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Granular self-organizing map (grSOM) for structure identification 
 

 

Abstract 
 

This work presents a useful extension of Kohonen’s Self-Organizing Map (KSOM) for structure 

identification in linguistic (fuzzy) system modeling applications. More specifically the granular SOM 

neural model is presented for inducing a distribution of nonparametric fuzzy interval numbers (FINs) 

from the data. A FIN can represent a local probability distribution function and/or a conventional fuzzy 

set; moreover a FIN is interpreted as an information granule. Learning is based on a novel metric 

distance dK(.,.) between FINs. The metric dK(.,.) can be tuned nonlinearly by a mass function m(x), the 

latter attaches a weight of significance to a real number ‘x’ in a data dimension. Rigorous analysis is 

based on mathematical lattice theory. A grSOM can cope with ambiguity by processing linguistic 

(fuzzy) input data and/or intervals. This work presents a simple grSOM variant, namely greedy grSOM, 

for classification. A genetic algorithm (GA) introduces tunable nonlinearities during training. Extensive 

comparisons are shown with related work from the literature. The practical effectiveness of the greedy 

grSOM is demonstrated comparatively in three benchmark classification problems. Statistical evidence 

strongly suggests that the proposed techniques improve classification performance. In addition, the 

greedy grSOM induces descriptive decision-making knowledge (fuzzy rules) from the training data. 

 

 

Keywords: Self organizing map (SOM); linguistic granule; classification; fuzzy interval number (FIN); 

fuzzy inference system (FIS); lattice theory; statistics; genetic algorithm (GA) optimization 

 

 

 

 

List of symbols 

 

[a,b]h a generalized interval of height h 

CALFIN an algorithm for constructing a FIN 

CDF Cumulative Distribution Function 

cone(X) the cone generated in a linear space by the set X 

conv(X) the convex hull of the set X 

d(x,y) a metric distance between x and y 
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dh([a,b]h,[c,d]h) a metric distance between generalized intervals [a,b]h and [c,d]h 

dK(F1,F2) a metric distance between FINs F1 and F2 

dp(A,B) Minkowski distance between N-tuples of FINs A and B for p=1,2,… 

e , e  basis vectors in Mh
1

h
2

h 

fh a strictly increasing function 

F(h) a generalized interval of height h 

F metric lattice of FINs 

F+ the set of positive FINs 

F0 the set of trivial (positive) FINs 

F- the set of negative FINs 

FIN Fuzzy Interval Number 

Fa a-cut of a fuzzy set F 

KSOM Kohonen’s Self-Organizing Map 

L a general mathematical lattice 

M the set of all generalized intervals of height h∈(0,1] 

Mh the metric lattice of generalized intervals of height h 
h
+M  the set of positive generalized intervals of height h 

h
0M  the set of trivial (positive) generalized intervals of height h 

h
−M   the set of negative generalized intervals of height h 

m(x) a mass function 

)(µ xh
ba,  membership function of generalized interval [a,b]h 

R the totally-ordered lattice of real numbers 

R+ the set of positive real numbers 
+
0R  the set of positive real numbers including zero (0) 

SOM Self-Organizing Map 

v(x) a positive valuation function, where x is a lattice element 

vh(.) a positive valuation function in lattice Mh 

≤ lattice ordering relation 

|| lattice incomparability operator 

∨ lattice join operator 

∧ lattice meet operator 

U  set union operator 

⊆ set inclusion operator 
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1.  Introduction 

 

A popular neural network for clustering is Kohonen’s self-organizing map (KSOM) devised 

mainly for visualization of nonlinear relations of multi-dimensional data (Kohonen, 1995). 

The KSOM is known for its effectiveness in real world applications (Haritopoulos, Yin, & 

Allinson, 2002; Kohonen et al, 2000; Papadimitriou et al, 2001; Principe, Wang, & Motter, 

1998). Variants of KSOM have been reported for learning nonvectorial data (Cottrell, Ibbou, 

& Letrémy, 2004; Kohonen, 1996; Kohonen & Somervuo, 1998; Seo & Obermayer, 2004; 

Somervuo, 2004). This work investigates the potential of KSOM towards structure 

identification in linguistic (fuzzy) system modeling applications. More specifically, the 

emphasis of this work is on inducing descriptive decision-making knowledge (fuzzy rules) 

from the training data for classification. Our contribution is summarized as follows. 

Based on sound mathematics this work proposes an extension of KSOM, namely granular 

SOM or grSOM for short, for inducing a distribution of Fuzzy Interval Numbers (FINs) from 

data samples. A FIN can represent, nonparametrically, a local probability distribution and/or a 

fuzzy set. Learning is driven by a tunable metric distance dK(.,.) between FINs. An integrable 

mass function m(x) can nonlinearly tune metric dK(.,.) by attaching a weight of significance to 

a real number ‘x’ in a data dimension. A genetic algorithm (GA) computes optimally mass 

function m(x). The objective of a grSOM model in the context of this work is linguistic 

(fuzzy) rule induction towards classification rather than data visualization. 

We use the name grSOM to denote a family of KSOM-based architectures, which process 

FINs. A simple grSOM variant, namely greedy grSOM, is presented as a fuzzy neural network 

for classification. More specifically, the greedy grSOM induces nonparametric FINs from the 

training data such that a FIN specifies a fuzzy data cluster. The induced FINs are interpreted 

as antecedents (IF parts) of linguistic (fuzzy) rules; the corresponding rule consequents 

(THEN parts) are category labels. 

This paper builds on a body of work reported lately (Kaburlasos, 2002, 2004; Kaburlasos & 

Papadakis, 2004; Kaburlasos & Petridis, 2003; Petridis & Kaburlasos, 2003). Substantial 

novelties are introduced here as explained below. Rigorous mathematical analysis is based on 

lattice theory. More specifically, lattices of generalized intervals are used for introducing a 

tunable metric distance dK(.,.) between FINs. Sound evidence, including both theoretical and 

experimental evidence, is presented regarding advantages of the greedy grSOM in linguistic 

(fuzzy) classification applications. 

The layout of this paper is as follows. Section 2 outlines the problem of structure 

identification in linguistic (fuzzy) system modeling applications. Section 3 summarizes the 

mathematical background. Section 4 considers an algorithm for constructing a FIN, moreover 

interpretations for a FIN are presented. Section 5 details the greedy granular Self-Organizing 
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Map (greedy grSOM) algorithm. Section 6 shows comparisons with related work from the 

literature; the novelties of this work are also summarized. Experimental results are presented 

in section 7 including a discussion. Section 8 concludes by summarizing the contribution as 

well as potential future extensions of this work. 

 

2.  The problem of structure identification 

 

This section outlines the problem of structure identification in linguistic (fuzzy) system 

modeling. A fuzzy inference system (FIS) includes a knowledge-base of fuzzy rules. For 

instance, Fig.1 shows a typical “Mamdani type” FIS, involving triangular fuzzy membership 

functions, where the antecedent (IF part) of a rule is the conjunction of N fuzzy statements 

and the consequent (THEN part) of a rule is a single fuzzy statement (Mamdani & Assilian, 

1975). More specifically, Fig.1 displays L fuzzy rules R1,…,RL. An input vector 

x=(x1,…,xN)∈RN activates in parallel all L rules by a fuzzification procedure. The fuzzy rule 

consequents are combined and, finally, a single number is produced by a defuzzification 

procedure. A Mamdani type FIS could include other fuzzy membership function shapes than 

triangular ones. A different type FIS is obtained using an algebraic expression y= f(x1,…,xN), 

e.g. a linear expression y=a1x1+…+aNxN, as a consequent to a rule; hence a “Tagaki-Sugeno-

Kang (TSK) type” FIS results (Tagaki & Sugeno, 1985). 

It turns out that a FIS is a mechanism for implementing a function f: RN→K, where the range 

K may be either discrete or continuous; in particular the Mamdani type FIS in Fig.1 

implements a function f: RN→R. Another popular function, which a FIS can implement is a 

classifier (Ishibuchi, Nakashima, & Murata, 1999; Mitra & Hayashi, 2000; Mitra & Pal, 

1994), where the range K of function f: RN→K is a discrete set of class labels. 

A FIS is called linguistic system model because a linguistic label such as “high”, “low”, 

“average”, etc. is attached to a fuzzy set. Structure identification concerns the important 

problem of placing optimally, in a sense, fuzzy sets on the real line for all rules involved in a 

FIS (Sugeno & Kang, 1988). Both the location and the membership function shapes of 

corresponding fuzzy sets are induced from the data/measurements; note that usually simple 

parametric fuzzy membership functions are used, for example triangular, trapezoidal, and 

Gaussian membership functions. 

A solution to the structure identification problem is typically pursued using various clustering 

and/or supervised learning algorithms including (fuzzy) neural networks (Jang & Sun, 1995; 

Kecman, 2001; Leng, McGinnity, & Prasad, 2005; Mitra & Hayashi, 2000; Papadakis & 

Theocharis, 2002; Pomares et al, 2002; Setnes, 2000; Tagaki & Sugeno, 1985). In particular, 

Lin & Lin (1997) employ the fuzzy ART neural network for computing hyperboxes (clusters) 
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in RN. This work proposes an extension of Kohonen’s self-organizing map (KSOM) neural 

network for structure identification with emphasis on pattern classification problems. 

 

3.  Mathematical background 

 

Parts of the material in this section have been presented previously in various contexts 

(Kaburlasos, 2002, 2004; Kaburlasos & Papadakis, 2004; Kaburlasos & Petridis, 2003; 

Petridis & Kaburlasos, 2003). This section presents concisely a unified enhancement 

including, in addition, new material as pointed out explicitly on occasion. The mathematics 

presented in this section will be necessary for introducing novel techniques below. 

 

3.1  Metric lattices Mh of generalized intervals 

A generalized interval (positive, or negative) of height h is defined in the following. 

Definition 1 

A positive generalized interval of height h is a mapping : R→{0,h} (where x)(µ
21,

xh
xx 1≤x2 and 

h∈(0,1]) given by 


 ≤≤

=
otherwise

xxxh
xh

xx ,0
,

)(µ 21
, 21

; 

a negative generalized interval of height h is a mapping : R→{0,-h} (where x)(µ
21,

xh
xx 1>x2 

and h∈(0,1]) given by . 


 ≥≥

=
otherwise

xxxh-
xh

xx ,0
,

)(µ 21
, 21

▀ 

Definition 1 above is a simplified functional equivalent of a previous definition (Kaburlasos, 

2004). A generalized interval is a simple box function, either positive or negative. No specific 

interpretation is attached to generalized interval. Generalized intervals will be useful below 

for introducing a metric distance between fuzzy numbers, where a fuzzy number is defined as 

an interval-supported convex fuzzy set of height one. A generalized interval will be denoted 

more compactly as [x1,x2]h, where x1≤x2 for positive- and x1>x2 for negative- generalized 

intervals. A positive generalized interval [x1,x1]h will be called, in particular, trivial (positive) 

generalized interval. Previous work has considered, as well, trivial negative generalized 

intervals (Kaburlasos, 2004). In the interest of simplicity, and without loss of generality, this 

work considers only positive trivial generalized intervals. 

The set of positive (negative) generalized intervals of height h will be denoted by M  (M ); 

in particular, the set of trivial positive generalized intervals will be denoted by M , where 

⊂M . The set of generalized intervals of height h will be denoted by M

h
+

h
0

h
−

h
0M h

+
h, i.e. Mh= 
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h
−M

U
,(0∈h

∪M . The set-union  is the set M of generalized intervals, symbolically M= 

. Our interest here is in generalized intervals [x

h
+

Mh

U
],(

M
10∈h

h

h
+

h
−

h
+

]1
1,x2]h with h∈(0,1] because the latter 

may emerge from the a-cuts of conventional fuzzy numbers. More specifically, to an a-cut 

Fa= {x: x≥a} of a fuzzy number F there corresponds a positive generalized interval with 

support Fa and height ‘a’. An ordering relation can be defined on Mh× Mh as follows. 

 

(R1) If [a,b]h, [c,d]h ∈M  then: [a,b]h≤[c,d]h ⇔ [a,b] ⊆ [c,d], 

(R2) If [a,b]h, [c,d]h ∈M  then: [a,b]h≤[c,d]h ⇔ [d,c] ⊆ [b,a], and 

(R3) If [a,b]h ∈M , [c,d]h
−

h ∈M  then: [a,b]h≤[c,d]h ⇔ [b,a]∩[c,d] ≠ ∅. 

The partial ordering relation above has been introduced elsewhere (Kaburlasos, 2002, 2004), 

nevertheless a simplified notation is used here. Rule (R1) indicates that a positive generalized 

interval [a,b]h is smaller than another one [c,d]h if and only if the interval support of [a,b]h is 

included in the interval support of [c,d]h. Rule (R2) indicates, dually, the converse for 

negative generalized intervals. Finally, rule (R3) indicates that a negative generalized interval 

[a,b]h is smaller than a positive one [c,d]h if and only if the corresponding interval supports 

overlap. In all other cases generalized intervals [a,b]h and [c,d]h are incomparable, 

symbolically [a,b]h||[c,d]h. 

The aforementioned ordering relation is a partial ordering relation1; moreover, the partially 

ordered set Mh of generalized intervals is a mathematical lattice2 (Kaburlasos, 2002, 2004; 

Petridis & Kaburlasos, 2003). Note that a lattice ordering is a partial ordering but not vice 

versa. Useful functions can be defined in a general lattice L as shown next. 

Definition 2 

A valuation in a lattice L is a real function v: L→R which satisfies v(x)+v(y)=v(x∨y)+v(x∧y), 

x,y∈L. A valuation is called positive if and only if x<y in L implies v(x)<v(y) for x,y∈L. 

▀ 

A positive valuation v(.) in a lattice L implies a metric distance3 function d: L×L→R  given 

by d(x,y)=v(x∨y)-v(x∧y) for x,y∈L (Birkhoff, 1967). A positive valuation function v

+
0

h: Mh→R 

can be defined in lattice Mh as follows. 

 

                                                
1 A partial ordering relation, symbolically ≤, in a set S has to be: (PO1) reflexive (x≤x), (PO2) 
antisymmetric (x≤y and y≤x imply x=y), and (PO3) transitive (x≤y and y≤z imply x≤z), where x,y,z∈S. 
2 A mathematical lattice is a partially ordered set L any two of whose elements have a greatest lower 
bound (g.l.b.) or “meet” denoted by x∧y, and a least upper bound (l.u.b.) or “join” denoted by x∨y. 
3 A metric distance in a set S is a real function d: S×S→R which satisfies: (MD0) d(x,y) ≥ 0, x,y∈S, 
(MD1) d(x,y)=0 ⇔ x=y, x∈S, (MD2) d(x,y) = d(y,x), x,y∈S, - Symmetry, and (MD3) d(x,y) ≤ d(x,z) + 
d(z,y), x,y,z ∈S - Triangle Inequality. 
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Proposition 3 

Let fh: R→R be a strictly increasing function. Then the function vh: Mh→R given by 

vh([a,b]h)= fh(b) - fh(a) 

is a positive valuation function in lattice Mh. It follows that function dh: Mh×Mh→R  given by +
0

dh([a,b]h,[c,d]h) = [fh(a∨c) – fh(a∧c)] + [fh(b∨d) – fh(b∧d)] 

is a metric distance in lattice Mh. 

▀ 

The proof of proposition 3 will be shown elsewhere for lack of space. 

 

A strictly increasing function fh: R→R can be constructed from an integrable mass function 

mh: R→R  as follows: f+
0 h(x)= . Note that the latter integral is positive (negative) for 

x>0 (x<0). One may regard a mass function m

∫
x

ttm
0

)d(h

h(x) as an instrument for attaching “a weight of 

significance” to a real number x. Various mass functions can be employed; for instance, using 

mass function mh(x)=h it follows metric distance dh([a,b]h,[c,d]h)= h(|a-c|+|b-d|) in Mh. The 

following example demonstrates the calculation of dh(.,.). 

 

Example 4 

Consider the positive generalized intervals [-1,0]1 and [3,4]1. Using mass function m(x)=1 it 

follows d1([-1,0]1,[3,4]1)= v1([-1,0]1∨[3,4]1)-v1([-1,0]1∧[3,4]1)= v1([-1,4]1)-v1([3,0]1)= 5+3 = 8. 

Fig.2(a) and Fig.2(b) show two different symmetric mass functions m1(x)= 3x2 and m2(x)= 

2)1(
2

x

x

e
e
−

−

+
, respectively. The corresponding strictly increasing functions f1(x) and f2(x) are 

shown, respectively, in Fig.2(c) and Fig.2(d). More specifically, on the one hand, a steeply 

increasing function f1 is shown in Fig.2(c), that is cubic function v1(x)=x3; the computation of 

metric d1(.,.) using m=m1 results in d1([-1,0]1,[3,4]1)= f1([-1,0]1∨[3,4]1)-f1([-1,0]1∧[3,4]1)= 

65+27 = 92. On the other hand, a slowly increasing (saturated) function f2 is shown in 

Fig.2(d), that is the logistic function 1
1

2)(2 −
+

=
−xe

xv ; the computation of metric distance 

d1(.,.) using m=m2 results in d1([-1,0]1,[3,4]1) = f2([-1,0]1∨[3,4]1)-f2([-1,0]1∧[3,4]1) ≈ 1.4262 + 

09052 ≈ 2.3314. 

▀ 

The example above was meant to demonstrate that a different mass function could change 

substantially the distance between two intervals. 

 



grSOM: GRANULAR SELF-ORGANIZING MAP 9

3.2  Vector lattices and convexity in Mh 

This section shows a useful algebraic structure in metric lattice Mh. Any treatment of 

convexity is a novelty introduced in this paper. Note that convex computations are essential 

for self-organizing map (SOM) algorithms. 

An element [a,b]h of Mh, h∈(0,1] has been represented by a pair of real numbers in the 

Cartesian product space R×R. Since the space R2 is a real linear space, it follows that the 

space Mh is, likewise, a real linear space. More specifically, 

 • addition in Mh is defined as [a,b]h+[c,d]h=[a+c,b+d]h. 

 • multiplication (by a real number k) in Mh is defined as k[a,b]h=[ka,kb]h. 

A generalized interval in Mh is called vector of the linear space Mh. We remark that the term 

“vector” is used here in the standard linear algebra sense (Itô, 1987). 

A lattice-ordered linear space, such as space Mh in this work, is called vector lattice or Riesz 

space (Itô, 1987). We remark that a theory of vector lattices has been introduced in Riesz 

(1928) and further developed by several authors (Vulikh, 1967). 

The dimension of linear space Mh, apparently, equals two. A convenient basis can be selected 

in Mh as follows: [a,b]h= [a,a+(b-a)]h = [a,a]h + [0,b-a]h = a[1,1]h + (b-a)[0,1]h = ae 1 +be ; 

therefore basis (e 1 , e h
2 )=([1,1]

h h
2

h h, [0,1]h) has been selected in Mh, where a,b∈R. 

A subset C of a linear space is called cone if for all x∈C and λ>0, we have λx∈C (Bertsekas, 

Nedic, & Ozdaglar, 2003). Two interesting cones emerge in the linear space Mh including, 

first, the cone M  of positive generalized intervals and, second, the cone  of negative 

generalized intervals. More specifically, using the aforementioned basis (e , e )=([1,1]

h
+

h
−M

h
1

h
2

h
−

h, 

[0,1]h) it can be easily shown that 1) if x∈M  and λ>0 then λx∈M , and 2) if x∈M  and λ>0 

then λx∈M . Powerful theorems for convex analysis and optimization in R

h
+

h
+

h
−

n (for n=2) 

become available in Mh including the following one (Bertsekas, Nedic, & Ozdaglar, 2003). 

 

Theorem 5 (Caratheodory’s Theorem) 

Let X be a nonempty subset of Rn. 

(a) Every x in cone(X) can be represented as a positive combination of vectors x1,…,xm from 

X that are linearly independent. 

(b) Every x in conv(X) can be represented as a convex combination of vectors x1,…,xm from 

X such that x2-x1,…,xm-x1 are linearly independent. 

▀ 

We remark in the above theorem that: ‘cone(X)’ is the cone generated by X, i.e. the set of 

nonnegative combinations of elements of X; ‘conv(X)’ is the convex hull of the set X, i.e. the 

intersection of all convex sets containing X; a ‘positive combination of vectors x1,…,xm’ is a 
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linear combination ∑ , where a=
m
i ii xa1 i∈R are all positive; a ‘convex combination of vectors 

x1,…,xm’ is a positive combination  such that =1. ∑ =
m
i ii xa1 ∑ =

m
i ia1

 

3.3  The metric space F of FINs 

Consider the following definition of a Fuzzy Interval Number (FIN). 

Definition 6 

A Fuzzy Interval Number (FIN) is a function F: (0,1]→M such that (1) F(h)∈Mh, (2) either 

F(h)∈M  (positive FIN) or F(h)∈M  (negative FIN) for all h∈(0,1], and (3) hh
+

h
− 1≤h2 ⇒ {x: 

F(h1)≠0} ⊇ {x: F(h2)≠0}, where 0 ≤ h1 ≤ h2 ≤ 1. 

▀ 

We remark that condition (3) in the above definition indicates that the interval support of 

generalized interval F(h1) is greater-than or equal-to the support of generalized interval F(h2) 

for h1≤h2. Definition 6 is an improved simplification of a corresponding definition in 

Kaburlasos (2004) where the requirement for ‘continuity’ in Kaburlasos (2004) is dropped 

here without loss of generality. The set of FINs will be denoted by F. More specifically the 

set of positive (negative) FINs will be denoted by F+ (F-); in particular, the set of trivial 

positive FINs will be denoted by F0, where F0⊂F+. Fig.3 shows examples of two negative 

FINs (i.e. FINs Fm, Fn), one trivial FIN (i.e. FIN Ft), and two positive FINs (i.e. FINs Fq, Fp). 

We point out that a FIN is an abstract mathematical notion. Various interpretations can be 

proposed for a FIN. For instance, on the one hand, a positive FIN may be interpreted as a 

conventional fuzzy number; moreover a statistical interpretation is presented here below for a 

positive FIN. On the other hand, a negative FIN may be interpreted as an intuitionistic (fuzzy) 

set in the sense of Atanasoff (Atanasoff, 1999); more specifically the membership function of 

a negative FIN may denote the degree of certainty that a real number does not belong to a 

fuzzy set. The following proposition from Kaburlasos (2004) introduces a metric distance in 

the set F of Fuzzy Interval Numbers (FINs). 

 

Proposition 7 

Let F1 and F2 be FINs in F. A metric distance function dK: F×F→R  is given by d+
0 K(F1,F2)= 

, where c is a positive normalizing coefficient, and d∫
1

0
21h ))(),(( dhhFhFdc h(F1(h),F2(h)) is a 

metric distance between generalized intervals F1(h) and F2(h). 

▀ 

We point out that the metric distance dK(F1,F2) between FINs F1 and F2 is based on the metric 

distance dh(F1(h),F2(h)) between generalized intervals F1(h) and F2(h), where the definition of 
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the latter is based on both positive and negative generalized intervals. Hence, negative 

generalized intervals are instrumental for defining dK(.,.). The computation of the metric 

distance dK(.,.) is demonstrated in the following. 

Two pairs of FINs (E1,F) and (E2,F) are shown in Fig.4(a) and Fig.4(b), respectively. Note 

that both FINs E1 and E2 assume their maximum value of 1 at the same point x=5; moreover 

the center of gravity for both FINs E1 and E2 is at x=5. Therefore if a FIN is to be represented 

by a single number, e.g. either the number where a FIN attains its maximum value or the 

corresponding FIN center of gravity, then the distance between FINs E1 and F equals the 

distance between FINs E2 and F. Nevertheless, a more sensible result is obtained using 

distance dK(.,.) as illustrated next. 

Fig.4(c) plots the metric distances dK(E1(h),F(h)) and dK(E2(h),F(h)), respectively, in solid 

line and dotted line as functions of h in (0,1]. It might be interesting to point out that both 

curves in Fig.4(c) have a “break point” at h=0.8, as expected from the break points in the 

membership functions of both FINs E1 and E2 at h=0.8. The curves in Fig.4(c) show that 

dK(E1(h),F(h)) < dK(E2(h),F(h)) for values of h smaller than h≈0.45, whereas dK(E1(h),F(h)) 

> dK(E2(h),F(h)) for larger values of h. The latter inequalities are expected from Fig.4(a) and 

Fig.4(b) because the “lower” part of FIN E2 is further from FIN F than the lower part of FIN 

E1, and vice versa for the upper parts. By computing the areas underneath the corresponding 

curves in Fig.4(c) it turns out dK(E1,F)≈ 6.18 moreover dK(E2,F)≈ 5.81. 

The previous results can be extended in the Cartesian product FN= F×…×F. In particular, a 

metric between two N-tuples of FINs A= (A1,…,AN) and B= (B1,…,BN) can be computed using 

the following Minkowski metric 

dp(A,B)= p
1

p
K

p
11K ])),(()),( NN BAdBAd ++K[( , where 

dK: F×F→R  is the metric between FINs shown in proposition 7. +
0

 

3.4  Convexity in F 

The obvious next step is to extend both addition and multiplication from Mh, h∈(0,1] to F. 

 

Definition 8 

The product kF1, where k∈R and F1∈F, is defined as FIN Fp: Fp(h)=kF1(h), h∈(0,1]. 

▀ 

We remark that the product kF1 is always a FIN. More specifically for a positive nontrivial 

FIN F1 in F+, it follows that if k≥0 then kF1∈F+, whereas if k<0 then kF1∈F-; and vice-versa 

for a negative FIN F1 in F- that is, if k>0 then kF1∈F-, whereas if k≤0 then kF1∈F+. 

Apparently for a trivial positive FIN F the product kF is always a trivial positive FIN. From 
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the previous analysis it follows that both sets of positive FINs (F+) and negative FINs (F-) are 

cones. Examples of products kF1 are shown in Fig.3 where Fp= -Fn moreover Fm= -2Fq. 

Consider the following definition for the sum of two FINs. 

 

Definition 9 

The sum F1+F2, where F1,F2∈F, is defined as Fs: Fs(h)=(F1+F2)(h)= F1(h)+F2(h), h∈(0,1]. 

▀ 

We remark that when both F1 and F2 are in the cone F+ (F-) then F1+F2 is a FIN in the cone F+ 

(F-). However a problem may arise in calculating the sum F1+F2 involving one positive and 

one negative FIN. The aforementioned problem occurs when the generalized interval 

F1(h)+F2(h) is both positive for some values of h∈(0,1] and negative for other values of 

h∈(0,1]. In the latter case, the sum F1+F2 is not a FIN. 

Of particular interest in the context of this work are convex combinations kF1+(1-k)F2, 

k∈[0,1], where F1 and F2 both are positive FINs. Fig.5 shows two positive FINs, respectively, 

A and B; moreover, the linear convex combination kA+(1-k)B is shown for various values of 

k, i.e. k=0.8, k=0.6, k=0.4 and k=0.2. Fig.5 demonstrates that the positive FIN ‘kA+(1-k)B’ is 

progressively a combination of both the location and the shape of positive FINs A and B. 

 

4.  Construction and interpretations for a FIN 

 

A FIN in this work is induced from a population of real number samples using algorithm 

CALFIN described elsewhere (Kaburlasos, 2004; Kaburlasos & Papadakis, 2004; Petridis & 

Kaburlasos, 2003). More specifically, algorithm CALFIN constructs a positive FIN with 

membership function µ(x) such that µ(x)=1 for exactly one number x. By construction, 

algorithm CALFIN implies a one-to-one correspondence between FINs and (probabilistic) 

cumulative distribution functions (CDFs) as explained in the following. In the one direction, a 

CDF G(x) is mapped to a FIN F: Let x0 be such that G(x0)=0.5. The membership function 

µF(.) of the corresponding FIN F is defined such that µF(x)=2G(x) for x ≤ x0 furthermore 

µF(x)=2[1-G(x)] for x ≥ x0. In the other direction, a FIN F is mapped to a CDF: Let x0 be such 

that µF(x0)=1. The corresponding CDF G(x) is defined such that G(x)=0.5µF(x) for x ≤ x0 

furthermore G(x)=1-0.5µF(x) for x ≥ x0. Note that, in general, the membership function µF(.) 

of a FIN F is nonparametric. 

When algorithm CALFIN is applied on a population x1,x2,…,xn of samples and a FIN F is 

constructed then 100(1-h)% of the n samples x1,x2,…,xn are within interval {x: F(h)≠0}; the 

remaining 100h% of the samples x1,x2,…,xn are split equally both below and above interval 

{x: F(h)≠0}. If a large number of samples is drawn independently according to a probabilistic 
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distribution function p0(x) and a FIN F is constructed using algorithm CALFIN then the 

interval {x: F(h)≠0} constitutes, by definition, an interval of confidence at level-h in the 

following sense: A random number drawn according to p0(x) is expected to fall 1) inside 

interval {x: F(h)≠0} with probability 100(1-h)%, 2) below interval {x: F(h)≠0} with 

probability 50h%, and 3) above interval {x: F(h)≠0} with probability 50h%. Due to the 

aforementioned “one-to-one correspondence” between FINs and CDFs it follows that a FIN 

captures statistics of all orders. The computation of FINs is demonstrated in the following. 

Fig.6 displays FINs constructed by algorithm CALFIN from data samples generated 

according to the normal probability density function N(0,1) with mean 0 and standard 

deviation 1. In particular, 50 random data samples were used to compute FIN G1 in Fig.6(a), 

whereas 10,000 random data samples were used to compute FIN G2 in Fig.6(b). Note that the 

maximum value, i.e. one, for either FIN G1 or G2 is attained as expected near the mean 0 of 

the probability density function N(0,1). A comparison of figures Fig.6(a) and Fig.6(b) 

confirms that, as the number of samples increases, the corresponding FIN converges 

asymptotically to a limit. When the number of samples tends to infinity then the computed 

FIN corresponds to the Gaussian CDF. Note that both the left and the right tails of FIN G2 in 

Fig.6(b) asymptotically tend to zero due to the nature of the Gaussian CDF. 

Another example is shown in Fig.7, where FINs are displayed constructed by algorithm 

CALFIN from data samples drawn according to a uniform probability density function over 

the range [-3,3]. In particular, 50 random data samples were used to compute FIN U1 in 

Fig.7(a), whereas 10,000 random data samples were used to compute FIN U2 in Fig.7(b). A 

comparison of figures Fig.7(a) and Fig.7(b) confirms that as the number of samples increases 

then the computed FIN converges asymptotically to its limit. We remark that FIN U2 in 

Fig.7(b) has an isosceles triangular membership function as expected for a uniform 

probability density. 

A positive FIN constructed by algorithm CALFIN has been interpreted (above) “statistically” 

as an estimate of a (probabilistic) cumulative distribution function. In a different context, 

using a fuzzy set theoretic terminology, a positive FIN F may be interpreted as a 

nonparametric possibility distribution (Zadeh, 1978), where the corresponding fuzzy 

membership function µF(.) is perceived as a (linguistic) constraint (Zadeh, 1999). A statistical 

interpretation for a FIN does not exclude a linguistic (fuzzy) interpretation. For instance, 

Dubois & Prade (1986) have presented transformations between probability and possibility 

measures; moreover Dubois & Prade (1986) present algorithms, similar in spirit with 

algorithm CALFIN, for inducing fuzzy membership functions from statistical interval data. 

Under any interpretation, a FIN is an information granule that is a clump of values drawn 

together by indistinguishability, similarity, proximity or functionality (Zadeh, 1999; Bortolan 

& Pedrycz, 2002; Pedrycz, 2002; Pedrycz & Bargiela, 2002). 
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Note that a trivial FIN  represents a crisp real number x. Moreover, a positive FIN 

, a,b∈R with a≤b represents a conventional crisp interval [a,b]. A fuzzy 

membership function has been proposed in the literature as follows u(x)=1/(1+d(x,x
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(Krishnapuram & Keller, 1993), where d(x,x0) is the distance of a point x from a class 

prototype point x0. Likewise, fuzzy membership function µF(H)= 1/(1+dK(F,H)) could be used 

in a future work, where F and/or H are FINs including fuzzy sets, intervals, and real numbers. 

 

5.  Granular self-organizing map (grSOM) 

 

Kohonen’s self-organizing map (KSOM) typically implements a nonlinear projection of a 

probability density function p(x) from a high dimensional input data space RN onto a two-

dimensional grid of units/neurons such that topology is preserved. The weights of a neuron in 

the grid are updated by a linear convex combination 

mi(t+1) = mi(t) + h(t)[x(t)-mi(t)] = [1-h(t)]mi(t) + h(t)x(t),     0<h(t)<1, 

where mi(t)∈RN is a reference (weight) vector, x(t)∈RN is an input (stimulation) vector, and 

h(t) is the neighborhood function. 

A number of KSOM variants have been presented in the literature, typically in signal 

processing applications (Kohonen, 1995). A different KSOM variant is presented below 

towards linguistic (fuzzy) system modeling applications. 

 

5.1  Principles for extending KSOM 

An extension of Kohonen’s self-organizing map (KSOM) is feasible, as explained below, in 

the metric space FN. A motivation for the aforementioned extension is that positive FINs can 

accommodate ambiguity. In view of the material presented in sections 3 and 4, an extension 

of KSOM from RN to FN is straightforward based on: 1) algorithm CALFIN, for computing a 

FIN from a population of real number samples in a data dimension, 2) a Minkowski metric in 

FN, and 3) convex combinations of FINs. An extended KSOM algorithm in FN is called 

granular SOM or grSOM for short, whereas KSOM will also be called here crisp SOM. A 

simple grSOM algorithm, namely greedy grSOM, is presented in the following. 

 

5.2  The ‘greedy grSOM’ algorithm 

The training phase of the greedy grSOM algorithm is shown in Fig.8. 

The clustering carried out by the greedy grSOM is supervised in the sense that to each unit 

‘ij’, i=1,…,I, j=1,…,J in the grid the algorithm ultimately assigns the label of the category 

which provided the majority of the training data during all epochs for giving rise to the weight 
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Wij∈FN (step-5 in Fig.8). We point out that during training (steps 3 and 4 in Fig.8) the labels 

are not used. A grid unit with both weight Wij∈FN and label Lij is interpreted as a fuzzy rule 

“if Wij then Lij”. Therefore, the greedy grSOM can be regarded as a fuzzy inference system 

(FIS); more specifically the greedy grSOM is a fuzzy neural network for classification. 

The task of the greedy grSOM is to track down clusters in the training data and put a FIN on a 

cluster so as to “fully cover” the training data. By “full coverage” we mean that the interval 

supports of all FINs, involved in the antecedent (IF) parts of fuzzy rules, cover the training 

data. Note that if, as expected in practice, the training data domain equals the testing data 

domain then “full coverage” is important because it guarantees that at least one fuzzy rule will 

be activated for an input. That is why the grSOM algorithm in Fig.8 is named greedy: because 

it expands its fuzzy rule supports so as to cover the training data. 

The greedy grSOM algorithm (Fig.8) employs both algorithm CALFIN and a Minkowski 

metric in FN, nevertheless it does not employ convex combinations of FINs. There follow 

advantages and disadvantages. More specifically, a disadvantage is that the greedy grSOM 

needs to “batch process” the whole training data set in order to compute a new weight value 

∈FijW ′ N. We plan to develop in the future an incremental grSOM algorithm using convex 

combinations of FINs. However, the latter algorithm may leave part of the training data 

outside all fuzzy rule interval supports (for a better understanding consult Fig.5), whereas the 

greedy grSOM guarantees full coverage of the training data domain; the latter is an advantage 

in linguistic FIS applications as explained above. Furthermore note that, on the one hand, the 

crisp SOM computes N-dimensional reference (weight) vectors mi(t) using convex 

combinations in RN; hence KSOM captures, locally, only first-order statistics in the training 

data. On the other hand, the greedy grSOM here computes a distribution of FINs. Based on 

the one-to-one correspondence between FINs and probabilistic distribution functions, it 

follows that the greedy grSOM captures locally all-order statistics in the training data. 

Comparisons of the greedy grSOM with alternative KSOM variants are presented below. 

Initialization of unit weights in the grid is effected by assigning, randomly, training data to 

grid units (Fig.8). The training phase proceeds by assigning an input datum to the winner of 

the competition among the units in the grid, where the criterion for winning is (metric) 

proximity of an input N-tuple of FINs in FN to a grid unit weight W ∈Fij
N, i=1,…,I, j=1,…,J. 

We point out that an input datum in FN may be nontrivial. 

In crisp SOM the winner’s neighbor units are trained less than the winner unit according to 

the shape of the, typically bell-shaped, neighborhood function. The version of greedy grSOM 

presented in Fig.8 employs, for simplicity, a crisp neighborhood; in other words, a unit either 

belongs or does not belong to the winner unit’s neighborhood. Therefore, the greedy grSOM 

here trains the winner unit’s neighbors as much as it does the winner unit itself. 
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Initially the neighborhood size Npq(t) of a winner unit ‘pq’ is chosen large enough to enclose 

about half of the grid. Progressively, after a number of epochs, the neighborhood size of the 

winner unit decreases and, eventually, an input datum is assigned only to the winner unit ‘pq’. 

No learning takes place for greedy grSOM before the end of an epoch, which occurs when all 

the input data have been presented. Then a new value Wij′  is computed (step-4 in Fig.8) for a 

unit weight W ∈Fij
N, i=1,…,I, j=1,…,J from all the input data assigned to grid unit ‘ij’ during 

the current epoch. The terminating condition for the greedy grSOM is a user-defined total 

number Nepochs of epochs. As soon as training completes, labels are assigned to grid nodes. 

Similar to KSOM, the greedy grSOM algorithm cannot guarantee that each unit in the grid 

will be assigned to a category. In fact the experiments below show that some units may stay 

unused. We point out that, apart from SOM variants, other clustering algorithms may result in 

unused units, e.g. the k-means algorithm (Duda, Hart, & Stork, 2001). 

A trained greedy grSOM can be used for testing. In particular, an input datum X is assigned to 

the category whose label Lpq is attached to the nearest grid unit weight Wpq, i.e. Wpq= 

arg d
J,1,

I1,
K
K

=
=
j
i
min

,
1(X,Wij), where d1(.,.) is a Minkowski metric between two N-tuple FINs in FN. 

The greedy grSOM algorithm employs the metric distance function dK(.,.) in the space F of 

FINs, where a FIN in this work emerges from a population of real number samples. There are 

alternative distance functions between either fuzzy numbers or populations of samples 

including 1) the Hausdorf metric dH, and 2) the Kullback-Leibler distance dKL. The former 

distance (dH) is a metric distance typically employed in mathematically oriented publications 

(Körner & Näther, 2002); nevertheless dH may produce non-sensible results in practical 

applications (Kaburlasos, 2004). The latter distance (dKL) is a sensible distance function; 

however dKL is not a metric (Kaburlasos, 2004); this may be a problem for rigorous design. It 

turns out that distance dK is both metric and sensible (Kaburlasos, 2004); therefore here we 

employed dK. Note also that, on the one hand, the KSOM typically uses either the Euclidean 

distance or the city-block distance between N-dimensional points (Kohonen, 1995). On the 

other hand, a grSOM algorithm can use a more general Minkowski metric distance dp(.,.), 

p=1,2,…. In the interest of simplicity the Minkowski metric dp(.,.) for p=1 was used in this 

work. Even restricted in d1(.,.) there is an infinite number of metric distances for the greedy 

grSOM as explained in the following. 
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5.3  Genetic algorithm (GA) optimization 

The greedy grSOM algorithm employs the Minkowski metric d1: FN×FN→R . Chapter 3 has 

shown that the definition of d

+
0

1 is based on the metric dK: F×F→R ; in turn, the definition of 

d

+
0

K is based on metric dh: Mh×Mh→R ; finally, the definition of the latter is based on a strictly 

increasing function f

+
0

h: R→R. An improvement of classification performance for the greedy 

grSOM was pursued here by computing optimally a strictly increasing function in each data 

dimension using a genetic algorithm (GA) as explained in this section. 

Here we avoided the time consuming task of computing a strictly increasing function from a 

mass function; therefore, we considered the following (parametric) strictly increasing 

function in each data dimension in RN: 

fi(x)= 
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where tanh(.) is the ‘hyperbolic tangent’ function, ai,j,bi,j,ci,j∈R, i=1,…,N, j=1,2,3. 

Illustrations regarding the aforementioned functions are provided in the following. 

Fig.9(a) plots the saturated (step) function tanh(x), whereas Fig.9(b) plots function f(x)= 

c1(tanh(x-a1)/b1) + c2(tanh(x-a2)/b2) + c3(tanh(x-a3)/b3)  for selected values of the parameters 

ai, bi, ci, i= 1,2,3. Note that the latter function f(x) is the superposition of three ‘component’ 

saturated functions tanh(.), where the location, scale and height of each component function 

are specified, respectively, by the corresponding parameters ai, bi, and ci, i=1,2,3. The reason 

for using more than one component functions tanh(x) in f(x) above is for introducing “tunable 

flexibility” in applications. In all, a function f(x), i=1,…,N includes 9 parameters ai, bi, ci, i= 

1,2,3, hence a total of 9N parameters are required to define fi(x), i=1,…,N functions in RN. 

Given a classification problem in RN the objective is to calculate optimal estimates for the 

strictly increasing functions fi(x), i=1,…,N. The aforementioned optimization was pursued 

using a genetic algorithm (GA) immediately after training the greedy grSOM. Note that GAs 

is a popular optimization technique in both neural and fuzzy modeling applications (Chun & 

Chang, 2000; Ishigami et al, 1995; Shimojima, Fukuda, & Hasegawa, 1995). An individual 

solution of the GA for the greedy grSOM was represented here using 9N parameters. 

Therefore the chromosome of an individual solution consisted of 9N genes, and each gene 

used 16 bits to encode a single parameter value. In conclusion, a chromosome was 144N bits 

long. The population of the genetic algorithm involved 25 individuals. The genetic algorithm 

employed multipoint crossover and roulette wheel selection for the reproduction process, 

elitism, multipoint mutation, and adaptive crossover-mutation rates. The genetic optimization 

scheme was enhanced using specialized operators such as the Adaptive Search space Range 

(ASER) (Papadakis & Theocharis, 1996), and the microgenetic algorithm (Kazarlis et al, 
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2001). The classification performance on the training data set was used as the fitness value of 

an individual. The evolution terminated when the fitness of the elite individual was not 

improved for 20 generations in a row. 

We now compute the time complexity of the greedy grSOM (Fig. 8). The greedy grSOM 

includes an external loop of Nepochs epochs. In each epoch certain operations are carried out 

on the I×J grid in each one of the N data dimensions. In particular, 1) FINs are computed 

from n data, and 2) the metric dK(.,.) is computed between two FINs. On the one hand, the 

divide-and-conquer algorithm CALFIN has O(nlogn) computational time complexity with 

respect to the number ‘n’ of data to compute a FIN in a data dimension. On the other hand, 

the computation of metric dK(.,.) requires a summation of L terms for computing the integral 

in proposition 7 for height h values from 0 to 1. In conclusion, the computational complexity 

of the greedy grSOM algorithm for training equals O(NepochsIJNn(L+logn)). As soon as 

greedy grSOM training terminates the GA algorithm for optimization is launched. The GA 

carries out a stochastic search and it requires substantial additional time for clearly improving 

classification performance as explained in the experiments section below. 

 

6.  The greedy grSOM in perspective 

 

This section relates the greedy grSOM to various models from the literature. 

 

6.1  Neural models based on lattice theory 

The techniques presented here build on a growing body of work regarding an improvement of 

neural computing models based on lattice theory. Previous work has presented the σ-FLN 

neural network as an extension of Carpenter’s fuzzy version of Grossberg’s adaptive 

resonance theory (ART) to a lattice data domain (Kaburlasos & Petridis, 2000). Several fuzzy 

lattice neurocomputing (FLN) models have been introduced for clustering and classification. 

More specifically the σ-FLN, σ-FLNMAP, dσ-FLN, and FLNtf models have demonstrated a 

capacity to process, either separately or jointly, disparate types of data including vectors of 

numbers, (fuzzy) sets, symbols, linear operators (matrices), hyperspheres, Boolean 

propositions, waveforms, and graphs (Kaburlasos et al, 1999; Kaburlasos & Petridis, 2000, 

2002; Petridis & Kaburlasos, 1998, 2001). 

Apart from the effectiveness of FLN models in disparate data domains, our previous work has 

elevated lattice theory as a tool for analysis and design. For instance, an instrument typically 

employed by a FLN model is an inclusion measure function σ: L×L→[0,1], which specifies a 

fuzzy degree of inclusion of one lattice L element into another one. It has been shown that a 

real positive valuation function v: L→R can define an inclusion measure σ in a lattice 
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(Kaburlasos & Petridis, 2000). In addition a positive valuation introduces a metric distance 

function d: L×L→ , which can be used for extending the applicability of KSOM as 

explained in the following. 

+
0R

 

6.2  Crisp and fuzzy KSOM extensions 

Several authors have proposed KSOM extensions to nonnumeric data including symbol 

strings (Kohonen, 1996; Kohonen & Somervuo, 1998; Somervuo, 2004), qualitative (nominal) 

data (Cottrell, Ibbou, & Letrémy, 2004), and matrices (Seo & Obermayer, 2004) based on 

domain-specific distance functions. Furthermore, it is interesting to point out that various authors 

have sought KSOM extensions using nonEuclidean (Riemannian) metrics (Peltonen, Klami, & 

Kaski, 2004; Ritter, 1999). A motivation for considering lattice extensions of KSOM is that 

lattice theory can supply metric distances based on tunable positive valuation functions. For 

instance the metric dK(.,.), presented above in the set F of fuzzy interval numbers, can be used for 

extending KSOM to a linguistic (fuzzy) data domain. 

Crisp clustering algorithms, including KSOM, cannot cope with ambiguity in applications 

(Krishnapuram & Keller, 1993). Additional problems for KSOM include the lack of sound 

optimization and convergence strategies (Tsao, Bezdek, & Pal, 1994). In response, a number 

of “Kohonen type” fuzzy c-means algorithms have been proposed (Karayiannis & Bezdek, 

1997; Tsao, Bezdek, & Pal, 1994; Pal, Bezdek, & Tsao, 1993). Note that the aforementioned 

fuzzy algorithms process crisp data, more specifically they process vectors of numbers. 

Alternative fuzzy KSOM extensions have been proposed for processing linguistic (fuzzy) data 

using simplified 3-dimensional vector representations for the linguistic data (Mitra & Pal, 

1994, 1996). The latter KSOM extensions can be interpreted as simple fuzzy inference 

systems (FIS) whose rule consequents are category labels. Note that none of the 

aforementioned fuzzy KSOM extensions pursues explicitly a statistical data interpretation. 

Moreover, all the aforementioned extensions employ (implicitly) the constant mass function 

m(x)=1. It turns out that the above algorithms use parametric possibility distributions (i.e. 

fuzzy sets) as devices for introducing tunable nonlinearities in pattern classification problems. 

A different fuzzy extension of KSOM has been reported for implementing a fuzzy inference 

system (FIS) in a function f: RN→R approximation problem (Vuorimaa, 1994). In particular, 

the centers of fuzzy sets are learned using the crisp SOM. Then, fuzzy sets with triangular 

membership functions are inserted and fine-tuned. A grid node defines a fuzzy rule with a 

singleton number consequent. Finally, a weighted average of activated rule outputs produces 

a continuous valued output. The work in Vuorimaa (1994) is the nearest work we are familiar 

with in the literature towards a fuzzy inference systems (FIS) extension of KSOM. However, 

the work in Vuorimaa (1994) considers solely triangular fuzzy membership functions, the 
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inputs to a fuzzy SOM cannot be fuzzy and, finally, the constant mass function m(t)=1 is 

employed implicitly; moreover the importance of structure identification is not recognized. 

There is an inherent relation between fuzzy set theory and lattice theory based on the lattice 

ordering of the fuzzy sets (Zadeh, 1965). Furthermore, there is an inherent relation between 

probability theory and lattice theory based, likewise, on the lattice ordering of events in a 

probability space (Birkhoff, 1967). Hence, lattice theory might be a sound mathematical 

foundation for unifying probability theory and fuzzy set theory. Note that various authors 

have proposed theoretical connections between fuzzy set theory and probability theory 

(Goodman & Nguyen, 2002; Körner & Näther, 2002). Related work in practical applications 

is described in the following. 

 

6.3  Links with probabilistic and statistical models 

A synergy of fuzzy modeling techniques with statistical techniques has been proposed 

towards an optimization of fuzzy model construction in a principled manner (Yen & Wang, 

1998). The latter work retains conventional fuzzy set interpretations, moreover statistical 

information criteria are proposed as effective cost functions in nonlinear function 

approximation problems. In a different context, more specifically in the area of pattern 

recognition, a connection has been shown between fuzzy sets and statistics (Kuncheva, 1996); 

more specifically, a theoretical equivalence was shown between fuzzy systems and two 

nonparametric statistical classifiers from both a functional and a morphological perspective. 

On the other hand, the work here proposes an extension of KSOM for classification, which 

induces a distribution of fuzzy interval numbers (FINs) from the data. Since a FIN may 

represent a local probabilistic distribution function, it is natural to compare grSOM directly 

with various probabilistic mixture models in the following. 

A KSOM extension for clustering and nonlinear dimensionality reduction is described in 

Verbeek (2005) based on mixture densities and greedy expectation-maximization (EM) 

parameter estimation algorithms; the aforementioned term ‘greedy’ refers to an increasing 

number of components in the mixture. A similar algorithm, namely self-organizing mixture 

model (SOMM) applicable as well on discrete and/or continuous data, has been reported 

elsewhere (Verbeek, Vlassis, & Kröse, 2005). Self-organizing behavior by SOMM is obtained 

by constraining (i.e. normalizing) the distribution qn on the mixture components for a data 

point xn. Advantages of SOMM include an optimization of a well-defined objective function, 

and a principled handling of missing data values based on probability theory. However, a 

SOMM does not consider alternative divergence (≡ distance) functions. Furthermore a 

SOMM is applicable solely on crisp data and it cannot cope with linguistic data. 

Another KSOM extension based on mixture models is the generative topographic mapping 

(GTM) (Bishop, Svensén, & Williams, 1998). A comparison of GTM with the 
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abovementioned SOMM is shown in Verbeek, Vlassis, & Kröse (2005). The GTM is an 

extension of the latent (hidden) variable framework to allow nonlinear transformations. The 

operation of GTM is based on a constrained mixture of Gaussians whose parameters can be 

optimized by maximum likelihood using the expectation-maximization (EM) algorithm. The 

GTM provides a principled alternative to KSOM, and overcomes significant limitations of 

KSOM. For instance, the GTM defines explicitly an objective function given by a log 

likelihood; furthermore, convergence to a (local) maximum of the objective function is 

guaranteed by the use of the EM algorithm. An important application of GTM is to data 

visualization. There are substantial differences between a probabilistic mixture model and a 

grSOM model as explained next. 

A mixture model pursues analytically an optimization of a parametric objective function. The 

inspiration for an objective function typically derives from energy functions in physics. 

Nevertheless energy functions cannot accommodate linguistic data such as fuzzy sets and 

conventional intervals. The latter data can handle ambiguity in technological applications. 

Furthermore, a mixture model typically assumes (a priori) parametric probability density 

functions, e.g. Gaussian functions, etc. In the context of this work fuzzy interval numbers 

(FINs) are employed for representing nonparametric probability density functions. Moreover, 

parametric mass functions are employed here for introducing tunable nonlinearities. There is 

another substantial difference between a grSOM model and a mixture model. On the one 

hand, a mixture model seeks optimization analytically using (implicitly) mass function 

m(x)=1 in a data dimension. On the other hand, a grSOM model seeks optimization by genetic 

search looking for a different mass function in a data dimension. The objectives of a mixture 

model typically include dimensionality reduction and visualization, whereas the principal 

objective of a grSOM model is extraction of descriptive decision-making knowledge (fuzzy 

rules) from the training data. Finally, from a rigorous mathematical point of view a grSOM 

model treats the Euclidean space RN differently than a mixture model. More specifically, the 

latter treats RN as a real linear space; whereas a grSOM model treats RN as the Cartesian 

product of N totally-ordered lattices R. Hence a grSOM model can adhere to linguistic 

semantics; the latter is especially sensible when different quantities are involved in different 

data dimensions, e.g. weight, speed, etc. 

 

6.4  Novelties in this work 

Part of the material of this work has been published elsewhere, mainly in Kaburlasos (2004) 

and in Kaburlasos & Papadakis (2004). This work includes significant enhancements as well 

as substantial novelties as summarized in this section. 

The operation of the greedy grSOM is heuristic like Kohonen’s SOM; however, the greedy 

grSOM retains linguistic interpretations. Even though no objective function is employed by 
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the greedy grSOM, nevertheless this work has laid a sound mathematical foundation towards 

further future improvements. For instance, based on convex combinations of FINs, a grSOM 

model could extend the crisp SOM or the k-means algorithm (Duda, Hart, & Stork, 2001) to 

the metric convex set F of FINs. In this context objective functions could be devised 

involving, as well, linguistic data. Note also that the treatment of convexity in F is a novelty 

of this work. 

Previous work has introduced mass functions. The effectiveness of mass functions is 

demonstrated here in practice for the first time. More specifically, mass functions are 

employed here as an instrument for improving classification performance by introducing 

tunable nonlinearities. It is interesting that other authors have proposed using different 

weighting factors λi≥0, i=1,…,n for different input data dimensions in order to improve the 

classification performance of a KSOM variant (Hammer & Villmann, 2002). Using the 

terminology of this work, a weight factor corresponds to mass function mi(t)= λi. Hence, a 

factor λi attaches the same weight of significance to all numbers along a single data 

dimension; whereas, a mass function mi(t) may attach, more flexibly, different weights of 

significance to different numbers along a single data dimension. 

Another major novelty of this work concerns the employment of genetic algorithms (GA) for 

optimizing classification performance. Note that various authors have pursued a GA 

optimization of Self-Organizing Maps. For a fairly recent overview the reader may refer to 

Polani (1999), where a new GA is also proposed for improving a degree of SOM organization 

while preserving topology. Note in addition that the performance of fuzzy control systems can 

be improved genetically by tuning parameterized membership functions as well as input-

output scaling factors (Hoffmann, 2001). The important difference here is that a GA computes 

optimally mass functions for tuning a metric distance between nonparametric fuzzy interval 

numbers (FINs). 

Additional novelties include an improved notation in a unified mathematical presentation, an 

analysis of the complexity of the greedy grSOM algorithm, extensive comparisons with 

related work from the literature, new experiments with improved classification results, and a 

display of linguistic (fuzzy) rules induced from the data as shown in the following section. 

 

7.  Experimental Results 

 

We considered three benchmark classification problems involving two or three classes in a 

problem. The data sets were downloaded from the UCI machine-learning repository (Blake & 

Merz, 1998). In a preprocessing step each data attribute was normalized in the range [0,1] by 

a linear transformation, which mapped the minimum and maximum attribute values, 
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respectively, to the numbers 0 and 1. Computational experiments were carried out with SOM 

variants on a 4×4 grid of units. A SOM variant was trained for Nepochs= 10,000 epochs. 

Ten different random permutations of the data in a class were considered. The first part of the 

data in a random permutation was left out for testing, whereas the remaining data were 

employed for training. Typically two different data partitions were considered: 1) 90% of the 

data for training and 10% for testing, and 2) 66% of the data for training and 34% for testing. 

Care was taken so that all data classes were represented balanced in both the training- and the 

testing data. In conclusion, ten different pairs of training-testing data sets have been available 

for each data partition. 

Training experiments were carried out on the same data sets using, first, the crisp SOM and, 

second, the greedy SOM with mass function m(x)=1. As soon as greedy SOM training 

completed, the training resumed towards an optimization of the mass functions using a 

genetic algorithm (GA). All SOM variants here employed crisp neighborhoods. In every 

experiment the testing data were used only once for a SOM algorithm. 

 

7.1   The FISHER IRIS benchmark 

This is perhaps the best-known data set in the pattern recognition literature. It contains 4-

dimensional vectors that correspond to sepal/petal length and width of flowers in three classes 

including 50 vectors per class. A training data set is not given explicitly. One flower class is 

linearly separable from the other two; the latter are not linearly separable from each other. 

The goal was to predict the correct flower class in the testing data. This problem is 

characterized by low misclassification rates. 

Our results are summarized in Table 1, where for the two data partitions the classification 

accuracies of various SOM models are shown on both the training- and the testing data. More 

specifically, the average accuracies in ten computational learning experiments are shown as 

well as the corresponding standard deviations (stdv); in addition, the corresponding numbers 

of grid units are displayed in Table 1. Fig. 10 shows all the eight fuzzy rules induced by the 

greedy grSOM in one of the ten experiments. Fig. 11 shows the corresponding optimal mass 

functions computed on each of the four data dimensions. A detailed discussion of the results 

is presented below. 

 

7.2   The WINE RECOGNITION benchmark 

The WINE RECOGNITION benchmark data set includes 13-dimensional vectors that 

correspond to various wine constituents whose values are measured chemically. In all, there 

are 178 data vectors partitioned in three wine classes including 59, 71, and 48 data vectors, 

respectively. A training data set is not given explicitly. The goal was to predict the wine class 

in the testing data. 
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Table 2 summarizes the classification results by other algorithms. Results by Regularized 

Discriminant Analysis (RDA), Quadratic Discriminant Analysis (QDA), Linear Discriminant 

Analysis (LDA), and 1-Nearest-Neighbor (1NN) are reported in the UCI repository (Blake & 

Merz, 1998) using the leave-one-out technique. Results by the remaining algorithms in Table 

2 are from Joshi et al (1997) where two-thirds of the data have been used for training and the 

remaining one-third for testing. 

Our experimental results are summarized in Table 3, where for two data partitions the 

classification accuracies of various SOM models as well as the corresponding standard 

deviations (stdv) are shown on both the training- and the testing data; in addition, the 

corresponding numbers of grid units are displayed in Table 3. 

 

7.3  The CLEVELAND HEART DISEASE benchmark 

The CLEVELAND HEART DISEASE benchmark data set, authored by R. Detrano, in its 

functional version contains 14-dimensional vectors, which include both vital signs and heart 

disease attributes. In all, there are 164 and 139 data vectors, respectively, from classes 0 

(absence of heart disease) and 1 (presence of heart disease). There are a few missing data 

attributes, which have been replaced here by the average value of the corresponding attribute. 

A training data set is not given explicitly. The goal was to predict absence/presence of heart 

disease in the testing data. 

Table 4 summarizes the classification results by different algorithms. Results by Logistic 

Regression, Conceptual Clustering (CLASSIT), Discriminant Analysis, Instance Based 

Prediction (both NTgrowth and C4) are reported in the UCI repository (Blake & Merz, 1998). 

Results by the ARTMAP-IC, Fuzzy ARTMAP, and kNN are from Carpenter and Markuzon 

(1998), where all ARTMAP results reflect the participation of ten voters. Results by FLNtf 

are from Kaburlasos & Petridis (2000). Apart from the 10-fold cross-validation of FLNtf, all 

the other algorithms in Table 4 have employed 250 data vectors for training and the remaining 

53 data vectors for training. 

Our experimental results are summarized in Table 5, where for two data partitions the 

classification accuracies of various SOM models as well as the corresponding standard 

deviations (stdv) are shown on both the training- and the testing data; in addition, the 

corresponding numbers of grid units are displayed in Table 5. 

 

7.4  Discussion of the results 

Our ten different experiments in a data partition have demonstrated variability as expected. 

Therefore a test of significance was necessary. For this reason Tables 1, 3, and 5 show as well 

the corresponding standard deviation (stdv) values. In addition, we carried out standard 

“statistical hypothesis testing” as described next. 
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Each data set was processed using three SOM variants: 1) the crisp SOM, 2) the greedy 

grSOM (with m(x)=1), and 3) the GA optimized greedy grSOM. After performing ten 

experiments for a data partition, the algorithms were evaluated pair wise using the one-sided 

“matched pairs” statistical t test with df=9 degrees of freedom. The null hypothesis H0: “the 

two algorithms in a pair give similar results” was tested versus the alternative hypothesis    

Ha: “the second algorithm in a pair improves classification performance”. In each case we 

computed the P-value of the corresponding statistic t= ( x -0)/(s/ n ) for n=10, where x  is 

the sample average of differences in classification accuracy and s is the corresponding 

standard deviation. We worked at 5% level of significance. 

For the IRIS 90%-10% data partition, a comparison of testing data accuracy of the crisp SOM 

(average 93.33%) with the greedy grSOM (average 96.66%) resulted in t=2.23 which implied 

P=0.0261; whereas a testing performance comparison of the crisp SOM (average 93.33%) 

with the GA optimized greedy grSOM (average 98.70%) resulted in t=2.75 which implied 

P=0.0112. Hence the null hypothesis H0 could not be accepted in any of the above statistical 

tests; in other words, a greedy grSOM algorithm appears to improve the testing classification 

accuracy. Nevertheless, a testing performance comparison of the greedy grSOM (average 

96.66%) with the GA optimized greedy grSOM (average 98.70%) resulted in t=1.15 which 

implied P=0.1394. Therefore the null hypothesis H0 could not be rejected; in other words, the 

mass functions do not appear to improve the testing classification accuracy in this case. 

Table 1 shows that training data accuracy sometimes is smaller than the corresponding testing 

data accuracy for a SOM algorithm. It was confirmed that the difference in classification 

accuracy between the training data and the testing data for a SOM algorithm in Table 1 is not 

statistically significant. We believe that the aforementioned difference is due to the very small 

number (15) of data available for testing in the 90%-10% data partition. More specifically, it 

is well known that 2 or 3 data in the IRIS benchmark are difficult to classify correct. Due to 

the very small size of the testing data set, it is most likely that the latter data are included in 

the training data set resulting in an inferior training data classification accuracy. The 

aforementioned differences were reversed in the 66%-34% data partition (see in the lower 

part of Table 1). 

Further statistical testing for the IRIS 90%-10% data partition confirmed that the training data 

accuracy of the greedy grSOM (average 95.55%) versus the crisp SOM (average 92.88%) is 

statistically significant with P=0.0415; moreover the training data accuracy of the GA 

optimized greedy grSOM (average 97.77%) versus the greedy grSOM (average 95.55%) is 

statistically significant with P=0.000131. Hence it appears that the greedy grSOM learns 

better than the crisp SOM; moreover mass functions improve learning further. 
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Regarding the number of units recall that the greedy grSOM and the GA optimized greedy 

grSOM induce the same number of units by construction. A statistical comparison of the 

number of units of the crisp SOM (average 16.0) with the greedy grSOM (average 10.1) 

resulted in P≅0.0; hence, the greedy grSOM engages fewer grid units than the crisp SOM. 

Note that the different numbers of units used in different experiments by the greedy grSOM 

are due to the different weight Wij initializations (see in Fig.8, step-2). 

Similar statistical testing results were obtained for the IRIS 66%-34% data partition. 

Moreover note that a testing performance comparison of the greedy grSOM (average 95.60%) 

with the GA optimized greedy grSOM (average 97.60%) resulted in t=3.35 which implied 

P=0.0042. Therefore the null hypothesis H0 could not be accepted; in other words, the mass 

functions here improve the testing classification accuracy. 

Fig.10 shows eight rules R1,…,R8 induced in one of the ten experiments regarding the IRIS 

90%-10% data partition. The antecedent (IF part) of a rule is the conjunction of four fuzzy 

statements shown (in a line) in four frames, respectively; moreover, the consequent (THEN 

part) of a rule is a class label. Note that one, three, and four rules correspond, respectively, to 

classes 1, 2, and 3. Recall that class 1 is linearly separable from the other two, therefore only 

one rule suffices for class 1; however, more rules are required to learn the nonlinearly 

separable classes 2 and 3. The corresponding mass functions m1(x),…,m4(x) in the four data 

dimensions x1,…,x4 are shown in Fig.11, where a mass function was calculated as the 

derivative of a strictly increasing function in the corresponding data dimension. Fig.11 

indicates that a mass function in a data dimension is (typically) unimodal. Mass function 

m2(x) obtains the most significant values peaking up to over 9 for normalized variable values 

around x≈0.45. Significant values also obtains mass function m3(x) which peaks up to over 4 

for normalized variable values around x≈0.25. The other two mass functions m1(x) and m4(x) 

in this problem are fairly “flat” with smaller peak values. The mass functions in Fig.11 

indicate not only a different significance put on different data dimensions but also a different 

significance put on different real numbers in the same data dimension. 

For the WINE classification problem we recorded similar statistical testing results. In 

particular for the 90%-10% data partition, a testing performance comparison of the greedy 

grSOM (average 98.33%) with the GA optimized greedy grSOM (average 99.40%) resulted in 

t=1.5 which implied P=0.0839. Hence, mass functions do not appear to improve the testing 

classification accuracy in this case due to the small size of the corresponding testing data set 

likewise as with the IRIS problem above. Overall, the greedy grSOM produced better results 

than the crisp SOM; moreover, the GA optimized greedy grSOM further improved 

performance. A statistical comparison of the number of engaged grid units of the crisp SOM 
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(average 16.0) with the greedy grSOM (average 10.0) resulted in P≅0.0; hence, the greedy 

grSOM appears to engage fewer units in the grid than the crisp SOM. 

For the HEART benchmark classification problem we recorded similar statistical testing 

results. More specifically note that for the 90%-10% data partition, a testing performance 

comparison of the crisp SOM (average 78.76%) with both the greedy grSOM (average 

81.99%) and the GA optimized greedy grSOM (average 84.70%) implied P=0.1233 and 

P=0.0703, respectively. Hence, a greedy grSOM variant does not seem to improve the testing 

classification accuracy in this case. Nevertheless, for the 250-53 data partition the testing 

classification accuracy of both greedy grSOM variants was clearly better than the accuracy of 

crisp SOM; moreover, the performance of the GA optimized greedy grSOM was clearly better 

than the corresponding performance of the greedy grSOM. Again, the greedy grSOM engaged 

a smaller number of grid units in this problem than the crisp SOM. 

Overall, our experimental work has produced significant statistical evidence that 1) the GA 

optimized greedy grSOM performs better than the greedy grSOM, and 2) the greedy grSOM 

performs better than the crisp SOM. Moreover, the corresponding standard deviation of either 

greedy grSOM variant was significantly smaller than the standard deviation of the crisp SOM. 

The only substantial difference in the implementations of the crisp SOM and the greedy 

grSOM is that the former computes solely first order statistics (averages), whereas the latter 

computes higher order statistics in the training data. Therefore, it seems reasonable to 

conclude that the employment of higher order statistics in Kohonen’s basic algorithm 

improves classification accuracy. Likewise, it seems reasonable to conclude that the 

employment of mass functions improves the classification accuracy further. 

We have presented robust statistical evidence regarding the performance of three SOM 

variants in three benchmark classification problems in Tables 1, 3, and 5, where we report an 

average of ten experiments. Other algorithms typically report only a single best result in 

Tables 2 or 4. We point out that our best result in a series of ten experiments was never worse 

than the best result reported by another algorithm in a classification problem. 

Additional advantages of a grSOM algorithm include, first, the induction of descriptive 

decision-making knowledge (fuzzy rules) from the training data and, second, the potential to 

cope rigorously with linguistic (fuzzy and/or interval) input data. 

 

7.5  Technical remarks 

Regarding the training time note that the crisp SOM in general took a few minutes to train. 

The greedy grSOM appeared to be eight to ten times slower than the crisp SOM. The need for 

longer training for the greedy grSOM is due to the employment of FINs: first, it takes longer 

to compute a N-dimensional FIN vector than to compute a N-dimensional number vector 

average and, second, it takes longer to compute a distance dK than to compute the L2 



grSOM: GRANULAR SELF-ORGANIZING MAP 28

(Euclidean) distance. The genetic algorithm (GA) required an additional overhead of about 4 

hours per (single) experiment. Despite its longer training, the better classification 

performance of a greedy grSOM variant may justify its employment in certain applications. 

Regarding the speed of convergence it was recorded that after about 5,000 epochs more than 

90% of the input data assigned to a FIN were data from a single class. The aforementioned 

percentage increased with time. 

 

8.  Conclusion 

 

This work has proposed an extension of Kohonen’s SOM, namely greedy grSOM, for 

inducing a distribution of Fuzzy Interval Numbers (FINs) from real number samples. A FIN 

may represent a local probability distribution. The greedy grSOM was described as a fuzzy 

neural network for structure identification in linguistic (fuzzy) system modeling applications 

with emphasis in classification applications. The GA optimized greedy grSOM was also 

introduced for improving data classification based on genetically-tunable nonlinear mass 

functions. Extensive comparisons were shown with related work from the literature. 

Advantages of the proposed classifiers include: good performance demonstrated in three 

benchmark classification problems and induction of descriptive decision-making knowledge 

(fuzzy rules) from the training data. Despite its clearly better performance, a disadvantage of 

the GA optimized greedy grSOM is its long training time. The benchmark experiments in this 

work included solely trivial N-dimensional FIN inputs. Nevertheless, it was shown here that 

an employment of nontrivial N-dimensional FIN inputs is theoretically sound based on lattice 

theory mathematics. 

This work has paved the way towards rigorous extensions of various clustering algorithms, 

e.g. Kohonen’s SOM, k-means, etc., using linear convex combinations of FINs. Knowledge 

acquisition and data mining applications could also be considered. Furthermore, future 

extensions to FIS modeling applications will consider multiple linguistic constraints. 
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Table 1  
FISHER IRIS benchmark: Performance of three SOM variants in 10 different random 
data partitions. 
 

  % classification accuracy on the no. grid units 
  Training data Testing data engaged 

Data Partition Algorithm average stdv average stdv average stdv 
90% for training / crisp SOM 92.88 4.12 93.33 5.44 16.0 0.00
    10% for testing greedy grSOM 

with m(x)=1 
95.55 1.78 96.66 3.51 10.1 1.59

 greedy grSOM 
GA optimized 

97.77 0.92 98.70 2.81 10.1 1.59

66% for training / crisp SOM 93.30 3.65 91.00 6.20 16.0 0.00
    34% for testing greedy grSOM 

with m(x)=1 
95.80 1.54 95.60 2.27   9.0 1.63

 greedy grSOM 
GA optimized 

97.70 1.25 97.60 1.26   9.0 1.63
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Table 2   
Performance of various algorithms on the WINE RECOGNITION benchmark data set for 
classification. The algorithms have been arranged in a decreasing order of success. 
 
 

Algorithm 
 

 

% classification accuracy 
on the testing data 

 

Resilient Backpropagation (Rprop) 
 

100.00  

Regularized Discriminant Analysis (RDA) 100.00  
Quadratic Discriminant Analysis (QDA) 99.40  
Linear Discriminant Analysis(LDA) 98.90  
Learning Vector Quantization( LVQ1) 96.20  
1-Nearest-Neighbor (1NN) 96.10  
C4.5 96.00  
ID3 95.20  
Bprop 95.18  
AutoClass 84.84  
CLUSTER 84.09  
Simpson’s algorithm 82.57  
 
 
 
 
 
 

Table 3  
WINE RECOGNITION benchmark: Performance of three SOM variants in 10 different 
random data partitions. 
 

  % classification accuracy on the no. grid units 
  Training data Testing data engaged 

Data Partition Algorithm average stdv average stdv average stdv 
90% for training / crisp SOM 95.06 1.70 91.10 6.52 16.0 0.00
    10% for testing greedy grSOM 

with m(x)=1 
98.49 0.52 98.33 2.68 10.0 1.15

 greedy grSOM 
GA optimized 

98.99 0.79 99.40 1.76 10.0 1.15

66% for training / crisp SOM 96.35 1.55 95.83 3.26 16.0 0.00
    34% for testing greedy grSOM 

with m(x)=1 
98.81 0.43 97.33 1.61   9.1 2.13

 greedy grSOM 
GA optimized 

99.15 1.06 99.30 0.86   9.1 2.13
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Table 4   
Performance of various algorithms on the CLEVELAND HEART DISEASE benchmark data 
set for classification. The algorithms have been arranged in a decreasing order of success. 
 
 

Algorithm 
 

 

% classification accuracy 
on the testing data 

FLNtf (10-fold cross-validation) 79.34  
Logistic regression 79.00  
Conceptual clustering (CLASSIT) 78.90  
ARTMAP-IC 78.00  
FLNtf (keep-250-in) 77.88 (*) 
Discriminant analysis 77.00  
Instance based prediction (NTgrowth) 77.00  
Instance based prediction (C4) 74.80  
Fuzzy ARTMAP 74.00  
kNN 67.00  
(*) Average for 100 random data partitions 
 
 
 
 
 
 

Table 5  
CLEVELAND HEART DISEASE benchmark: Performance of three SOM variants in 10 
different random data partitions. 
 

  % classification accuracy on the no. grid units 
  Training data Testing data engaged 

Data Partition Algorithm average stdv average stdv average stdv 
90% for training / crisp SOM 78.74 1.78 78.76 10.94 16.0 0.00 
    10% for testing greedy grSOM 

with m(x)=1 
81.49 0.93 81.99   4.21 14.0 1.41 

 greedy grSOM 
GA optimized 

84.29 1.87 84.70 1.72 14.0 1.41 

250 data for training / crisp SOM 79.70 2.85 75.20 5.73 16.0 0.00 
    53 data for testing greedy grSOM 

with m(x)=1 
82.55 2.61 79.90 3.63 14.5 0.97 

 greedy grSOM 
GA optimized 

84.65 1.56 83.20 1.62 14.5 0.97 
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Step-1: Define the dimensions I and J of a two-dimensional grid of I×J units/neurons. Each 

unit can store both a N-tuple weight Wij∈FN, and a label Lij, i=1,…,I, j=1,…,J; the 

latter indicates the category of the unit. 

 

Step-2: Initialize randomly the weight Wij of each unit from the training data set. 

 

 Repeat steps 3 and 4 below for a user-defined integer number Nepochs of epochs. 

 

Step-3: For each training input datum xk∈FN, k=1,…,n do 

 a) Calculate the Minkowski metric distance d1(xk,Wij), i=1,…,I, j=1,…,J. 

 b) Competition among the I×J units in the grid: Winner is the unit ‘pq’ whose 

weight Wpq is the nearest to xk. 

 c) Assign the training input xk equally to both the winner unit ‘pq’ and to all the 

units in the neighborhood Npq(t) of the winner. 

 

Step-4: For each unit ‘ij’, i=1,…,I, j=1,…,J in the grid use algorithm CALFIN to compute 

the new weight value Wij′  based on the data assigned to unit ‘ij’ in Step-3 of the 

current epoch. 

 

Step-5: To each unit ‘ij’, i=1,…,I, j=1,…,J in the grid attach the label of the category, 

which provided the majority of the input training data to unit ‘ij’ during all epochs. 

 

 

 

 

Fig. 8 
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FIGURE LEGENDS 

 

 

Fig. 1 A Mamdani type Fuzzy Inference System (FIS) with N inputs x1,…,xN, one output 

y1, and L fuzzy rules R1,…,RL. The above FIS, including both a fuzzification and a 

defuzzification procedure, is used for implementing a function  f: RN→R. 

 

 

Fig. 2 (a) Symmetric mass function m1(x)= 3x2. 

 (b) Symmetric mass function m2(x)= 2)1(
2

x

x

e
e
−

−

+
. 

 (c) The cubic strictly increasing function f1(x)= x3 is an integral of mass function 

m1(x). 

 (d) The logistic strictly increasing function f2(x)= 1
e1
2

−
+ −x   is an integral of mass 

function m2(x). 

 

 

Fig. 3 Positive FINs Fp, Fq include positive generalized intervals Fp(h), Fq(h), h∈(0,1]; 

negative FINs Fm, Fn include negative generalized intervals Fm(h), Fn(h), h∈(0,1]; 

the trivial FIN Ft includes trivial generalized intervals [-1,-1]h, h∈(0,1]. 

 

 

Fig. 4 (a) FINs E1 and F. 

 (b) FINs E2 and F. 

 (c) The metric distance functions of generalized interval F(h) from either 

generalized interval E1(h) (solid line) or generalized interval E2(h) (dotted 

line) versus h for h∈(0,1]. The area underneath a curve equals the 

corresponding metric distance between two FINs. It turns out to be dK(E1,F) ≈ 

6.18 > 5.81 ≈ dK(E2,F). 

 

 

Fig. 5 The convex combination kA+(1-k)B for various values of k including (a) k= 0.8, (b) 

k= 0.6, (c) k= 0.4, (d) k= 0.2. Notice that the sum FIN ‘kA+(1-k)B’ is progressively a 

combination of both the location and the shape of FINs A and B. 
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Fig. 6 A FIN in this figure was computed by algorithm CALFIN from random numbers 

generated according to the normal (Gaussian) probability density function N(0,1) 

with mean 0 and standard deviation 1. More specifically, 

 (a)  50 random numbers were used to compute FIN G1. 

 (b)  10,000 random numbers were used to compute FIN G2. 

 

 

Fig. 7 A FIN in this figure was computed by algorithm CALFIN from random numbers 

drawn according to the uniform probability density function over the range [-3,3]. 

More specifically, 

 (a)  50 random numbers were used to compute FIN U1. 

 (b)  10,000 random numbers were used to compute FIN U2. 

 

 

Fig. 8 The training phase of the greedy grSOM algorithm for supervised clustering. 

Clusters are located in the data by N-tuples of FINs, i.e. grid unit weights, so as to 

cover the training data domain. Finally, a category label is attached to a grid unit. 
 

 

Fig. 9 (a) The saturated function tanh(x). 

 (b) Function  f(x) = 0.3tanh((x+2)/0.2) +0.2tanh(x/0.1) + 0.5tanh((x-1)/0.4). The 

parameter values of a component function ‘tanh(.)’ determine the location, 

scale, and the height of the corresponding component function. 
 

 

Fig. 10 Eight rules R1…R8 induced from the IRIS benchmark data in a 90%-10% data 

partition. A rule’s antecedent (IF part) is the conjunction of four fuzzy statements 

and a rule’s consequent (THEN part) is a class label. One rule (R1) was induced for 

class 1, which is linearly separable from the other two classes; three and four rules 

were induced, respectively, for the nonlinearly separable classes 2 and 3. 
 

 

Fig. 11 Mass functions (a) m1(x), (b) m2(x), (c) m3(x), and (d) m4(x) computed by a Genetic 

Algorithm (GA) on the four data dimensions x1, x2, x3, and x4, respectively, for the 

IRIS benchmark experiment whose induced rules are shown in Fig.10. 


