, if a ∨ c > b ∧ d then [a, b] ∩ [c, d]

.
= ∅.

Our intention is to equip I with a sensible metric. This will
be useful for the design of metric-based FIS in Section IV.
Several metrics between intervals can be defined. However,
the commonly used metrics do not serve our purpose well.
In particular, difficulties arise with the treatment of noninter-
secting intervals. Hence we will introduce a new family of
metrics defined in terms of an alternative representation of
closed intervals, namely positive generalized intervals.

Definition 3.3: A positive generalized interval of height h
is a function mh

x1,x2
: R → {0, h} (where x1 ≤ x2 and h ∈

(0, 1]) defined as follows

mh
x1,x2

(x) =

{
h, x1 ≤ x ≤ x2

0, otherwise.

We will also denote the generalized interval mh
x1,x2

by the
more convenient notation [x1, x2]

h, where x1 ≤ x2.
Given any fuzzy interval F ∈ Fint, we can use its a-cuts to

generate a family of positive generalized intervals as follows:
for every a ∈ (0, 1], denote the indicator function of Fa by
F̃a; then the function aF̃a is a positive generalized interval of
height a, provided that Fa is not empty! To handle the case of
empty sets, we introduce a “degenerate” generalized interval,
denoted by φh, and satisfying

φh (x) = 0 for every x ∈ R.

Definition 3.4: M
h
+ is defined to be the family of all positive

generalized intervals of height h; M
h
0 is defined as M

h
0 =

M
h
+ ∪

{
φh
}

.
Obviously, positive generalized intervals (of a given height

h) are in a 1-to-1 correspondence with “classic” closed inter-
vals. Negative generalized intervals can also be defined (as
shown in Appendix C). Note that the set of (positive and
negative) generalized intervals was introduced in [8], [9], [33]
and will be instrumental for the definition of our family of
metrics.

Using the 1-to-1 correspondence between M
h
0 and I, we can

equip M
h
0 with an order relation ¹.

Definition 3.5: Given h ∈ (0, 1], we define the relation ¹
on M

h
0 ×M

h
0 as follows. For all [a, b]h, [c, d]h ∈ M

h
+ we have

φh ¹ [a, b]h and [a, b]h ¹ [c, d]h ⇔ [a, b] ⊆ [c, d]
Proposition 3.6: The relation ¹ is an order on M

h
0 and(

M
h
0 ,¹

)
is a lattice, where the lattice join g and meet f

operations are given (for all [a, b]h, [c, d]h ∈ M
h
+) by

[a, b]h g [c, d]h = [a ∧ c, b ∨ d]h, [a, b]h g φh = [a, b]h

[a, b]h f [c, d]h = [a ∨ c, b ∧ d]h, [a, b]h f φh = φh.
Proof: This is a straightforward consequence of the 1-

to-1 correspondence between M
h
0 and I.

Recall from above that in proposition 3.6 it is defined
[a, b]h f [c, d]h

.
= ∅h, if a ∨ c > b ∧ d.
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Based on positive generalized intervals, we now define
Fuzzy Interval Numbers (FINs).

Definition 3.7: A fuzzy interval number (FIN) is a family
{Fh}h∈(0,1] of positive generalized intervals constructed from
a fuzzy number F ∈ F such that Fh = hF̃h, where F̃h is
the indicator function of {x : F (x) ≥ h} . The set of all FINs
will be denoted by F

∗.
FINs have been defined elsewhere as mathematical objects

which may have either positive or negative membership func-
tions [9], [12]. Interpretations for negative FINs have been
proposed [12], but they are outside the scope of this paper.
Since the interest of this work is in fuzzy inference systems
(FISs), we have considered here only positive FINs, or FINs
for short; the latter are interpreted as fuzzy numbers.

Now we turn to metrics on FINs; these will be built from
metrics on positive generalized intervals.

Proposition 3.8: Let fh : R → R be a strictly increasing
function. Define dh : M

h
0 × M

h
0 → R

+
0 as follows: for all

[a, b]h, [c, d]h ∈ M
h
+ set

dh([a, b]h, [c, d]h) = [fh(a∨c)−fh(a∧c)]+[fh(b∨d)−fh(b∧d)]
(1)

dh([a, b]h, φh) = dh(φh, [a, b]h) = ∞ (2)

dh(φh, φh) = 0 (3)

Then dh is a metric on M
h
0 .

Proof: The proof is given in Appendix C. Here we only
remark that the proof depends on the fact that the set of
(positive and negative) generalized intervals is a metric lattice.
Hence negative generalized intervals (which are discussed in
Appendix C) are just as important as positive generalized
intervals in introducing the metric dh.

It can be seen from Proposition 3.8 that every strictly
increasing function fh generates a metric on lattice

(
M

h
0 ,¹

)
.

Function fh is also called underlying positive valuation be-
cause fh is a positive valuation function in the totally ordered
lattice R of real numbers (for a definition of a positive
valuation function see in Appendix A). Let Dh denote the
family of all metrics in M

h
0 . A very large number of metrics

can be defined in the manner of Proposition 3.8.
Proposition 3.9: card(Dh) ≥ ℵ1.

Proof: In [11].
We can obtain an underlying positive valuation fh from

every nonnegative, integrable mass function mh : R → R
+
0 as

follows:
fh(x) =

∫ x

0

mh(t)dt,

where the above integral is positive (negative) for x > 0
(x < 0). One may use a mass function mh (x) as a “device”
for attaching a weight of significance to a number x in a
data dimension. We remark that typical FIS applications in
the literature employ solely (and implicitly) mass function
m1(x) = 1; the latter corresponds to the linear underlying
positive valuation function f1(x) = x. Nevertheless, alter-
native mass functions can be used. For example a constant

mass function mh(x) = kh > 0 generates a linear underlying
positive valuation fh(x) = khx, which in turn generates the
metric dh([a, b]h, [c, d]h)= kh · (|a−c|+ |b−d|). Furthermore,
nonlinear positive valuation functions can be generated from
alternative mass functions as demonstrated below. Hence, a
mass function can be interpreted as a “weight function” in
a data dimension. For instance, a constant mass function
mh(x) = kh scales all the numbers in a data dimension
equally by kh; whereas, a non-constant mass function mh(x)
scales different numbers in a data dimension differently.

We are ready now to define metrics on the set of fuzzy
interval numbers (FINs).

Proposition 3.10: Given a positive number c, define the
function dK : F

∗ × F
∗ → R

+
0 as follows: for every F,G ∈ F

∗

let

dK(F,G) = c

∫ 1

0

dh(Fh, Gh)dh.

Then dK is a pseudometric, i.e. for all F,G,H ∈ F
∗ we have

dK(F, F ) = 0, dK(F,G) = dK(G,F ), and
dK(F,H) ≤ dK(F,G) + dK(G,H)

Proof: The proof is given in Appendix C.
The reason that dK is not a metric is that two fuzzy interval

numbers F,G with F 6= G could differ only on a set of
measure zero; hence dK(F,G) = 0 does not necessarily
imply that F = G. From a practical point of view the latter
is unlikely to occur. In any case, from a pseudometric it is
possible to obtain a true metric by a standard construction.
Namely, we define an equivalence relation R on F

∗ as follows:
F and G are equivalent iff they differ on a set of measure
zero. Then dK is a true metric on the quotient space F

∗/R,
i.e. dK is a metric between the equivalence classes of R
[2]. The following example demonstrates experimentally the
computation of dK on the plane.

Example. Consider the three fuzzy numbers E1, E2, and
F , with piecewise linear membership functions, shown in
Fig.1(a). Note that the left sides of E1 (solid line) and E2
(dashed line) coincide, nevertheless the corresponding right
sides are clearly different. Note also that both fuzzy numbers
E1 and E2 attain their unique maximum value at x = 0. More-
over, fuzzy number F has an isosceles triangular membership
function centered at x = 3. Two different mass functions are
shown in Fig.1 (b) and (c). On the one hand, the mass function
mh(t) = h (shown in Fig.1(b) for h = 1) assumes that all the
real numbers are equally important; the corresponding positive
valuation function is given by fh(x) = hx. On the other
hand, the mass function mh(t) = 4h e−7(t−0.5)

(1+e−7(t−0.5))2
(shown

in Fig.1(c) for h = 1) emphasizes symmetrically the numbers
around t = 0.5; the corresponding positive valuation function,
namely logistic function (in statistics) or sigmoid function (in
neural computing), is given by fh(x) = h

1+e−7(x−0.5) . Fig.2
displays the metrics dh(E1h, Fh) and dh(E2h, Fh) in solid
and dashed lines, respectively. In particular the mass function
mh(t) = h (Fig.1(b)) was employed for computing the
curves shown in Fig.2(a), whereas the mass function mh(t) =

4h e−7(t−0.5)

(1+e−7(t−0.5))2
(Fig.1(c)) was employed for computing the

curves shown in Fig.2(b). In Fig.2(a) it follows dK(E1, F ) ≈
3.0 > 2.9754 ≈ dK(E2, F ), whereas in Fig.2(b) it follows
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dK(E1, F ) ≈ 0.3587 < 0.3811 ≈ dK(E2, F ). Figures Fig.2
(a) and (b) were meant to demonstrate that a mass function
can be used as an instrument for tuning, non-linearly, the
metric between two fuzzy numbers. Furthermore, note that
metric dK(E,F ) can be used for computing a degree of
membership of a fuzzy number E in another fuzzy number F
using a function mF : F × F → [0, 1] given, for example, by
mF (E) = 1

1+dK(F,E) inspired from [18] where it is attributed
to Zimmermann and Zysno.

(Fig.1 goes here, or below)

(Fig.2 goes here, or below)

IV. NOVEL PERSPECTIVES AND TOOLS FOR FIS ANALYSIS
AND DESIGN

The results of the previous sections will be employed in this
section for enhancing conventional FIS analysis and design.

A. Metric FIS design: Principles

This subsection carries out a discussion for a Mamdani type
FIS; nevertheless, the basic arguments can be extended for
Sugeno type FIS.

In the heart of a Mamdani type FIS lies a collection of
pairs (Ai, Ci) of multi-dimensional fuzzy numbers Ai ∈ F

N ,
Ci ∈ F

M , i = 1, . . . , L. In conventional FIS terminology a
pair (Ai, Ci) is interpreted as a fuzzy rule “if Ai then Ci”,
i = 1, . . . , L. In the context of this work, the collection
(Ai, Ci), i = 1, . . . , L is interpreted as a look-up table for
function approximation by interpolation. More specifically, the
operation of a conventional FIS can be described using the
following five functions:

1. Fuzzification function ffz : R
N × F

N −→ F
N
int.

2. Rule activation function fra : F
N
int −→ [0, 1].

3. Partial rule inference function fpri : [0, 1] × F
M −→

F
M
int.

4. Total rule inference function ftri : (FM
int)

L −→ F
M
int.

5. Defuzzification function fdfz : F
M
int −→ R

M .
Recall that F (Fint) denotes the set of fuzzy numbers

(intervals); moreover, recall that F ⊂ Fint since the height
h of a fuzzy number is always h = 1, whereas the height h
of a fuzzy interval is h ∈ (0, 1].

The first argument in the fuzzification function ffz(., .) is
an input to the FIS, whereas the second argument is treated
as a parameter Ai ∈ F

N ; more specifically, yfz = ffz(x;Ai),
where x ∈ R

N , Ai ∈ F
N for i ∈ {1, . . . , L}, and yfz ∈ F

N
int.

Likewise, the second argument in the partial rule inference
function fpri(., .) is treated as a parameter Ci ∈ F

M ; more
specifically, ypri = fpri(x;Ci), where x ∈ [0, 1], Ci ∈ F

M

for i ∈ {1, . . . , L}, and ypri ∈ F
M
int. The meaning of the other

three functions fra, ftri, and fdfz is obvious. It is interesting
to point out that for an input x ∈ R

N a FIS computes, in
parallel, L values of the function fpri; hence, L different
M−dimensional fuzzy intervals in F

M
int are computed. The

aforementioned intervals are used as an input to the total rule
inference function ftri : (FM

int)
L −→ F

M
int. We remark that the

parallel computation of functions fpri has occasioned parallel,
e.g. neural, implementations of FISs.

To operate a FIS we need to know both (1) functions ffz ,
fra, fpri, ftri, and fdfz , and (2) the pairs of parameters
(Ai, Ci), i ∈ {1, . . . , L}. In conclusion, a FIS implements
a parametric function f : R

N −→ R
M given by y =

f(x; ffz, fra, fpri, ftri, fdfz, (A1, C1), . . . , (AL, CL)).
Given n training data pairs (xi, yi), where xi ∈ R

N and yi ∈
R

M for i ∈ {1, . . . , n}, the practical question in a Mamdani
type FIS design problem is to estimate the parameters ffz ,
fra, fpri, ftri, fdfz , (A1, C1), . . . , (AL, CL) so as to minimize
the least squares error LSE=

√∑n
i=1 ||f(xi)− yi||2. Based on

fuzzy logic arguments the aforementioned function parameters
ffz , fra, fpri, ftri, and fdfz are, typically, fixed; it remains to
estimate the parameter pairs (A1, C1), . . . , (AL, CL), namely
“fuzzy rules” in conventional FIS terminology.

From a function analytic point of view, it is legitimate
to replace both the fuzzification and rule activation func-
tions ffz and fra, respectively, by their composition function
fcomp = ffz ◦ fra : R

N × F
N −→ [0, 1], where the second

argument of function fcomp(., .) is treated as a parameter
Ai ∈ F

N , i ∈ {1, . . . , L}. This work proposes replacing the
composite function fcomp : R

N × F
N −→ [0, 1] by a ‘more

advanced’ fuzzy membership function fadv : F
N × F

N −→
[0, 1] based on the metric dK between FINs; for instance,
fadv(x,A) = 1

1+dK(x,A) can be used. In the aforementioned
manner we overcome inherent drawbacks of conventional FISs
as explained in the following.

B. Metric FIS design: The Potential
A drawback for conventional FIS design is the curse of

dimensionality problem. That is, when the number of in-
put/output variables increases linearly then the number of
fuzzy rules increases exponentially. The latter occurs because
an input x ∈ R

N to a conventional FIS needs to be within
the interval support of “at least one” fuzzy rule, otherwise no
FIS output is produced. One way to counter the problem is
by placing fuzzy rules only where the data typically appear
“hoping” that no data will ever appear elsewhere. A safer
way for overcoming the curse of dimensionality problem
is by using fuzzy rules with long supports, e.g. Gaussian
membership functions. Unfortunately a Gaussian membership
function with mean µ and standard deviation σ is practically
zero outside the interval [µ− 3σ, µ+ 3σ].

Using the abovementioned function fadv(x,A) a FIS input
x could be beyond all fuzzy rule supports. Hence fewer fuzzy
rules may be used without covering the whole input data
domain. The latter is demonstrated by an example below in this
subsection. An additional advantage of function fadv(x,A) is
that a FIS input x can be a fuzzy number x ∈ F

N to com-
pensate for ambiguities in the input data. Both aforementioned
advantages are attributed to the fact that the fuzzy membership
function fadv : F

N × F
N → [0, 1] is defined on the ‘FINs

universe of discourse’; hence it is feasible to compute a fuzzy
degree of inclusion of a FIN F1 in another FIN F2, even when
the interval supports of F1 and F2 do not intersect.
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A mass function has already been presented above as an
instrument for introducing nonlinearities. A mass function
will also be called underlying mass function, where the term
“underlying” is used as a reminder that a mass function is an
important function for building a positive valuation; the latter
is used in turn for building a metric as shown in Proposition
3.10. Note that the term “underlying” may be dropped and the
corresponding function could simply be called mass function.
Another advantage is a mass function’s capacity to maximize
the utility of a digital computer’s memory as described next.

Subtle theoretical advantages of various algorithms may
evaporate in practice, when numerical calculations are car-
ried out on a digital computer, due to round-off errors. For
instance, this work has proposed FIS design using a metric-
based activation of fuzzy rules, where a metric dK(Ei, Hi)
between two fuzzy numbers Ei and Hi in the ith dimension is
calculated as dK(Ei, Hi) = c

∫ 1

0
dh((Ei)h , (Hi)h)dh, c > 0.

Hence, the corresponding metric between two N -tuple fuzzy
numbers E = (E1, . . . , EN ) and H = (H1, . . . , HN ) can be
calculated using the following Minkowski metric

dp(E,H) = [dK(E1, H1)
p + . . .+ dK(EN , HN )p]1/p,

where p ≥ 1 is a selectable integer parameter. Nevertheless,
a Minkowski metric assumes an integer parameter value p;
hence, only a fairly small number of different Minkowski met-
rics dp(., .) can be used in practice because number dp0

(E,H)
is not expected to be different than number dp0+1(E,H)
in a digital computer for fairly large p0. It follows that
a substantial part of a digital computer memory may stay
unused. Nevertheless, the capacity to compute metric dK(., .)
based on a mass function leads to a much larger number of
metric functions to choose from in a practical application; thus
an employment of dK(., .) may take better advantage of the
existing digital computer memory resources.

The disadvantage of using metric dK based on a mass func-
tion is computational complexity; in particular, the computa-
tion of dK requires the calculation of an extra definite integral.
However, there is experimental evidence that the employment
of dK based on (genetically computed) mass functions can
improve performance, for instance in classification problems
[12]. The following example demonstrates advantages of the
proposed novel FIS design.

1) An Extended Example: Consider a simple, Mamdani
type FIS inspired from industrial fertilizer production includ-
ing two linguistic inputs, one linguistic output, and nine fuzzy
rules (Fig.3). More specifically, one input variable is ‘AN
Melt Flow’ in m3/h, the other input variable is ‘Recycled
Fertilizer’ in T/h, moreover the output variable is ‘(Fertilizer
Granule) Diameter’ in mm. A linguistic variable obtains fuzzy
set values with isosceles triangular membership functions. A
triangular fuzzy membership function is denoted by [a,b,c],
where ‘a’ and ‘c’ indicate a triangle’s basis moreover ‘b’ cor-
responds to a triangle’s top. The ‘AN Melt Flow’ input variable
obtains the values [12, 15, 18], [17, 20, 23], and [22, 25, 28].
Moreover, the ‘Recycled Fertilizer’ input variable obtains the
values [8.5, 10, 11.5], [11, 12.5, 14], and [13.5, 15, 16.5]. Note
that the nine fuzzy rules in Fig.3 “fully cover” the input data

domain, in other words any input data pair (x, y) activates
at least one fuzzy rule. Finally, the ‘(Fertilizer Granule)
Diameter’ output variable obtains the values [−1.5, 0.5, 2.5],
[2, 3.25, 4.5], and [3, 5, 7]. In this example ‘min’ conjunction,
‘max’ disjunction, ‘min’ implication, ‘max’ aggregation, and
‘centroid’ defuzzification have been employed. For a grid of
input data pairs (x, y) in the domain [15, 25] × [10, 15] the
output variable surface shown in Fig.5(a) was computed.

(Fig.3 goes here, or below)

Next we reduced the number of rules by an order of
magnitude by ignoring six of the rules in Fig.3; hence the
FIS in Fig.4 emerged with three fuzzy rules. Note in Fig.4
that an input data pair may be outside all fuzzy rule supports.
The latter input data pairs were conventionally mapped to the
middle of the output data range [0.5, 5], i.e they were mapped
to number (0.5+5)/2 = 2.75. The output surface in this case
is shown in Fig.5(b); the corresponding mean square error
(MSE) equals MSE=0.7888.

(Fig.4 goes here, or below)

The effectiveness of the fuzzy membership function
mF (x) = 1/(1+d1(F, x)) was evaluated next. Fig.5(c) shows
the corresponding output surface; the MSE in this case equals
MSE=0.6283.

(Fig.5 goes here, or below)

Next we evaluated a combination of (1) standard fuzzy
logic FIS techniques, and (2) fuzzy rule activation using the
fuzzy membership function mF (x) = 1/(1+ d1(F, x)). More
specifically if a rule was activated (in a standard fuzzy logic
sense) more than a user-defined threshold Tf then standard
fuzzy logic FIS techniques were employed to compute the (real
number) output; otherwise, the fuzzy membership function
mF (x) = 1/(1 + d1(F, x)) was employed. The threshold
Tf varied from 0 to 1 in steps of 0.05. The corresponding
MSE samples are indicated in Fig.6 by solid diamonds (¨).
In particular, Tf = 0 means that standard fuzzy logic FIS
techniques were used for a datum x within a fuzzy rule
support, otherwise the fuzzy membership function mF (x) =
1/(1 + d1(F, x)) was used. With an increasing Tf the MSE
initially drops until a global minimum value of MSE=0.6084
at T̂f = 0.35; then the MSE increases asymptotically, as
expected; more specifically, Tf = 1 means that the fuzzy
membership function mF (x) = 1/(1 + d1(F, x)) is used all
along. Fig.5(d) shows the corresponding output surface for
Tf = 0.35.

(Fig.6 goes here, or below)

The example above was meant to demonstrate the capacity
of the proposed tools. Note that the proposed FIS techniques
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reduced the MSE significantly by 20.34% from 0.7888 down
to 0.6283. It is interesting that a further, marginal improvement
by 3.16% from 0.6283 down to 0.6084 resulted in by a
combination of standard fuzzy logic FIS techniques with the
proposed FIS techniques.

C. CALFIN: An algorithm for computing a FIN

This section summarizes an algorithm for computing a FIN
from a population of measurements [9].

Algorithm CALFIN
1) Let x = [x1, x2, . . . , xN ] be a vector with real number

entries.
2) Order incrementally the entries of vector x.
3) Initially vector pts is empty.
4) function calfin(x)
5) { while (dimension(x) 6= 1)
6) med:= median(x)3

7) insert med in vector pts
8) x left:= elements in vector x less-than num-

ber median(x)
9) x right:= elements in vector x larger-than

number median(x)
10) calfin(x left)
11) calfin(x right)
12) endwhile
13) } //function calfin(x)
14) Sort the entries of vector pts incrementally.
15) Let ‘dim(pts)’ denote the dimension of vector pts. Store

in vector val, dim(pts)/2 numbers from 0 up to 1 in
steps of 2/dim(pts) followed by another dim(pts)/2
numbers from 1 down to 0 in steps of 2/dim(pts).

Algorithm CALFIN computes two vectors, namely pts
and val, where vector val includes the degrees of fuzzy
membership of the corresponding real numbers in vector pts.
A FIN’s membership function is constructed by line-segment
connecting the points with coordinates in vectors pts and val.
Hence, algorithm CALFIN computes a FIN with piecewise
linear membership function; moreover the aforementioned
function is either strictly increasing or strictly decreasing at
a point on the corresponding fuzzy number support. Note that
the maximum membership function value of 1 is attained at
exactly one number.

It turns out that, asymptotically, for large N , 100(1− h)%
of the entries in vector pts are in the interval support {x :
Fh 6= 0}, whereas the remaining 100h% entries in vector pts
are split equally both to the left and to the right of interval {x :
Fh 6= 0}. In the aforementioned sense the interval {x : Fh 6=
0} constitutes, by construction, “an interval of confidence at
level-h”. Note also that, due to the one-one correspondence
between FINs and probabilistic distribution functions (PDFs)
[9], a FIN can capture statistics of all orders.

3The median(x) of a vector x = [x1, x2, . . . , xN ] is a number such that
half of the N numbers x1, x2, . . . , xN are smaller than median(x) and the
other half are larger than median(x); for instance, the median([x1, x2, x3])
with x1 < x2 < x3 equals x2, whereas the median([x1, x2]) with x1 < x2

was calculated here as median([x1, x2]) = (x1 + x2)/2.

D. grSOM: A FIS algorithm for function approximation by
classification

A specific FIS, namely granular Self-Organizing Map or
grSOM for short, is presented in the following as a fuzzy
extension of Kohonen’s Self-Organizing Map (KSOM) to a
fuzzy number domain. The learning phase of algorithm grSOM
is shown first for structure identification, followed by the
classification phase for generalization.

Algorithm grSOM for structure identification
1) Define the dimensions I and J of a two-dimensional

grid of I × J units. Each unit can store both a N -
tuple (weight) Wij , i = 1, . . . , I , j = 1, . . . , J of fuzzy
interval numbers (FINs) as well as a category label
Lij ∈ L = {l1, . . . , lc}, where c is the total number
of categories.

2) Initialize randomly the weight of each unit by a training
datum.
Repeat steps 3 and 4 below for a user-defined integer
number Nepochs of epochs.

3) For each input datum (xk, yk) ∈ F
N × L, k = 1, . . . , n,

do
• Compute the Minkowski metric d1(xk,Wij), i =
1, . . . , I , j = 1, . . . , J .
• Competition among the I×J units in the grid: Winner
is the unit ‘I0J0’ whose weight is included “the most”
in xk, i.e.

I0J0
.
= arg max

i∈{1,...I},j∈{1,...J}
(1/(1 + d1(xk,Wij)).

• Assign input xk to both the winner unit and to all the
units in the neighborhood of the winner.

4) Use algorithm CALFIN to re-compute the weight Wij ,
i = 1, . . . , I , j = 1, . . . , J based on the data assigned
to the corresponding unit in step-3 of the current epoch.

5) To each unit ‘ij’, i = 1, . . . , I , j = 1, . . . , J in the
grid, assign the label of the category which provided
the majority of the input data to the unit ‘ij’ in question
during all epochs.

The above algorithm employs a “greedy” version of the
grSOM algorithm, which (greedy version) guarantees full
coverage of the training data domain as described in [12].
Nevertheless, a basic difference here is that the algorithm
presented in this work bases its decision-making on the fuzzy
membership function 1/(1 + d1(., .)), whereas the grSOM
algorithm in [12] bases its decision-making directly on the
Minkowski metric d1(., .). In the aforementioned sense the
grSOM algorithm presented in this work is a fuzzy inference
system (FIS), whereas the grSOM algorithm in [12] is not.

After termination of the above algorithm a unit ‘ij’ in the
grid with weight Wij is assigned a category label Lij . The
following fuzzy rules are induced naturally from the data: “if
Wij then Lij”, i = 1, . . . , I , j = 1, . . . , J . The testing phase
of algorithm grSOM is described in the following.

Algorithm grSOM for generalization
1) Present a new input x0 ∈ F

N .
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2) Competition: Compute the Minkowski metric
d1(x0,Wij) for all the weights Wij , i = 1, . . . , I ,
j = 1, . . . , J in the grid. Winner is the unit ‘I0J0’
whose weight is included “the most” in x0, i.e.

I0J0
.
= arg max

i∈{1,...I},j∈{1,...J}
(1/(1 + d1(x0,Wij)).

3) Assign category label LI0J0
to input x0.

We point out that algorithm grSOM is an algorithm for
classification. Note that function approximation, in particular
regression, by classification is a common practice in machine
learning [23]. Moreover, note that system modeling by classi-
fication based on fuzzy interval numbers (FINs) has already
been employed successfully; for instance, in [33] the FIN k-
Nearest Neighbor (FINkNN) classifier has been employed for
predicting industrial sugar production by classification.

V. AN INDUSTRIAL MODELING APPLICATION

The objective in this section is to demonstrate the advan-
tageous applicability of the proposed techniques in a real
world problem. In particular, we describe modeling the pan
granulator mill in the Phosphoric Fertilizers Industry (PFI) at
Nea Karvali, Greece. The industrial problem is outlined in the
following.

A. The industrial problem

The industrial production of nitrogenous fertilizers includes
sequentially two processes, namely “Wet Process” and “Dry
Process”. The former process produces an Ammonium Nitrate
(AN) solution, which is fed to the latter one. More specifically,
a highly concentrated hot AN melt is sprayed to the rotating
pan granulator from a spraying nozzle manifold. The fertilizer
end-product consists of small fertilizer granules each having
size in the range of a few millimeters. The aforementioned
size, as well, determines industrial fertilizer quality. A desired
quality size can be obtained by tuning the values of several
pan granulator operating parameters/variables including: AN
melt flow, AN melt pressure, pan speed/inclination, volume
of recycled fertilizer, nozzle location, etc. Optimal parameter
values are constantly sought as explained in the following.

The PFI operates around the clock, and a specific fertilizer
production order is carried out from within a few hours
to within several days. It turns out that an optimal set of
parameter values has to be sought after switching production
from one fertilizer type to a different one. Moreover, various
disturbances during the industrial production may call for
additional tuning.

Tuning in the industry is currently carried out manually
by human operators by trial-and-error; a robust feedback
automatic control mechanism will be helpful. Therefore, a
dependable open loop model of the pan granulator will be
useful. This section describes a model of the form d : R

N →
R, where d(x) denotes the average diameter of produced
fertilizer granules and x is a N -dimensional vector of pan
granulator operating parameters.

B. Data acquisition and model selection
Data samples have been collected during the last five years

for several fertilizer types. More specifically, several pan gran-
ulator operating variables have been sampled manually every
two hours around the clock. In addition, the corresponding
average (fertilizer granule) diameter size has been recorded.
All the data corresponded to a steady state operation of the
pan granulator.

The data used in this work included samples of fourteen
operating variables involved in the production of fertilizer type
CaN26 during late April/early May 2003 in the Phosphoric
Fertilizers Industry (PFI). The aforementioned variables are
summarized in Table 1 including their corresponding units;
in particular note that the units for the Nozzle Vertical Dis-
tance (rings) and the Spraying Angle (lines) in Table 1 are
costumized units used in the industry. A total of 174 data
vectors had been available. Twenty data vectors including one
(or more) missing values were ignored.

(Table 1 goes here, or below)

The development of a “first principles” model was phased
out due to the inherent complexity of the industrial process.
Instead, we concentrated our efforts on inducing a model from
the measurements. There is a number of system modeling
alternatives including polynomial models, ARMA models, var-
ious neural network models, (AN)FIS models, etc. FIS models
are well established in industrial system modeling applications
due to both their capacity for dealing with ambiguity and
their straightforward linguistic interpretations. Therefore we
decided to use a FIS model in the context of this work.

C. Data Preprocessing
In a data preprocessing step some of the operating variables

shown in Table 1 were ignored. Note that the selection of
significant variables/features, known in the literature as “Type
I structure identification problem” may be critical in system
modeling applications. Using a recently published variable
selection method based on a genetic algorithm [27], we have
found the following six most important variables: 1) AN Melt
Flow, 2) Recycled Fertilizer, 3) AN Melt Pressure, 4) AN Melt
Temperature, 5) Pan Rotation Speed, and 6) Nozzle Distance
from the pan. The practical significance of the aforementioned
variables was confirmed by human operator experts from the
industry. Note that a visual inspection of the operating vari-
ables samples revealed that the samples of both the Coarse-
and the Fine- Screen Vibration variables have all been constant
equal to 80%, hence our variable selection method ignored the
latter variables right.

For illustrative purposes only the first three most significant
operating variables were considered below, namely AN Melt
Flow [m3/h], Recycled Fertilizer [T/h], and AN Melt Pres-
sure [bar]. The corresponding fertilizer granule sizes were
classified in one of four categories, namely small (1 mm),
medium-small (2 mm), medium-large (3.5 mm), and large (4.5
mm). In conclusion, 154 3-dimensional vectors were used in
this work, each vector with a category label.
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D. Experiments and results

Classifier grSOM was used, first, for structure indentifica-
tion and, second, for generalization as described in the follow-
ing. A I × J = 4× 4 size grid of units was employed, where
each unit had no more than four neighbors. For demonstration
purposes a random permutation of 120 3-dimensional vectors
was employed for structure identification by clustering using
the grSOM algorithm, whereas the remaining 34 vectors were
employed for generalization. Each unit weight in the grid was
initialized by assigning to it, randomly, a training datum; note
that a 3-dimensional input vector was dealt with here as a
trivial 3-dimensional fuzzy number.

Initially the neighborhood size of the winner unit was
chosen large enough so as to enclose half of the grid. Progres-
sively, after a number of epochs, the neighborhood size of the
winner unit decreased and, eventually, an input was assigned
only to the winner unit. A number Nepochs = 10, 000 of
epochs was user-defined.

Nine fuzzy rules have been computed by algorithm grSOM,
more specifically 2, 2, 2, and 3 rules have been computed
for categories small, medium-small, medium-large, and large,
respectively. Four of the aforementioned fuzzy rules are shown
in Fig.7, where the “IF part” of a fuzzy rule (including three
fuzzy numbers) is shown plotted, moreover the corresponding
“THEN part” (i.e. a category label) is written explicitly on the
top of a plot.

(Fig.7 goes here, or below)

Algorithm grSOM for generalization gave a 97% percentage
of success in this experiment; only one datum was misclassi-
fied in category medium-small instead of its correct category
medium-large. The metrics dK(., .) between various fuzzy
numbers in Fig.7 are shown in Table 2. In addition, within
parentheses in Table 2 are shown the corresponding fuzzy
membership values mRi3(Rj3) = 1

1+dK(Ri3,Rj3) , where
i, j ∈ {1, 2, 3, 4}. More specifically, Table 2 shows the metrics
dK(., .) between the fuzzy numbers R13, R23, R33, and
R43 induced by classifier grSOM along the AN Melt Pressure
data dimension using the uniform mass function m1(x) =
1. The interested reader may confirm by visual inspection
that the numbers displayed in Table 2 sensibly quantify the
“proximity” of the corresponding fuzzy numbers shown in
Fig.7.

(Table 2 goes here, or below)

The aforementioned uniform mass function m1(x) = 1 is
the one used implicitly throughout the literature. This work has
shown above that alternative mass functions can be employed
for “distorting” non-linearly the metric between fuzzy num-
bers. For instance, Fig.8(b) shows mass function m2(x) =

0.1 + e−27(x−0.9)

[1+e−27(x−0.9)]2
along the AN Melt Pressure data di-

mension, whereas Table 3 shows the corresponding metrics
between fuzzy numbers R13, R23, R33, and R43, pairwise.

Within parentheses in Table 3 are shown the corresponding
fuzzy membership values mRi3(Rj3) = 1

1+dK(Ri3,Rj3) , i, j ∈
{1, 2, 3, 4}. A comparison of Tables 2 and 3 reveals how an
underlying mass function can change drastically the proximity
of fuzzy numbers. In particular, note that the distances between
the fuzzy numbers R13, R23, R33 have not changed con-
siderably, whereas the distances between fuzzy number R43
and the other ones have changed considerably. The reason is
that the first three fuzzy numbers stand near the peak of the
Gaussian mass function m2(t) (Fig.8(b)), whereas the fourth
fuzzy number R43 stands further to the right tail of mass
function m2(t). Note also that Tables 2 and 3 are diagonal
symmetric, as expected, due to the commutative property of
metric dK(., .).

(Fig.8 goes here, or below)

(Table 3 goes here, or below)

E. Comparative experimental results

A series of experiments was carried out using different
classifiers in order to demonstrate comparatively the effec-
tiveness of the grSOM classifier in this real-world application.
Five classifiers have been employed, namely (1) grSOM using
1/(1 + d1(., .)), as described in this work, (2) grSOM using
d1(., .), as described in [12], (3) Kohonen’s SOM (KSOM),
(4) a conventional fuzzy inference system (FIS) using fuzzy
sets with triangular fuzzy membership functions, and (5)
backpropagation. For each classifier a set of ten different
data partitions was used; each partition was produced from
a random permutation of 154 data vectors, where the first 120
data vectors were used for training and the remaining 34 data
vectors were used for testing.

First, classifier grSOM was employed as described in this
work using the fuzzy membership function 1/(1 + d1(., .)).
Second, classifier grSOM was employed using the Minkowski
metric d1(., .) as described in [12]. Third, Kohonen’s SOM
(KSOM) algorithm was employed. All aforementioned SOM
algorithms used a 4 × 4 grid of units. Fourth, we employed
a conventional FIS, which located clusters in the training
data and put a fuzzy set with isosceles triangular membership
function on a cluster. The latter membership functions were
initialized by trivial FINs computed by KSOM; then, both
triangle spreads and triangle top locations were fine-tuned
using a steepest descent algorithm on the training data. Fifth,
a conventional backpropagation neural network was employed
with 3 inputs, 5 hidden layer neurons, and 3 (binary) outputs;
sigmoid transfer functions were used, furthermore training was
carried out using the resilient backpropagation algorithm with
mean square error (MSE) target 0.01 and maximum number
of training epochs 1,000.

Table 4 summarizes the experimental results. More specifi-
cally, Table 4 shows the classification accuracy average as well
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as the corresponding standard deviation for ten different data
partitions. Furthermore, Table 4 shows the average number of
engaged grid units /rules as well as the corresponding standard
deviations, where applicable.

(Table 4 goes here, or below)

Backpropagation marginally produced the best classifica-
tion results on the average but without inducing descriptive
decision-making knowledge (rules). The two grSOM clas-
sifiers scored similarly; note that, given the corresponding
standard deviations, the marginally better classification ac-
curacy by ‘grSOM using 1/(1 + d1(., .))’ does not appear
to be statistically significant. The classification performance
of the Triangular FIS was slightly inferior, moreover the
corresponding number of induced rules was slightly smaller.
The latter was attributed to the employed steepest descent al-
gorithm which also included pruning. The worse performance
of the Triangular FIS compared to either grSOM model was
attributed to the restrictive (triangular) shape of the employed
fuzzy membership functions; in other words, the nonparamet-
ric shape of a general FIN used by either grSOM model
appears to contribute to an improvement of classification
performance is this real-world application. Finally, KSOM
produced the poorest classification results as well as the largest
number of engaged grid units. The better performance of
grSOM compared to KSOM was attributed to the fact that
a FIN captures (locally) statistics of all orders in the training
data, whereas the KSOM captures only first order statistics as
discussed in [12].

The marginally better performance of backpropagation com-
pared to a grSOM classifier was attributed to the small number
(120) of 3-dimensional data vectors used for training. More
specifically, an average of approximately 8 rules per 120 data
implies 15 data per rule - Actually, in our experiments, the
number of data per rule varied between 7 and 19. Since a
FIN represents a local probabilistic distribution, it follows
that construction of a FIN from a small number of data may
not represent a data distribution accurately thus deteriorating
performance slightly compared to backpropagation. Note that
in recent experiments regarding a different problem, where
over one hundred data were used for computing a FIN, grSOM
produced better results than backpropagation as it will be
shown elsewhere. However, a grSOM classifier in this work
has clearly produced better results than either Triangular FIS
or KSOM classifier (Table 4). The latter was attributed to a
more accurate representation of a local data distribution by a
FIN than by either a triangle (in Triangular FIS) or a single
vector (in KSOM); in particular, neither a triangle nor a single
vector can represent higher order statistics [12].

The computation time on a standard personal computer plat-
form for backpropagation was under half a minute, whereas
KSOM required a few minutes of computation. A grSOM
classifier appeared to be eight to ten times slower than KSOM.
The need for longer training for a grSOM classifier is due to
the employment of FINs: first, it takes longer to compute a
N-dimensional FIN vector than to compute a N-dimensional

number vector average and, second, it takes longer to compute
a distance dK than to compute the conventional L2 (Euclidean)
distance. The computation time for Triangular FIS was mea-
sured to be between the corresponding times of KSOM and
grSOM classifiers, as expected.

Some further computational experiments were carried out
to illustrate further advantages.

F. Further advantages

An artificial input datum X = (X1, X2, X3), shown in
Fig.8(a), was fed to the grSOM for generalization. More
specifically, X includes heterogeneous data [30], namely a
real number (X1), a fuzzy set (X2) with isosceles triangular
membership function, and an interval (X3). Note that datum
X does not activate, in the conventional FIS sense, any
fuzzy rule in Fig.7 because at least one of the entries X1,
X2, or X3 is outside the corresponding interval supports
of the fuzzy rules in Fig.7. Nevertheless, using the function
1/(1 + d1(Xj,Rij)), i = 1, 2, 3, 4, j = 1, 2, 3 a degree of
activation for a fuzzy rule can be computed.

Another advantage demonstrated here is the capacity to
employ heterogeneous data including real numbers, fuzzy
numbers, and intervals in any combination. In the aforemen-
tioned manner we may compensate for ambiguities in the data;
the latter is potentially significant in industrial (and other)
applications.

A further advantage demonstrated here is the capacity to
employ alternative mass functions. For instance the first three
lines in Table 5 show the distances dK(., .) between entries
of vector X = (X1, X2, X3) and the corresponding entries
of the four rules in Fig.7 using the mass function m1(x) = 1;
the last line in Table 5 shows the distances between interval
X3 and the corresponding fuzzy numbers of the four fuzzy
rules along the AN Melt Pressure data dimension using the
mass function m2(x) = 0.1+ e−27(x−0.9)

[1+e−27(x−0.9)]2
(Fig.8(b). Within

parentheses in Table 5 are shown the corresponding fuzzy
membership values mRij(Xj) = 1

1+dK(Rij,Xj) , where i ∈
{1, 2, 3, 4}, j ∈ {1, 2, 3}. The interesting point here is that
using mass function m1(x) it follows that X3 is clearly
“nearest” to fuzzy number R13 (the latter is in category
small), whereas using mass function m2(x) it follows that
X3 is clearly “nearest” to fuzzy number R43 (the latter is in
category large). Hence, a mass function can drastically change
the outcome of classification.

(Table 5 goes here, or below)

VI. CONCLUSION

In this work we have introduced new perspectives and useful
tools for enhanced FIS analysis and design. It was shown that:
a FIS is typically used for implementing a function f : R

N →
R

M ; the cardinality of the set of FISs equals ℵ2; moreover,
a FIS has a capacity for (local) generalization. Fuzzy interval
numbers (FINs) were presented as an alternative, computation-
ally tractable representation of (conventional) fuzzy numbers.
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More specifically, based on generalized interval analysis, a
tunable metric dK was presented between fuzzy numbers;
furthermore a mass function can be used for tuning dK . A
novel FIS design was proposed based on metric dK with
specific advantages including an alleviation of the curse of
dimensionality problem (by generalization beyond fuzzy rule
support), a capacity to rigorously cope with heterogeneous data
including (fuzzy) numbers and intervals, etc.

A specific FIS algorithm was presented, namely granular
Self-Organizing Map (grSOM), for classification. The grSOM
can induce fuzzy rules involving fuzzy numbers character-
ized by non-parametric membership functions. This work has
demonstrated computationally (using both artificial data and
real world data from an industrial modeling application) prac-
tical advantages of the proposed techniques over alternative
classification models.

There is evidence in the literature that FINs can produce
better results than real numbers in classification problems
[33]. Further improvements will be sought in the future
especially regarding optimization of the (underlying) mass
functions; note that it was demonstrated lately that “geneti-
cally computed” mass functions can improve performance in
classification applications [12]. Automatic control [28] is a
promising application domain of the novel tools presented
here. In a different direction note that the metric dK(., .)
can be employed for calculating a metric between type-2
fuzzy sets [14] by the calculation of an additional integral.
Furthermore, the tools presented here may be particularly
useful for designing FIS classifiers [19] as well as other
decision support systems [21].

APPENDIX A: ELEMENTS FROM LATTICE THEORY

Here we give an overview of useful concepts and results
from lattice theory.

Definition A.1: Given a set P , a binary relation ≤ between
elements of P is called a partial order if it satisfies the
following conditions for all x, y, z ∈ P :

1) Reflexivity: x ≤ x.
2) Antisymmetry: (x ≤ y and y ≤ x) ⇒ x = y.
3) Transitivity: (x ≤ y and y ≤ z) ⇒ x ≤ z.
We will sometimes write y ≥ x, which is equivalent to

x ≤ y.
Definition A.2: If ≤ is a partial order on P then we say that

(P,≤) is a partially ordered set or, equivalently, a poset.
Definition A.3: A lattice is a poset (L,≤) with the additional

property that any two of its elements have a greatest lower
bound (g.l.b.), and a least upper bound (l.u.b.) in L.

Notation A.4: Given a lattice (L,≤, and any two elements
x, y ∈ L, their g.l.b. is called the meet of x and y and denoted
by x∧ y; their l.u.b. is called the join of x and y and denoted
by x ∨ y.

Definition A.5: We say that x and y are comparable when
either x ≤ y or y ≤ x; otherwise we say that they are
incomparable and we write x||y.

A lattice without incomparable elements is called totally
ordered lattice. For example, a totally ordered lattice is the
set R of real numbers.

Recall the concepts of metric and positive valuation in the
following.

Definition A.6: A metric in a set S is a nonnegative real
function d : S × S → R

+
0 which, for all x, y, z ∈ S, satisfies:

D1a d (x, x) = 0.
D1b d (x, y) = 0 ⇒ x = y.

D2 d (x, y) = d (y, x) .
D3 d (x, y) ≤ d (x, z) + d (z, y) .

If only conditions D1a, D2 and D3 are satisfied, then ‘d’ is
called a pseudometric.

Definition A.7: A valuation in a lattice (L,≤) is a function
v : L → R which, for all x, y ∈ L, satisfies:

v (x) + v (y) = v(x ∧ y) + v(x ∨ y).

A valuation is called positive if, for all x, y ∈ L, we have

x < y ⇒ v(x) < v(y).

Proposition A.8: Let (L,≤) be a lattice and v be a positive
valuation; then

d (x, y) = v (x ∨ y)− v (x ∧ y)

is a metric .

APPENDIX B: ELEMENTS FROM FUZZY LATTICE THEORY

Here we give an overview of useful concepts and results
from fuzzy lattice theory.

Definition B.1: A fuzzy lattice is a triple (L,≤, µ), where
(L,≤) is a lattice and µ is a fuzzy relation µ : L× L→ [0, 1]
such that

µ(x, y) = 1 ⇔ x ≤ y.

When x ≤ y then the fuzzy relation µ holds to the maximum
degree (i.e. 1) between x and y; but µ may also hold to a lesser
degree between x and y even when x||y (i.e. x and y are
incomparable). Hence µ can be understood as a weak (fuzzy)
partial order relation. In particular, µ possesses a very weak
form of transitivity: when both µ(x, y) = 1 and µ(y, z) = 1,
then we also have µ(x, z) = 1; but if either µ(x, y) 6= 1 or
µ(y, z) 6= 1, then µ(x, z) can take any value in [0, 1]. Hence
our definition of fuzzy lattice is quite general. A fuzzy relation
which can be used to construct a fuzzy lattice is the so-called
inclusion measure.

Definition B.2: Given a lattice (L,≤), an inclusion measure
is a fuzzy relation σ : L × L → [0, 1] which satisfies the
following conditions for every x, y, z ∈L.

C1 σ(x, x) = 1.
C2 z ≤ x⇒ σ (y, z) ≤ σ (y, x) .
C3 x ∧ y < x⇒ σ(x, y) < 1.
Conditions C1, C2, and C3 are interpreted as follows. C1

means that every lattice element is fully included in itself. C2
stipulates a common-sense “consistency property”. C3 requires
that when x and y are incomparable then x is included in y
to a degree less than one and, also, that when y is strictly
included into x then x is included in y to a degree less than
one. Note that in every lattice (L,≤) we have the equivalence
x∧ y < x⇔ y < x∨ y [2]; hence C3 can be replaced by the
following equivalent condition
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C3′ y < x ∨ y ⇒ σ(x, y) < 1.
Proposition B.3: Let (L,≤) be a lattice and σ : L × L →

[0, 1] be an inclusion measure on (L,≤). Then (L,≤, σ) is a
fuzzy lattice.

Proposition B.4: Let (L,≤) be a lattice and let v : L → R

be a positive valuation. Then both functions

k (x, u) =
v(u)

v(x ∨ u)
, s (x, u) =

v(x ∧ u)

v(x)
.

are inclusion measures.

APPENDIX C: PROOFS

In this Appendix we give the proofs of Propositions 3.8 and
3.10. These proofs depend on some definitions and results
established in the companion paper [11]. The most crucial
step is the introduction of positive and negative generalized
intervals. The following definition subsumes Definition 3.3 as
a special case.

Definition C.1: Take any h ∈ (0, 1]. A positive generalized
interval of height h is a function mh

x1,x2
, where x1 ≤ x2,

defined by

mh
x1,x2

(x) =

{
h, x1 ≤ x ≤ x2

0, otherwise.

A negative generalized interval of height h is a function
mh

x1,x2
, where x1 > x2, defined by

mh
x1,x2

(x) =

{
−h, x2 ≤ x ≤ x1

0, otherwise.

We will also denote a generalized interval mh
x1,x2

by [x1, x2]
h.

Notation C.2: The family of all positive generalized in-
tervals of height h will be denoted by M

h
+. The family of

all negative generalized intervals of height h will be denoted
by M

h
−. The family of all (positive and negative) generalized

intervals of height h will be denoted by M
h = M

h
+ ∪M

h
−.

The rationale for introducing negative generalized intervals
is the following. As already mentioned in the text, “classic”
intervals form a lattice. In this lattice the infimum of two
non-intersecting intervals is the empty interval. We have
found, in various practical applications, that this fact is rather
restrictive. Therefore we have endeavored to construct a lattice
of intervals where non-intersecting intervals have a nonempty
infimum, furthermore a positive valuation function exists (for a
definition of a positive valuation function see in Appendix A).
As will be seen in the sequel, negative generalized intervals
serve this purpose well with rewarding results.

Definition C.3: Given h ∈ (0, 1], we define a relation ¹ on
M

h ×M
h as follows:

if [a, b]h ∈ M
h
+, [c, d]h ∈ M

h
+ then:

[a, b]h ¹ [c, d]h ⇔ [a, b] ⊆ [c, d]

if [a, b]h ∈ M
h
−, [c, d]h ∈ M

h
− then:

[a, b]h ¹ [c, d]h ⇔ [d, c] ⊆ [b, a]

if [a, b]h ∈ M
h
−, [c, d]h ∈ M

h
+ then:

[a, b]h ¹ [c, d]h ⇔ [b, a] ∩ [c, d] 6= ∅

In all other cases [a, b]h and [c, d]h are incomparable,
symbolically [a, b]h ‖ [c, d]h.

Proposition C.4: The relation ¹ is an order on M
h. More-

over
(
M

h,¹
)

is a lattice, where the lattice join (denoted by
g) and the lattice meet (denoted by f) are given by

[a, b]hg[c, d]h = [a∧c, b∨d]h, [a, b]hf[c, d]h = [a∨c, b∧d]h.

where a ∧ c = min{a, c} and a ∨ c = max{a, c}.
Proof: The proof appears in [11].

Next we define a metric on M
h. This is effected by a

standard lattice-theoretic construction, which makes use of a
positive valuation function.

Proposition C.5: Let fh : R → R be a strictly increasing
function. Then the function vh : M

h → R given by

vh([a, b]h) = fh(b)− fh(a)

is a positive valuation in
(
M

h,¹
)
. Furthermore, the function

dh : M
h ×M

h → R
+
0 given by

dh([a, b]h, [c, d]h) = [fh(a∨c)−fh(a∧c)]+[fh(b∨d)−fh(b∧d)]

is a metric on M
h.

Proof: The proof appears in [11].
We have shown a metric dh on M

h. Now we modify dh to
obtain a metric on M

h
0 .

Proof of Proposition 3.8. We want to show that dh is a
metric on Mh

0 . In other words, we must show that

dh (Fh, Gh) = 0 ⇔ Fh = Gh (4)

dh (Fh, Gh) = dh (Gh, Fh) (5)

dh (Fh, Hh) ≤ dh (Fh, Gh) + dh (Gh, Hh) (6)

for Fh, Gh, Hh ∈Mh
0 .

Now, for Fh, Gh, Hh ∈Mh
+, (4)-(6) are true because dh is

identical to dh on Mh
+ and dh is a metric on Mh ⊃Mh

+. Also,
dh

(
φh, φh

)
= 0 by (3), and dh

(
[a, b]h, φh

)
= dh

(
φh, [a, b]h

)

by (2). Hence it remains to show

dh (Fh, Hh) ≤ dh (Fh, Gh) + dh (Gh, Hh)

where at least one of Fh, Gh, Hh is φh. Indeed, for Fh, Hh ∈
Mh

+ we have

dh (Fh, Hh) < dh

(
Fh, φ

h
)

+ dh

(
φh, Hh

)
=∞+∞

Moreover, for any Gh we have

dh

(
Fh, φ

h
)

= ∞ = dh (Fh, Gh) + dh

(
Gh, φ

h
)

This completes the proof. ¥
Proof of Proposition 3.10 We want to show that dK is a

pseudometric on F
∗.

From both the definition

dK(F,G) = c

∫ 1

0

dh(Fh, Gh)dh

and the fact that dh is a metric, using standard properties of
integrals it follows
dK(F, F ) = 0, dK(F,G) = dK(G,F ), and
dK(F,H) ≤ dK(F,G) + dK(G,H).
Nevertheless, from
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dK(F,G) = c

∫ 1

0

dh(Fh, Gh)dh = 0

we cannot conclude that F = G, because we may have
dh(Fh, Gh) 6= 0 for an isolated point h0 or, more generally,
on a set of measure zero. Hence we have proved that dK is a
pseudometric, but not necessarily a metric.¥
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Fig. 1 (a) Three fuzzy numbers E1, E2, and F. The left sides of E1 (solid line) and E2 (dashed 

line) coincide. 

 (b) The mass function mh(t)= h, for h=1. 

 (c) The mass function mh(t)= 4he-7(t-0.5)/(1+e-7(t-0.5))2, for h=1. 
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Fig. 2 The fuzzy numbers E1, E2, and F mentioned below are shown in Fig.1(a). The metric 

functions hd (E1h,Fh) and hd (E2h,Fh) are plotted here in solid and dashed lines, respectively. 

The area under a curve equals the corresponding distance between two fuzzy numbers. 

 (a) Using the mass function mh(t)= h (shown in Fig.1(b) for h=1), it turns out that dK(E1,F) 

≈ 3.0 > 2.9754 ≈ dK(E2,F). 

 (b) Using the mass function mh(t)= 4he-7(t-0.5)/(1+e-7(t-0.5))2 (shown in Fig.1(c) for h=1), it 

turns out that dK(E1,F)≈ 0.3587 < 0.3811 ≈ dK(E2,F). 
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Fig. 3 A simple fuzzy inference system (FIS) with two linguistic input variables (i.e. AN Melt 

Flow [m3/h], Recycled Fertilizer [T/h]) and one linguistic output variable (i.e. Diameter 

[mm]) were used to model industrial fertilizer granule size. Each linguistic variable above 

may obtain three different fuzzy set values with triangular membership functions. Nine 

fuzzy rules were used whose antecedent supports fully cover the input data domain. Using 

‘min’ conjunction, ‘max’ disjunction, ‘min’ implication, ‘max’ aggregation, and ’centroid ‘ 

defuzzification the input data pair (22.6, 13.9) is mapped to number 3.69. 
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Fig. 4 The fuzzy inference system (FIS) above has stemmed from the FIS in Fig.3 by dropping six 

of its fuzzy rules, that is an order of magnitude reduction in the number of rules. There exist 

input data, including the pair (16.5, 13), which do not activate a fuzzy rule. The latter input 

data were conventionally mapped to the middle of the output data range [0.5, 5], that is the 

aforementioned data were mapped to number (0.5+5)/2 = 2.75. 
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Fig.5 Two-dimensional output functions of different FISs. 

 (a) Output function of the FIS in Fig.3. 

 (b) Output function of the FIS in Fig.4. 

 (c) Output function produced by activating a fuzzy set F of a rule in Fig.4 using the (fuzzy 

membership) function mF(x)= 1/(1+d1(F,x)). Hence, a rule can be activated by input 

data outside its (rule) support. 

 (d) Output function produced by a thresholded combination of (1) standard fuzzy logic, 

and (2) fuzzy membership function mF(x)= 1/(1+d1(F,x)) of the FIS in Fig.4 for 

threshold Tf=0.35. 
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Fig. 6 The three curves above show the mean square error (MSE) of various approximations to the 

“prototype” surface in Fig.5(a). The top constant line, denoted by empty squares (□), at 

MSE= 0.7888 shows the MSE of the surface in Fig.5(b). The constant line, denoted by 

empty circles (○), at MSE= 0.6283 shows the MSE of the surface in Fig.5(c). The curve 

denoted by solid diamonds (♦) shows the MSE of a thresholded combination of standard 

fuzzy logic and fuzzy function mF(x)= 1/(1+d1(F,x)) versus threshold Tf; an optimal (global 

minimum) value of MSE= 0.6084 at fT
)

= 0.35 corresponds to the surface shown in Fig.5(d). 

 

 20



 21

17 18 19 20 21
0

0.2

0.4

0.6

0.8

1

m
em

be
rs

hi
p 

de
gr

ee R11

10 11 12 13
0

0.2

0.4

0.6

0.8

1

Category 1: small

R12

0.5 0.7 0.9 1.1 1.3
0

0.2

0.4

0.6

0.8

1 R13

0.4

0.6

0.8

1

be
rs

hi
p 

de
gr

ee R21

0.4

0.6

0.8

1

Category 2: medium-small

R22

0.4

0.6

0.8

1 R23

(a) 

) 
(b
17 18 19 20 21
0

0.2

AN Melt Flow [m3/h]

m
em

10 11 12 13
0

0.2

Recycled Fertilizer [T/h]
0.5 0.7 0.9 1.1 1.3
0

0.2

AN Melt Pressure [bar]

17 18 19 20 21
0

0.2

0.4

0.6

0.8

1

m
em

be
rs

hi
p 

de
gr

ee R31

10 11 12 13
0

0.2

0.4

0.6

0.8

1 R32

Category 3: medium-large

0.5 0.7 0.9 1.1 1.3
0

0.2

0.4

0.6

0.8

1 R33

17 18 19 20 21
0

0.2

0.4

0.6

0.8

1

AN Melt Flow [m3/h]

m
em

be
rs

hi
p 

de
gr

ee R41

10 11 12 13
0

0.2

0.4

0.6

0.8

1

Recycled Fertilizer [T/h]

R42

Category 4: large

0.5 0.7 0.9 1.1 1.3
0

0.2

0.4

0.6

0.8

1

AN Melt Pressure [bar]

R43

 

(c) 

(d) 

 
 
Fig. 7  The “IF parts” of four data-induced fuzzy rules are plotted; the corresponding “THEN 

part” of a fuzzy rule, that is a category label, is shown on the top of a plot. 
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Fig. 8 (a) A FIS input X= (X1, X2, X3) can be heterogeneous. In this figure X includes a real 

number X1=18, a fuzzy set X2 with isosceles triangular membership function, and an 

interval component X3, respectively. 

 (b) A mass function can be used for distorting non-linearly the feature space. Using the 

Gaussian mass function m2(x)= 0.1+(e-27(x-0.9))/(1+e-27(x-0.9))2 above it turns out that 

interval X3 is nearest to fuzzy number R43 (the latter implies category “large”), more 

specifically dK(X3,R43) = d
{1,2,3,4}j
min

∈
K(X3,Rj3) ≅ 0.0392; whereas using the uniform mass 

function m1(x)=1 it turns out that interval X3 is nearest to fuzzy number R13 (the latter 

implies category “small”), in particular dK(X3,R13) = d
{1,2,3,4}j
min

∈
K(X3,Rj3) ≅ 0.0786.  
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 Table 1 Operating variables available for modeling the operation of 
the pan granulator in the Phosphoric Fertilizers Industry (PFI). 

   
 Variable name Unit 
1 AN Melt Flow m3/h 
2 Recycled Fertilizer T/h 
3 AN Melt Temperature oC 
4 AN Melt Pressure bar 
5 Granulation Temperature oC 
6 Pan Inclination degrees 
7 Pan Rotation Speed Hz 
8 Nozzle Vertical Distance rings 
9 Nozzle Distance from the pan cm 

10 Scraper Speed Hz 
11 Spraying Angle lines 
12 Coarse Screen Vibration % 
13 Fine Screen Vibration % 
14 Mg(NO3)2 Supply % 
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 Table 2 Metrics dK(Ri3,Rj3), i,j∈{1,2,3,4} between four fuzzy numbers 
induced by classifier grSOM along the AN Melt Pressure data 
dimension. The uniform mass function m1(x)=1 has been employed. 
Within parentheses is shown the corresponding fuzzy membership 
value mRi3(Rj3)= 1/(1+dK(Ri3,Rj3)), i,j∈{1,2,3,4}. 

         
 R13 R23 R33 R43 
R13 0 (1) 0.105 (0.905) 0.057 (0.946) 0.180 (0.847) 
R23 0.105 (0.905) 0 (1) 0.048 (0.954) 0.285 (0.778) 
R33 0.057 (0.946) 0.048 (0.954) 0 (1) 0.237 (0.808) 
R43 0.180 (0.847) 0.285 (0.778) 0.237 (0.808) 0 (1) 
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 Table 3 Metrics dK(Ri3,Rj3), i,j∈{1,2,3,4} between four fuzzy numbers 
induced by classifier grSOM along the AN Melt Pressure data 
dimension. A Gaussian mass function m2(x) has been employed. 
Within parentheses is shown the corresponding fuzzy membership 
value mRi3(Rj3)= 1/(1+dK(Ri3,Rj3)), i,j∈{1,2,3,4}. 

         
 R13 R23 R33 R43 
R13 0 (1) 0.095 (0.913) 0.041 (0.960) 0.105 (0.905) 
R23 0.095 (0.913) 0 (1) 0.054 (0.948) 0.200 (0.833) 
R33 0.041 (0.960) 0.054 (0.948) 0 (1) 0.146 (0.872) 
R43 0.105 (0.905) 0.200 (0.833) 0.146 (0.872) 0 (1) 
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Table 4 Performance of four classification methods in 10 different random partitions regarding real-

world measurements from the Phosphoric Fertilizers Industry (PFI) at Nea Karvali, Greece. 
     

Classification Method Testing Data Classification Accuracy no. grid units engaged /rules 
 average stdv average stdv 

Backpropagation 97.64 1.24 - - 
grSOM using 1/(1+d1(.,.)) 97.05 1.38 8.10 1.44 
grSOM using d1(.,.) 96.76 1.66 8.30 1.25 
Triangular FIS 95.29 1.51 7.50 1.08 
KSOM 94.11 1.96 14.80 1.03 
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 Table 5 The first three lines show metrics dK(Rik,Xk)), i∈{1,2,3,4}, k∈{1,2,3} 
between the input X= (X1,X2,X3) entries shown in Fig.4(a) and the four 
fuzzy rule entries shown in Fig.3 using the uniform mass function 
m1(x)=1. The last line shows the distances between interval X3 and the 
corresponding fuzzy rule entries using the Gaussian mass function m2(x). 
Within parentheses is shown the corresponding fuzzy membership value 
mRij(Xj)= 1/(1+dK(Rij,Xj)), i∈{1,2,3,4}, j∈{1,2,3}. 

         
 R11 R21 R31 R41 

X1 0.962 (0.509) 0.196 (0.836) 0.982 (0.504) 1.968 (0.336) 
         
 R12 R22 R32 R42 

X2 1.083 (0.480) 0.389 (0.719) 0.825 (0.547) 0.887 (0.529) 
         
 R13 R23 R33 R43 

X3 0.078 (0.927) 0.166 (0.857) 0.118 (0.894) 0.119 (0.893) 
         
 R13 R23 R33 R43 

X3 0.068 (0.936) 0.159 (0.862) 0.110 (0.900) 0.039 (0.962) 
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Figure Captions 

 
 
Fig. 1 (a) Three fuzzy numbers E1, E2, and F. The left sides of E1 (solid line) and E2 (dashed 

line) coincide. 

 (b) The mass function mh(t)= h, for h=1. 

 (c) The mass function mh(t)= 4he-7(t-0.5)/(1+e-7(t-0.5))2, for h=1. 

 
 
 
Fig. 2 The fuzzy numbers E1, E2, and F mentioned below are shown in Fig.1(a). The metric 

functions hd (E1h,Fh) and hd (E2h,Fh) are plotted here in solid and dashed lines, respectively. 

The area under a curve equals the corresponding distance between two fuzzy numbers. 

 (a) Using the mass function mh(t)= h (shown in Fig.1(b) for h=1), it turns out that dK(E1,F) 

≈ 3.0 > 2.9754 ≈ dK(E2,F). 

 (b) Using the mass function mh(t)= 4he-7(t-0.5)/(1+e-7(t-0.5))2 (shown in Fig.1(c) for h=1), it 

turns out that dK(E1,F)≈ 0.3587 < 0.3811 ≈ dK(E2,F). 

 
 
 
Fig. 3 A simple fuzzy inference system (FIS) with two linguistic input variables (i.e. AN Melt 

Flow [m3/h], Recycled Fertilizer [T/h]) and one linguistic output variable (i.e. Diameter 

[mm]) were used to model industrial fertilizer granule size. Each linguistic variable above 

may obtain three different fuzzy set values with triangular membership functions. Nine 

fuzzy rules were used whose antecedent supports fully cover the input data domain. Using 

‘min’ conjunction, ‘max’ disjunction, ‘min’ implication, ‘max’ aggregation, and ’centroid ‘ 

defuzzification the input data pair (22.6, 13.9) is mapped to number 3.69. 

 
 
 
Fig. 4 The fuzzy inference system (FIS) above has stemmed from the FIS in Fig.3 by dropping six 

of its fuzzy rules, that is an order of magnitude reduction in the number of rules. There exist 

input data, including the pair (16.5, 13), which do not activate a fuzzy rule. The latter input 

data were conventionally mapped to the middle of the output data range [0.5, 5], that is the 

aforementioned data were mapped to number (0.5+5)/2 = 2.75. 
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Fig.5 Two-dimensional output functions of different FISs. 

 (a) Output function of the FIS in Fig.3. 

 (b) Output function of the FIS in Fig.4. 

 (c) Output function produced by activating a fuzzy set F of a rule in Fig.4 using the (fuzzy 

membership) function mF(x)= 1/(1+d1(F,x)). Hence, a rule can be activated by input 

data outside its (rule) support. 

 (d) Output function produced by a thresholded combination of (1) standard fuzzy logic, 

and (2) fuzzy membership function mF(x)= 1/(1+d1(F,x)) of the FIS in Fig.4 for 

threshold Tf=0.35. 

 
 
 
Fig. 6 The three curves above show the mean square error (MSE) of various approximations to the 

“prototype” surface in Fig.5(a). The top constant line, denoted by empty squares (□), at 

MSE= 0.7888 shows the MSE of the surface in Fig.5(b). The constant line, denoted by 

empty circles (○), at MSE= 0.6283 shows the MSE of the surface in Fig.5(c). The curve 

denoted by solid diamonds (♦) shows the MSE of a thresholded combination of standard 

fuzzy logic and fuzzy function mF(x)= 1/(1+d1(F,x)) versus threshold Tf; an optimal (global 

minimum) value of MSE= 0.6084 at fT
)

= 0.35 corresponds to the surface shown in Fig.5(d). 

 
 
 
Fig. 7  The “IF parts” of four data-induced fuzzy rules are plotted; the corresponding “THEN 

part” of a fuzzy rule, that is a category label, is shown on the top of a plot. 
 
 
 
Fig. 8 (a) A FIS input X= (X1, X2, X3) can be heterogeneous. In this figure X includes a real 

number X1=18, a fuzzy set X2 with isosceles triangular membership function, and an 

interval component X3, respectively. 

 (b) A mass function can be used for distorting non-linearly the feature space. Using the 

Gaussian mass function m2(x)= 0.1+(e-27(x-0.9))/(1+e-27(x-0.9))2 above it turns out that 

interval X3 is nearest to fuzzy number R43 (the latter implies category “large”), more 

specifically dK(X3,R43) = d
{1,2,3,4}j
min

∈
K(X3,Rj3) ≅ 0.0392; whereas using the uniform mass 

function m1(x)=1 it turns out that interval X3 is nearest to fuzzy number R13 (the latter 

implies category “small”), in particular dK(X3,R13) = d
{1,2,3,4}j
min

∈
K(X3,Rj3) ≅ 0.0786.  
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Table Captions 
 
 
Table 1 
Operating variables available for modeling the operation of the pan granulator in the Phosphoric 
Fertilizers Industry (PFI). 
 
 
 
 
Table 2 
Metrics dK(Ri3,Rj3), i,j∈{1,2,3,4} between four fuzzy numbers induced by classifier grSOM along 
the AN Melt Pressure data dimension. The uniform mass function m1(x)=1 has been employed. Within 
parentheses is shown the corresponding fuzzy membership value mRi3(Rj3)= 1/(1+dK(Ri3,Rj3)), 
i,j∈{1,2,3,4}. 
 
 
 
 
Table 3 
Metrics dK(Ri3,Rj3), i,j∈{1,2,3,4} between four fuzzy numbers induced by classifier grSOM along 
the AN Melt Pressure data dimension. A Gaussian mass function m2(x) has been employed. Within 
parentheses is shown the corresponding fuzzy membership value mRi3(Rj3)= 1/(1+dK(Ri3,Rj3)), 
i,j∈{1,2,3,4}. 
 
 
 
 
Table 4 
Performance of four classification methods in 10 different random partitions regarding real-world 
measurements from the Phosphoric Fertilizers Industry (PFI) at Nea Karvali, Greece. 
 
 
 
 
Table 5 
The first three lines show metrics dK(Rik,Xk)), i∈{1,2,3,4}, k∈{1,2,3} between the input X= 
(X1,X2,X3) entries shown in Fig.4(a) and the four fuzzy rule entries shown in Fig.3 using the uniform 
mass function m1(x)=1. The last line shows the distances between interval X3 and the corresponding 
fuzzy rule entries using the Gaussian mass function m2(x). Within parentheses is shown the 
corresponding fuzzy membership value mRij(Xj)= 1/(1+dK(Rij,Xj)), i∈{1,2,3,4}, j∈{1,2,3}. 
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