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This work substantiates novel perspectives and tools for analysis and design of Fuzzy Inference Systems

(FIS). It is shown rigorously that the cardinality of the set F of fuzzy numbers equals ℵ1, hence a FIS
can implement “in principle” ℵ2 functions, where ℵ2 = 2ℵ1>ℵ1 and ℵ1 is the cardinality of the set R of
real numbers; furthermore a FIS is endowed with a capacity for local generalization. A formulation in

the context of lattice theory introduces a tunable metric distance dK between fuzzy numbers. Implied

advantages include: (1) an alleviation of the curse-of-dimensionality problem, regarding the number of

rules, (2) a capacity to cope rigorously with heterogeneous data including (fuzzy) numbers and intervals,

and (3) a capacity to introduce systematically useful nonlinearities. Extensive evidence from the literature

appears to corroborate the proposed novel perspectives. Computational experiments demonstrate the

utility of the proposed tools. A real-world industrial application is also described.

Keywords: Fuzzy inference system, generalized interval analysis, lattice theory.

1 Introduction

Fuzzy sets have been proposed for processing non-numeric (linguistic) data and, ultimately, for comput-

ing with perceptions (Zadeh 2004). However, even though a fuzzy set can be defined on any universe of

discourse, most often fuzzy sets are defined on the real number universe of discourse R where the name

fuzzy number/interval has come to denote a convex, normal fuzzy set with bounded support (Zimmermann

1991). It turns out that fuzzy numbers are frequently involved in linguistic (fuzzy) rules representing

knowledge in Fuzzy Inference Systems or FIS for short.

Knowledge representation is of fundamental significance in artificial intelligence applications. Sev-

eral authors in different contexts have employed mathematical lattice theory for knowledge representation
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(Ganter and Wille 1999, Sowa 2000). The authors of this work have published widely on a synergistic cross-

fertilization of (mathematical) lattice theory with fuzzy set theory in clustering/classification applications

involving lattice-ordered data (Kaburlasos and Petridis 1997, 2000, Petridis and Kaburlasos 1999, 2001,

2003, Kaburlasos 2004, Kaburlasos and Kehagias 2004, Kaburlasos and Papadakis 2005). It is worth point-

ing out that, even though an explicit connection was shown between mathematical lattices and fuzzy sets

since the introduction of fuzzy set theory (Zadeh 1965), no tools have been established for FIS analysis and

design based on lattice theory. This work engages mathematical lattice theory for enhancing conventional

FIS analysis and design as explained below in this section.

A typical FIS, including both its fuzzification and defuzzification procedures, is a device for approxi-

mating a function f : RN −→ RM in an “optimal” least square error sense (Wang and Mendel 1992, Kosko

1994, Dickerson and Kosko 1996, Xiao-Jun Zeng and Singh 1996, Puyin Liu 2002). Recall that alternative

least square error methods for function approximation include polynomials, spline curves, ARMA models,

statistical regressors, multilayer perceptrons, etc. It is shown in this work that the aforementioned “alter-

native methods” for function approximation, despite their capacity for generalization, can implement in

principle one among a restrictive number of ℵ1 functions, where ℵ1 denotes the cardinality of the set R of
real numbers.

A principal theoretical contribution of this work is in establishing that the cardinality of fuzzy numbers

equals ℵ1. It follows that a general FIS can implement “in principle” ℵ2 = 2ℵ1>ℵ1 functions1; moreover a
(general) FIS is endowed with a capacity for local generalization. In other words, a FIS can implement a far

larger number of functions f : RN −→ RM than any alternative modeling method, while retaining a capacity

for generalization. Furthermore, a tunable metric distance dK(., .) is shown here between fuzzy numbers

based on lattice-ordered generalized intervals. The metric dK(., .) can deal rigorously with heterogeneous

data including (fuzzy) numbers and intervals; moreover it is explained how dK(., .) can potentially alleviate

the curse-of-dimensionality problem regarding the number of rules in a FIS.

Preliminary results of this work have been presented in Kaburlasos and Kehagias (2004). This pa-

per presents significant enhancements including a rigorous mathematical substantiation, useful novel per-

spectives, and convenient geometric interpretations. An industrial modeling application is outlined here,

nevertheless it will be detailed elsewhere (Kaburlasos and Kehagias submitted) for lack of space here.

The layout is as follows. Section 2 gives mathematical preliminaries. Section 3 presents novel set-

theoretic perspectives for Fuzzy Inference Systems (FIS); the main mathematical result is also presented.

Section 4 describes generalized intervals including useful extensions. The capacity of novel techniques

is demonstrated experimentally in section 5. Section 6 concludes by summarizing the contribution of

this work; a real-world industrial application is also described. The Appendices contain the proofs of

mathematical propositions.

2 Mathematical Preliminaries

This section summarizes rigorously useful definitions and propositions to be employed further below.

2.1 Crisp Sets, Fuzzy Sets, Fuzzy Numbers

Recall some well known facts regarding crisp sets.

1Where ℵ2 is the cardinality of the power set of R; see Section 3 for details.
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1. Given a set U (the universe of discourse) the crisp powerset of U is the family of all (crisp) subsets

of U and is denoted by P (U).

2. The set of natural numbers {1, 2, ...} is denoted by N; the set of real numbers (−∞,∞) by R; the set
of real nonnegative numbers [0,∞) by R+0 .

3. The cardinality of a set U , denoted by card(U), is informally defined to be the number of elements U

contains2. Of particular interest in the context of this work are sets with infinite cardinalities. The

following notation will be used

ℵ0 = card (N) , ℵ1 = card (R) = card (P (N)) , ℵ2 = card (P (R)) .

The use of subscripts in ℵ0, ℵ1, ℵ2 is simply a matter of convenience and does not imply that ℵ1 is
the immediate successor of ℵ0 or that ℵ2 is the immediate successor of ℵ1. However, it is well known
that ℵ0 < ℵ1 < ℵ2.

Basic facts about fuzzy sets are presented next (Zimmermann 1991, Nguyen and Walker 1999).

1. Given the universe of discourse set U , a fuzzy (sub)set F of U is a (membership) function F : U →
[0, 1]. The fuzzy powerset of U is the family of all fuzzy subsets of U and is denoted by F (U).

2. A fuzzy relation between elements of a set U is a fuzzy set µ : U ×U → [0, 1], i.e. a fuzzy set of pairs

of U elements.

3. Given a fuzzy set F : U → [0, 1] and a number a ∈ [0, 1], the a-cut of F is the (crisp) set Fa =

{x : F (x) ≥ a}. Given a fuzzy set F : U → [0, 1], the following properties hold regarding a-cuts.

A1 F0 = U .

A2 Take any a, b ∈ [0, 1]. Then: a ≤ b⇒ Fb ⊆ Fa.

A3 Take any set A ⊆ [0, 1] and let b = supA. Then: ∩a∈AFa = Fb.

In particular, fuzzy numbers are defined as follows (Zimmermann 1991).

Definition 2.1 A fuzzy number F is a fuzzy set F : R→ [0, 1], which satisfies the following conditions.

FN1 The a-cut Fa is a closed interval for every a ∈ (0, 1].

FN2 F is normal, i.e. maxx∈R F (x) = 1.

FN3 {x : F (x) > 0} (the support of F ) is a bounded interval.

We will denote the set of all fuzzy numbers by F.

Conditions FN1-FN3 are satisfied when, for instance, F is a triangular, a trapezoidal or a bounded

support bell-shaped function. A popular representation of a fuzzy number is the LR-representation as

described in the following.

2A rigorous definition of cardinality is rather involved; the interested reader can consult (Kamke 1950, Stoll 1979).
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Proposition 2.2 Let F ∈ F. Then there exist real numbers p, q, r, s such that

F (x) =


L (x) for x ∈ (−∞, q)

1 for x ∈ [q, r]
R (x) for x ∈ (r,∞)

, and

1. L (x) is nondecreasing, continuous from the right and L (x) = 0 for x < p;

2. R (x) is nonincreasing, continuous from the left and R (x) = 0 for x > s;

3. the numbers p, q, r, s satisfy p ≤ q ≤ r ≤ s.

Proof. In Zimmermann (1991).

2.2 Lattices

The notion of a partial order is of fundamental importance below. Given a set P , a binary relation ≤
between elements of P is called a partial order if it satisfies the following conditions for all x, y, z ∈ P :

1. Reflexivity : x ≤ x.

2. Antisymmetry: (x ≤ y and y ≤ x) ⇒ x = y.

3. Transitivity : (x ≤ y and y ≤ z) ⇒ x ≤ z.

Note that notation y ≥ x is equivalent to x ≤ y. If ≤ is a partial order on P then (P,≤) is called a
partially ordered set or, equivalently, a poset. A lattice is a poset (L,≤) with the additional property that
any two of its elements have a greatest lower bound (g.l.b.), and a least upper bound (l.u.b.) in L. Given a

lattice (L,≤), and any two elements x, y ∈L, their g.l.b. is called the meet of x and y and denoted by x∧ y;
their l.u.b. is called the join of x and y and denoted by x ∨ y. Lattice elements x and y are comparable

when at least one of the relations x ≤ y , y ≤ x holds; otherwise, elements x and y are incomparable,

symbolically x||y. A lattice without incomparable elements is called totally ordered lattice. For example,
a totally ordered lattice is the set R of real numbers.

Given a poset (lattice) (L,≤) a few additional posets (lattices) can be derived as follows (Birkhoff 1967).

1. Let ≤ be a partial order on a set L. Define the relation ≤∂ as follows: x ≤∂ y ⇔ y ≤ x. Then ≤∂ is
a partial order on L, namely the dual order of ≤. If (L,≤) is a lattice then (L,≤∂) is also a lattice.

2. Let ≤ be a partial order on a set L. Define the relation ≤ on the set L×L as follows: (x, y) ≤ (z, u)⇔
(x ≤ z and y ≤ u). Then ≤ is a partial order on the set L×L. If (L,≤) is a lattice then (L× L,≤) is
also a lattice.

3. Let ≤ be a partial order on a set L. Define the relation v on the set L×L as follows: (x, y) v (z, u)⇔
(x ≥ z and y ≤ u) ⇔ (x ≤∂ z and y ≤ u). Then v is a partial order on the set L×L. If (L,≤) is a
lattice then (L× L,v) is also a lattice.

Recall the concepts of metric distance and positive valuation in the following.

Definition 2.3 A metric distance in a set S is a nonnegative real function d : S × S → R+0 which, for all

x, y, z ∈ S, satisfies:
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D1a d (x, x) = 0.

D1b d (x, y) = 0⇒ x = y.

D2 d (x, y) = d (y, x) .

D3 d (x, y) ≤ d (x, z) + d (z, y) .

If only conditions D1a, D2 and D3 are satisfied, then d is called a pseudometric.

Definition 2.4 A valuation in a lattice (L,≤) is a function v : L→ R which, for all x, y ∈ L, satisfies:

v (x) + v (y) = v(x ∧ y) + v(x ∨ y).

A valuation is called positive if, for all x, y ∈ L

x < y ⇒ v(x) < v(y).

Proposition 2.5 Let (L,≤) be a lattice and v be a positive valuation; then

d (x, y) = v (x ∨ y)− v (x ∧ y)

is a metric distance.

3 Set Theoretic Perspectives for Fuzzy Inference Systems

This section, first, summarizes general principles of Fuzzy Inference Systems (FIS), second, it presents the

main mathematical result of this work and, third, it introduces some novel perspectives.

A FIS includes a knowledge base of fuzzy rules. The antecedent (IF part) of a rule is typically a

conjunction of N fuzzy statements involving N fuzzy sets; moreover the consequent (THEN part) of a rule

will be (in a Mamdani type FIS) a fuzzy statement (Mamdani and Assilian 1975) or (in a Sugeno type

FIS) an algebraic expression (Tagaki and Sugeno 1985). The fuzzy sets involved in the fuzzy rules of a

FIS are typically fuzzy numbers, i.e. convex, normal fuzzy sets with bounded support defined on the real

number universe of discourse R.

An input vector x ∈ RN to a FIS applies in parallel to the rules in a FIS’ knowledge base by a fuzzification
procedure. An inference mechanism produces the consequents of all activated rules, then the partial results

are combined and, finally, a single real number (vector) is produced by a defuzzification procedure. Hence,

a FIS is practically used as a tool for implementing a function f : RN −→ RM , where (1) N and M are

integers, and (2) function f is induced from n pairs (x1, y1), (x2, y2), . . . , (xn, yn) of training data vectors.

The design of a FIS boils down to an estimation of the parameters involved in a FIS so as to minimize the

least squares error (LSE) function LSE=
pPn

i=1 ||f(xi)− yi||2, (Xiao-Jun Zeng and Singh 1997, 2003).
In the aforementioned sense a FIS may be regarded as a tool for optimal function estimation; moreover, a

FIS retains a linguistic interpretation.

It is widely recognized that FISs can give better results than alternative function approximation methods

in applications and, usually, a fuzzy logic explanation is sought. This work proposes, in addition, a set-

theoretic explanation (Kaburlasos 2002, Kaburlasos and Kehagias 2004) by seeking an answer to the
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following question: How many fuzzy numbers are there? Or, in other words, what is the cardinality

(card(F)) of the set F of fuzzy numbers? It follows the main mathematical result of this work.

Proposition 3.1 It holds card (F) = ℵ1, where ℵ1 is the cardinality of the set R of real numbers.

Proof. See in Appendix B.
The above proposition claims the non-obvious result that there are as many fuzzy numbers as there

are real numbers. Proposition 3.1 leads to novel perspectives regarding the capacity of FIS for function

approximation as explained in the following.

In the first place it is interesting to calculate the cardinality of the set F of all functions f : RN −→ RM .

Using standard cardinal arithmetic (Stoll 1979) it follows that card(F) = ℵℵ11 = (2ℵ0)ℵ1 = 2ℵ1 = ℵ2 > ℵ1.
In this sense ℵ2 is the largest possible cardinality for a family of models f : RN → RM . Unfortunately a

general function f0 in F is practically useless because it lacks a capacity for generalization. More specifically,
knowledge of a function f0 values f0(x1), ...f0(xn) at a number of points x1, ..., xn cannot imply the value

of function f0 at a different point xn+1 6= xi, i = 1, . . . , n.

Consider now a parametric family of models, e.g. polynomials, ARMA models, statistical regressors,

radial basis function (RBF) networks, multilayer perceptrons, etc. Any of the aforementioned families is

characterized by a capacity for generalization. Due to the finite number p of parameters involved, the

cardinality of any of the aforementioned families of models equals ℵp1 = (2ℵ0)p = 2ℵo = ℵ1 (Kaburlasos
2002).

It might be thought that ℵ1 is an adequately large number of models to choose a “good” model from.
Unfortunately the latter is not the case. Consider, for instance, the family of polynomials which includes

ℵ1 models. It is well known that a polynomial may not approximate usefully a set (x1, y1), ..., (xn, yn) of
training data points due to “overfitting”; hence a polynomial may not be useful for generalization. In the

latter case a different family of models may be sought, e.g. an ARMA model, a multi-layer perceptron,

etc. It appears that there is no “universally optimal” family of models. In the aforementioned sense the

cardinality ℵ1, of a family of models, is inherently restrictive. It turns out that the family of FIS models
combines a cardinality of ℵ2 with a capacity for (local) generalization as explained in the following.
It has been shown by proposition 3.1 that the cardinality of the set F of fuzzy numbers equals card (F) =

ℵ1. A Mamdani type FIS can be regarded as a functionm : FN −→ FM . Using standard cardinal arithmetic

(Stoll 1979) it follows that the cardinality of the set M of Mamdani type FIS equals card (M) = ℵℵ11 = ℵ2 >
ℵ1 — Recall that ℵ2 also equals the cardinality of the set of functions f : RN → RM ; hence there exists a

one-one correspondence between Mamdani type FIS models and real functions f : RN → RM . Likewise, a

Sugeno type FIS can be regarded as a function s : FN −→ Pp, where Pp is a family of parametric models
(e.g. polynomial models) with p parameters. Therefore it follows that the cardinality of the set S of Sugeno

type FIS also equals card (S) = ℵℵ11 = ℵ2. In conclusion, Mamdani- type FIS can implement, in principle,
ℵ2 functions; the same is true of Sugeno-type FIS.
It has been explained above that a general function f : RN → RM lacks a capacity for generalization.

Fortunately this is not the case for a FIS of Mamdani- (or Sugeno-) type due to the non-trivial (interval)

support of the fuzzy numbers involved in a FIS’ fuzzy rule base. More specifically an input vector x =

(x1, . . . , xn), within a fuzzy rule’s interval of support, activates the corresponding rule; there follows a FIS’

capacity for (local) generalization. In conclusion the family of FIS models combines “in principle” the

cardinality ℵ2 with a capacity for generalization in function f : RN → RM approximation problems.
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4 Generalized Intervals and Extensions

While a fuzzy number is usually represented in terms of a membership function F (x), it is well known

that an alternative (and equivalent) representation of F (x) can be given in terms of a family of a-cuts

{Fa}a∈(0,1], where Fa = {x : F (x) ≥ a}. Note that several practical advantages have been shown in fuzzy
inference based on a-cuts (Uehara and Fujise 1993). It turns out that Fa is a closed interval for every value

a ∈ (0, 1]; hence a FIS is a mapping whose domain consists of families of closed intervals.
From a computational aspect there is a certain difference between the aforementioned two represen-

tations. In particular, in the first case one operates with numerical representations of functions, whereas

in the second case one operates with numerical representations of families of closed intervals. Is it pos-

sible to enhance the advantages of the interval representations by operating with a wider class of sets?

There is evidence that, by an appropriate generalization of the concept of interval, this is indeed the case.

Hence, this section studies generalized intervals as well as useful extensions. Note that generalized intervals

have been introduced elsewhere (Kaburlasos 2002, Petridis and Kaburlasos 2003, Kaburlasos 2004). This

work introduces useful enhancements including: an improved mathematical notation, a correspondence

with fuzzy set a-cuts, rigorous proofs of novel results and, finally, the introduction of instrumental mass

functions. Positive generalized intervals are defined in the first place.

Definition 4.1 A positive generalized interval of height h is a mapping mh
x1,x2 : R → {0, h} (where

x1 ≤ x2 and h ∈ (0, 1]) defined as follows

mh
x1,x2 (x) =

(
h when x1 ≤ x ≤ x2

0 otherwise.

The family of all positive generalized intervals of height h will be denoted by Mh
+. For convenience of

notation the abovementioned mapping mh
x1,x2 is denoted by [x1, x2]

h, where x1 ≤ x2.

Positive generalized intervals are related to fuzzy numbers. More precisely, given a fuzzy number, the

family of its a-cuts corresponds to a family of positive generalized intervals as shown in the following

proposition (the proof is omitted, since it is immediate).

Proposition 4.2 Take some fuzzy number F ∈ F and denote, for every a ∈ (0, 1], the indicator function
of its a-cut Fa by eFa. Then, for a ∈ (0, 1], the function a eFa is a positive generalized interval of height a.
Negative generalized intervals are defined in the following.

Definition 4.3 A negative generalized interval of height h is a mapping mh
x1,x2 : R → {0,−h} (where

x1 > x2 and h ∈ (0, 1]) defined as follows

mh
x1,x2 (x) =

(
−h x2 ≤ x ≤ x1

0 otherwise.

The family of all negative generalized intervals of height h will be denoted by Mh−. For convenience of
notation the abovementioned mapping mh

x1,x2 is denoted by [x1, x2]
h, where x1 > x2.

The rationale for introducing negative generalized intervals is the following. It is a well known fact that

conventional intervals of real numbers form a mathematical lattice. In this lattice the infimum of two non-

intersecting intervals is the empty interval. The latter is rather restrictive in practical applications due to
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the absence of a positive valuation function. Hence, a lattice of intervals was sought where non-intersecting

intervals have a nonempty infimum furthermore a positive valuation function exists. As will be seen in the

sequel, negative generalized intervals serve this purpose well with rewarding results.

Notation 4.4 The family of all generalized intervals of height h will be denoted by Mh = Mh
+ ∪Mh

−.

Notation 4.5 The family of all positive generalized intervals (of any height) will be denoted by M+ =

∪h∈(0,1]Mh
+; likewise, the family of all negative generalized intervals will be denoted by M− = ∪h∈(0,1]Mh−;

in conclusion, the family of all generalized intervals will be denoted by M = ∪h∈(0,1]Mh = M+ ∪M−.

Our interest is only in generalized intervals of height h ∈ (0, 1], because the latter intervals may emerge
from the a-cuts of fuzzy numbers. Now, for every h ∈ (0, 1], Mh is equipped with an ordering relation ¹.

Definition 4.6 Given h ∈ (0, 1], an ordering relation ¹ is defined on Mh ×Mh as follows:

if [a, b]h ∈ Mh
+, [c, d]

h ∈ Mh
+ then: [a, b]h ¹ [c, d]h ⇔ [a, b] ⊆ [c, d]

if [a, b]h ∈ Mh−, [c, d]h ∈ Mh− then: [a, b]h ¹ [c, d]h ⇔ [d, c] ⊆ [b, a]
if [a, b]h ∈ Mh−, [c, d]h ∈ Mh

+ then: [a, b]h ¹ [c, d]h ⇔ [b, a] ∩ [c, d] 6= ∅.

In all other cases [a, b]h and [c, d]h are incomparable, symbolically [a, b]h||[c, d]h.

Proposition 4.7
¡
Mh,¹¢ is a lattice. Let g and f denote the lattice join and meet, respectively; then

[a, b]h g [c, d]h = [a ∧ c, b ∨ d]h

[a, b]h f [c, d]h = [a ∨ c, b ∧ d]h

where a ∧ c = min (a, c) and a ∨ c = max (a, c).

Proof. See in Appendix B.
The proof of proposition 4.7 establishes that lattices (R× R,≤∂ × ≤) and ¡Mh,¹¢ are isomorphic3. The

isomorphism between lattices
¡
Mh,¹¢ and (R× R,≤∂ × ≤) will be taken advantage of below as follows:

First, lattice
¡
Mh,¹¢ will be used for providing convenient geometric interpretations on the plane and,

second, lattice (R× R,≤∂ × ≤) will be used in algebraic computations.
The next proposition shows how a strictly increasing function ultimately implies a metric in

¡
Mh,¹¢.

Proposition 4.8 Let fh : R → R be a strictly increasing function (fh is called: the underlying positive

valuation function). Then the function vh : M
h → R given by

vh([a, b]
h) = fh(b)− fh(a).

is a positive valuation in lattice
¡
Mh,¹¢. It follows that the function dh : M

h ×Mh → R+0 given by

dh([a, b]
h, [c, d]h) = [fh(a ∨ c)− fh(a ∧ c)] + [fh(b ∨ d)− fh(b ∧ d)]

is a metric distance in lattice
¡
Mh,¹¢.

3Two partially ordered sets (P,≤) and (Q,≤) are called isomorphic, symbolically (P,≤) ∼= (Q,≤), if there exists a mapping
ψ : P → Q such that both ‘x ≤ y in P ⇔ ψ(x) ≤ ψ(y) in Q’ and ‘ψ is onto Q’.
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Proof. See in Appendix B.
Note that the strictly increasing function fh above was named underlying positive valuation because fh

is a positive valuation in the totally ordered lattice R of real numbers.

A very large number of metric distances can be defined in the above manner. Let Dh denote the family

of all metrics in Mh. Consider the following result.

Proposition 4.9 card(Dh) ≥ ℵ1.

Proof. See in Appendix B.
An underlying positive valuation fh can be constructed from an integrable mass function mh : R→ R+0

using the formula

fh(x) =

Z x

0

mh(t)dt.

Note that the above integral is positive (negative) for x > 0 (x < 0). One may regard a mass func-

tion mh (x) as an instrument for attaching “a weight of significance” to a real number x. Various mass

functions can be employed in applications. Typical FIS applications in the literature employ solely (and

implicitly) mass function mh(x) = 1. This work has shown analytically how alternative mass functions

can be employed. For example the mass function mh(x) = h implies (all other things being equal) that

a proportionally larger value of vh(.) is assigned to a generalized interval of a larger height; in the lat-

ter case the corresponding metric distance between two generalized intervals [a, b]h and [c, d]h is given by

dh([a, b]
h, [c, d]h) = h(|a − c| + |b − d|). Alternative mass functions include probability density functions

(pdfs), etc. as demonstrated below.

Based on a metric distance dh(., .) in Mh there follows a metric distance dK(., .) in the set F of fuzzy

numbers given by dK(F1, F2) =
R 1
0
dh(F1(h), F2(h))dh, where F1(h) and F2(h) are positive intervals of

height h corresponding to fuzzy numbers F1 and F2, respectively (Kaburlasos 2004). Recall that the

aforementioned definition of dK is based on metric dh between generalized intervals, where the metric dh
requires the employment of both positive and negative generalized intervals; hence, negative generalized

intervals are instrumental for defining dK .

The set F of fuzzy numbers can be easily extended so as to include both intervals and real numbers.

More specifically, a conventional interval [a, b], a ≤ b can be represented as
[

h∈(0,1]
{[a, b]h}, whereas a single

real number x can be represented, in particular, as
[

h∈(0,1]
{[x, x]h}. An element of the extended set (F∗)

is called Fuzzy Interval Number, of FIN for short (Kaburlasos 2004). The latter set may accommodate

jointly heterogeneous fuzzy data including real numbers, intervals, and fuzzy numbers (Pedrycz et al. 1998,

Paul and Kumar 2002).

The above results can enhance conventional FIS analysis and design by carrying out FIS fuzzification in

F∗ based on metric distance dK(., .) using the formula µF (H) = 1/(1+dK(F,H)) (Krishnapuram and Keller
1993). Hence, a “metric FIS design” can be proposed as outlined in Kaburlasos and Kehagias (2004) and

will be detailed elsewhere (Kaburlasos and Kehagias submitted). Some advantages of the metric distance

dK(., .) are demonstrated experimentally in the following.
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5 Experiments

First, the metric distances d1([2, 2]1, [5, 5]1) and d1([−6,−5]1, [−1, 1]1) are computed between (positive)
generalized intervals for the four choices of mass functions shown in the following table:

Figure 1(a): m1(x) = 1.

Figure 1(b): m2(x) =
1

σ
√
2π
e−

(x−µ)2
2σ2 (with µ = −1 and σ = 1).

Figure 1(c): m3(x) = 2e
−(x−1)/(1 + e−(x−1))2.

Figure 1(d): m4 (x) = 0.01x
4 + 0.02x3 − 0.41x2 − 0.42x+ 4.44.

The corresponding positive valuation functions, given by fi(x) =
R x
0
mi(t)dt, i = 1, . . . , 4, are shown in

figures 2(a), 2(b), 2(c) and 2(d), respectively.

Using the formula

dh([a, b]
h, [c, d]h) = [fh(a ∨ c)− fh(a ∧ c)] + [fh(b ∨ d)− fh(b ∧ d)]

the following metric distances are computed:

Figure 2(a): d1([2, 2]
1, [5, 5]1) = 2 · (5− 2) = 6

d1([−6,−5]1, [−1, 1]1) = (−1− (−6)) + (1− (−5)) = 11.
Figure 2(b): d1([2, 2]

1, [5, 5]1) ≈ 2 · (0.1587− 0.1573) = 0.0028
d1([−6,−5]1, [−1, 1]1) ≈ (−0.3414− (−0.8413)) + (0.1359− (−0.8413)) = 1.4771.

Figure 2(c): d1([2, 2]
1, [5, 5]1) ≈ 2 · (1.4260− 0.9239) = 1.0042

d1([−6,−5]1, [−1, 1]1) ≈ (−0.2989− (−0.5361)) + (0.4621− (−0.5329)) = 1.2322.
Figure 2(d): d1([2, 2]

1, [5, 5]1) ≈ 2 · (9.2491− 7.0851) = 4.3280
d1([−6,−5]1, [−1, 1]1) ≈ (−4.5091− (−13.7585)) + (4.0967− (−13.4909)) = 26.8370.

Hence, different mass functions and, subsequently, different positive valuation functions may yield

different distances between “fixed” intervals. We remark that the underlying positive valuation function in

figure 2(a) is the classic (Lebesque) measure in R. Furthermore, the underlying positive valuation in figure

2(b) was meant to demonstrate the employment of a probability distribution function as an underlying

positive valuation. In particular, note that since the mass function in figure 1(b) is a normal (Gaussian)

probability density function, with expected value µ = −1 and standard deviation σ = 1, it follows that

the implied positive valuation in figure 2(b) is a normal cumulative distribution function; the latter is an

example of a saturated positive valuation function. Another saturated positive valuation function is shown

in figure 2(c), that is the logistic (sigmoid) function f1(x) =
2

1+e−(x−1) − 1. Recall that sigmoids are often
employed as activation functions in the neurons of neural networks. Finally, figure 2(d) demonstrates the

use of an unbounded, non-linear (polynomial) underlying positive valuation.

[Insert figure 1 about here]

[Insert figure 2 about here]

We next compute the metric distance dK between fuzzy numbers. Consider the three fuzzy numbers

F1, F2, and E, with piecewise linear membership functions, shown in figure 3(a). Note that the left sides

of F1 (solid line) and F2 (dashed line) coincide, nevertheless the corresponding right sides are clearly

different; both fuzzy numbers F1 and F2 attain their unique maximum value at x = 1. Moreover fuzzy
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number E has an isosceles triangular membership function centered at x = 4. In figure 3(a) the membership

functions of fuzzy numbers F1 and F2 are denoted explicitly by f1(x) and f2(x), respectively.

Two different mass functions are shown, respectively, in figures 3(b) and 3(c). On the one hand, the mass

functionmh(t) = h (shown in figure 3(b) for h = 1) assumes that all the real numbers are equally important;

the corresponding positive valuation function is given by fh(x) = hx. On the other hand, the mass

function mh(t) = 4he
−7(t−1.5)/(1 + e−7(t−1.5))2 (shown in figure 3(c) for h = 1) emphasizes symmetrically

the numbers around t = 1.5; the corresponding positive valuation function, namely logistic function (in

statistics) or sigmoid function (in neural computing), is given by fh(x) = (4h/7)/(1 + e−7(x−1.5)).

[Insert figure 3 about here]

Figure 4 displays the metric distances dK(F1(h), E(h)) and dK(F2(h), E(h)) in solid and dashed lines,

respectively. In particular the mass function mh(t) = h (figure 3(b)) has been employed for computing the

curves shown in figure 4(a), whereas the mass function mh(t) = 4he
−7(t−1.5)/(1+ e−7(t−1.5))2 (figure 3(c))

has been employed for computing the curves shown in figure 4(b). From figure 4(a) it follows dK(F1, E) ≈
3.0 > 2.9754 ≈ dK(F2, E), whereas from figure 4(b) it follows dK(F1, E) ≈ 0.3587 < 0.3811 ≈ dK(F2, E).

[Insert figure 4 about here]

The example above was meant to demonstrate that a mass function can be used as an instrument for

tuning, non-linearly, the distance between two fuzzy numbers. The above example has also demonstrated

that it is not necessary to cover a FIS input data domain with (fuzzy) rules because a rule can be activated,

even when the input data fall outside all fuzzy rule supports, using a fuzzy activation function such as

µF (H) = 1/(1 + dK(F,H)). The latter potentially implies an alleviation of the curse-of-dimensionality

problem regarding the number of rules in a FIS.

6 Conclusion

The thrust of this work has been in introducing sound tools and novel perspectives for enhanced Fuzzy

Inference System (FIS) analysis and design. Using a combination of analytic- and set-theoretic results

it was established a theoretical ℵ2 bound capacity of FISs to implement real functions f : RN −→ RM ;

furthermore a general FIS has a capacity for (local) generalization. Based on generalized interval analysis,

a tunable metric distance dK was presented between fuzzy numbers; more specifically, an underlying mass

function can be used for “tuning” by attaching a weight of significance to individual real numbers.

There is evidence that fuzzy numbers can produce better results than real numbers in classification

problems (Petridis and Kaburlasos 2003, Kaburlasos and Papadakis 2005); in particular, improvements

have been reported based on an optimal estimation of the underlying mass functions (Kaburlasos and

Papadakis 2005). Furthermore, the proposed tools could be employed elsewhere. For instance, metric

dK(., .) could be employed for calculating a metric distance between type-2 fuzzy sets (Karnik et al. 1999)

by the calculation of an additional integral. Further applications could be in other fuzzy classifiers (Ishibuchi

et al. 1999) as well as in various decision support systems (Cassaigne and Singh 2001). Automatic control

(Passino and Yurkovich 1998) is also a promising domain for application of the novel tools presented here.

A real-world application is described next regarding system modeling for industrial quality control.

The industrial production of nitrogenous fertilizers proceeds as follows. Highly concentrated hot Am-

monium Nitrate (AN) melt is sprayed from a spraying nozzle manifold to a rotating pan granulator mill.
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The fertilizer end-product consists of small fertilizer granules each having size in the range of a few mil-

limeters. Control of granule size is important for maintaining high fertilizer quality and is obtained by

tuning the values of several operating parameters/variables including: AN melt flow, AN melt pressure,

pan speed/inclination, volume of recycled fertilizer, nozzle location, etc. Optimal parameter values are

constantly sought, especially after switching production from one fertilizer type to a different one; various

disturbances during the industrial production may also call for additional tuning.

Tuning is currently effected in the industry by trial-and-error; a dependable open loop model of the

pan granulator as well as a feedback automatic control mechanism are desirable. A FIS (open loop)

model of the average diameter d(x) of produced fertilizer granules has been developed, where x is a N -

dimensional vector of “important” pan granulator operating parameters. Using a recent “variable selection

method” (Papadakis et al. 2005) the most important variables have been selected, furthermore a FIS

classifier model was developed for categories: small, medium-small, medium-large, and large. The classifier

gave a 97% percentage of correct classification of granule diameter; furthermore, descriptive decision-

making knowledge (fuzzy rules) was induced from the training data. The aforementioned performance was

highly satisfactory for industrial production purposes and much better than the performance of competing

classification methods as it will be detailed in a companion paper (Kaburlasos and Kehagias submitted).
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A Appendix: The cardinality of nondecreasing functions

In this Appendix the following result is proven (it is stated more formally in Proposition A.6 below):

“there are uncountably many nondecreasing functions from [a, b] to [c, d] ”.

This result will be used in the next section to prove that there are uncountably many fuzzy numbers.

Before proving this basic result some preliminaries are necessary.

A number of facts will be used about cardinal numbers (cardinalities) and their algebra. For proofs see

in Kamke (1950) and Stoll (1979).

As already mentioned, the cardinality of the set of natural numbers N={1, 2, ...} is ℵ0 (aleph-zero).
The cardinality of the set of all subsets of {1, 2, ...} is ℵ1 = 2ℵ0 . Rational numbers will be denoted by Q;
given any interval [a, b] ⊆ R, the rational numbers in [a, b] will be denoted by Qa,b. It holds card (Q)=
card (Qa,b)= ℵ0. Furthermore, card ([a, b]) = card (R) = ℵ1. A set is called countable if its cardinality is
at most ℵ0 (it can also be finite); it is called uncountable if its cardinality is ℵ1 or higher.
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Functions f : [a, b]→ [c, d] are examined next, where [a, b] and [c, d] are bounded closed intervals of real

numbers. Denote

1. the set of all functions from [a, b] to [c, d] by Fc,d
a,b ;

2. the set of all nondecreasing functions from [a, b] to [c, d] by Ic,da,b ;

3. the set of all continuous functions from [a, b] to [c, d] by Cc,da,b ;

4. the set of all functions from [a, b] to [c, d] which are continuous except possibly at a set X ⊆ [a, b] by
XCc,da,b;

5. the set of all functions from [a, b] to [c, d] which have at most a countable number of discontinuities

by eCc,da,b .
Let a, b, c, d ∈ R be fixed. Here are some useful facts.

Lemma A.1 Every nondecreasing function f ∈ Ic,da,b can have at most a countable number of discontinu-
ities.

Proof. Take some f ∈ Ic,da,b and denote the set of the points where it is discontinuous by X. Define for
n = 1, 2, ... the sets

An =

½
x :

1

n+ 1
≤ f

¡
x+
¢− f

¡
x−
¢
<
1

n

¾
Bn =

©
x : n ≤ f

¡
x+
¢− f

¡
x−
¢
< n+ 1

ª
.

Clearly

X = ∪∞n=1 (An ∪ Bn) .

Now, for every n the cardinality of An is finite (otherwise it would be f (b) − f (a) = ∞) and hence
card (An) < ℵ0. Similarly card (Bn) < ℵ0. Hence

card (X) =
∞X
n=1

(An ∪ Bn) ≤ ℵ0ℵ0 = ℵ0

(the proof of ℵ0ℵ0 = ℵ0 can be found in Stoll (1979)) and this completes the proof.

Lemma A.2 Take any countable set X = {x1, x2, ...} ⊆ [a, b] and any function f ∈X Cc,da,b. Then f is

specified by its values on Qa,b ∪X.

Proof. Choose any x ∈ [a, b]; there are two possibilities.

1. Suppose that x ∈ Qa,b ∪X, then the value f(x) is known.

2. Suppose that x ∈ [a, b]\ (Qa,b ∪X). Since Qa,b ∪X contains all the rationals in [a, b] and these form

a dense subset of [a, b], there is a sequence z1, z2, ... such that: (a) {z1, z2, ...} ⊆ Qa,b ∪X and (b)

limn→∞ zn = x. And, since f is continuous in [a, b]\ (Qa,b ∪X) ⊆ [a, b]\X, it follows that f(x)=
limn→∞ f(zn), i.e. the value f(x) is determined by the values of f on Qa,b ∪X.
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Hence, for every x ∈ [a, b] the value f (x) is determined by the values of f on Qa,b ∪X and the proof is

complete.

Lemma A.3 Take any countable set X = {x1, x2, ...} ⊆ [a, b]. Then card (Qa,b ∪X) = ℵ0.

Proof. We have
Qa,b ⊆ Qa,b ∪X

hence

ℵ0 = card (Qa,b) ≤ card (Qa,b ∪X) ≤ card (Qa,b) + card (X) = ℵ0 + ℵ0 = ℵ0
and the proof is complete.

The next Lemma says that the number of functions which are continuous everywhere except (possibly)

at the points of a specified, countable set X is ℵ1.

Lemma A.4 Take any countable set X = {x1, x2, ...} ⊆ [a, b]. Then card
³
XCc,da,b

´
= ℵ1.

Proof. (i) According to Lemma A.2, every function f ∈X Cc,da,b is specified by its values on Qa,b ∪ X.

For each of these values some element of [c, d] can be chosen, i.e. one of ℵ1 numbers. There may be further
restrictions in the choice of some of these values, but the total number of choices for the function values

cannot be more than

ℵ1 × ℵ1 × ...× ℵ1| {z }
ℵ0 times

= ℵℵ01 =
¡
2ℵ0
¢ℵ0

= 2ℵ0·ℵ0 = 2ℵ0 = ℵ1 (1)

(in (1) some standard facts from the algebra of cardinals have been used, see in Stoll (1979)) which shows

that

card
³
XCc,da,b

´
≤ ℵ1. (2)

(ii) On the other hand, XCc,da,b contains all the constant functions which form a set of cardinality ℵ1 (since
card ([c, d]) = ℵ1). Hence

ℵ1 ≤ card
³
XCc,da,b

´
(3)

(iii) From (2) and (3) it follows card(C[a,b]\X) = ℵ1, and the proof is complete.
The next Lemma says that the number of functions which have (at most) a countable number of

discontinuities is ℵ1.

Lemma A.5 card
³eCc,da,b´ = ℵ1.

Proof. (i) We have eCc,da,b = ∪X⊆[a,b],X countable

³
XCc,da,b

´
.

Hence

card
³eCc,da,b´ ≤ X

X⊆[a,b],X countable

card
³
XCc,da,b

´
=

X
X⊆[a,b],X countable

ℵ1 = ℵ1ℵ1 = ℵ1 (4)

where the following facts have been used: (i) the number of all countable subsets of [a, b] is ℵ1 (i.e. that
ℵℵ01 = ℵ1) and (ii) ℵ1ℵ1 = ℵ1. The proofs of both these facts can be found in Stoll (1979).
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(ii) On the other hand, the set of constant functions f(x) = y (with y ∈ [c, d]) is a subset of eCc,da,b and,
clearly, there are ℵ1 such functions. Hence

ℵ1 ≤ card
³eCc,da,b´ . (5)

(iii) From (4) and (5) it follows card
³eCc,da,b´ = ℵ1 and the proof is complete.

The main result can now be proved.

Proposition A.6 card(Ic,da,b) = ℵ1.

Proof. (i) Since every nondecreasing function can have at most a countable number of discontinuities
(Lemma A.1) it follows

Ic,da,b ⊆ eCc,da,b ⇒ card(Ic,da,b) ≤ card(eCc,da,b) = ℵ1. (6)

(ii) On the other hand, the set of constant functions f(x) = y is a subset of Ic,da,b and, as already mentioned,
there are ℵ1 such functions. Hence

ℵ1 ≤ card(Ic,da,b). (7)

(iii) From (6) and (7) it follows card
³
Ic,da,b

´
= ℵ1 and the proof is complete.

B Appendix: Additional proofs

This Appendix shows the proofs of Propositions 3.1, 4.7, 4.8, and 4.9.

Proof of Proposition 3.1 It is shown that card (F) = ℵ1.
It has been mentioned (Proposition 2.2) that every fuzzy number can be written in a representation

which involves numbers p, q, r, s and functions L (x), R (x). Hence to every fuzzy number F there cor-

responds a representation (p, q, r, s, L (x) , R (x)). This correspondence is not 1-to-1; there may be two

different representations for the same fuzzy number. However, certainly the total of fuzzy numbers cannot

be more than the total of such representations. Denote the set of all sextuples (p, q, r, s, L (x) , R (x)) by

S; it follows
card (F) ≤ card (S) .

What is the cardinality of S? p, q, r, s can be any real numbers as long as they satisfy p ≤ q ≤ r ≤ s; hence

there is a total of ℵ1 × ℵ1 × ℵ1 × ℵ1 quadruples (p, q, r, s). Also, for every choice of (p, q, r, s), L (x) is a
nondecreasing function with domain [p, q] and range [0, 1], i.e. an element of I0,1p,q and card

¡I0,1p,q

¢
= ℵ1 by

Proposition A.6. Finally, R (x) is a nonincreasing function with domain [r, s] and range [0, 1]. It is easy to

say that there is a 1-to-1 correspondence between such functions and the functions from I0,1r,s and, again,

card
¡I0,1r,s

¢
= ℵ1. Hence, the set S of all admissible sextuples (p, q, r, s, L (x) , R (x)) satisfies

card (S) ≤ ℵ1 × ℵ1 × ℵ1 × ℵ1 × ℵ1 × ℵ1 = ℵ61 = ℵ1

and so it follows

card (F) ≤ card (S) ≤ ℵ1. (8)
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On the other hand consider the set F1 of all functions of the form

F (x) =


0 for x < −1
y for x ∈ [−1, 1]
0 for x > 1

where y is any constant from the interval [0, 1]. Clearly F1 ⊆ F and card (F1) = ℵ1. Hence

ℵ1 ≤ card (F1) ≤ card (F) . (9)

From (8) and (9) follows that card (F) = ℵ1 and the proof of Proposition 3.1 is complete.¥

Proof of Proposition 4.7 It is shown that
¡
Mh,¹¢ is a lattice and that

[a, b]h g [c, d]h = [a ∧ c, b ∨ d]h, [a, b]h f [c, d]h = [a ∨ c, b ∧ d]h.

Choose some h ∈ (0, 1] and consider it fixed. For simplicity, in this proof the superscript h will be dropped
from all generalized intervals.

To prove the above facts, consider the product lattice (L× L,≤∂ × ≤). Elements of this lattice are
pairs (a, b) with a, b ∈ L. For brevity v will be used instead of ≤∂ × ≤. Also, the meet operation in
(L× L,v) will be denoted by u, and the join operation will be denoted by t.
It will be shown that the algebras

¡
Mh,¹¢ and (L× L,v) are isomorphic. To this end, it suffices to

show that, for every a, b, c, d ∈ L, it holds

(a, b) v (c, d)⇔ [a, b] ¹ [c, d] .

1. It is shown first that (a, b) v (c, d)⇒ [a, b] ¹ [c, d]. Assume then that (a, b) v (c, d), in other words
that

c ≤ a and b ≤ d.

Consider now several cases.

(a) c ≤ a, b ≤ d and a ≤ b. Then

c ≤ a ≤ b ≤ d⇒


[a, b] ∈ Mh

+

[c, d] ∈ Mh
+

[a, b] ⊆ [c, d]

⇒ [a, b] ¹ [c, d] .

(b) c ≤ a, b ≤ d and b < a and d < c. Then

b ≤ d < c ≤ a⇒


[a, b] ∈ Mh−
[c, d] ∈ Mh−
[d, c] ⊆ [b, a]

⇒ [a, b] ¹ [c, d] .
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(c) c ≤ a, b ≤ d and b < a and c ≤ d. Then

(
b ≤ b ∨ c ≤ a

c ≤ b ∨ c ≤ d

)
⇒


[a, b] ∈ Mh−
[c, d] ∈ Mh

+

[c, d] ∩ [b, a] 6= ∅

⇒ [a, b] ¹ [c, d] .

All possibilities have been exhausted by (a), (b), (c) above, hence (a, b) v (c, d)⇒ [a, b] ¹ [c, d].

2. Next it is shown that [a, b] ¹ [c, d]⇒ (a, b) v (c, d). Assume then that [a, b] ¹ [c, d], and now consider
several cases.

(a) [a, b] , [c, d] ∈ M+
h . Then a ≤ b, c ≤ d and [a, b] ⊆ [c, d]. Hence c ≤ a ≤ b ≤ d and so

(a, b) v (c, d).
(b) [a, b] , [c, d] ∈ M−h . Then b ≤ a, d ≤ c and [d, c] ⊆ [b, a]. Hence b ≤ d ≤ c ≤ a and so

(a, b) v (c, d).
(c) [a, b] ∈ M−h and [c, d] ∈ M+

h . Then b ≤ a, c ≤ d and [c, d] ∩ [b, a] 6= ∅. The latter implies

c ∨ b ≤ d ∧ a

hence b ≤ d and c ≤ a which implies (a, b) v (c, d).

All possibilities have been exhausted by (a), (b), (c) above, hence [a, b] ¹ [c, d]⇒ (a, b) v (c, d).

3. In short, it has been shown, as required, that (a, b) v (c, d) ⇔ [a, b] ¹ [c, d]. Hence
¡
Mh,¹¢ and

(L× L,v) are isomorphic, and hence ¡Mh,¹¢ is a lattice. Furthermore,
(a, b) u (c, d)↔ [a, b]f [c, d] and (a, b) t (c, d)↔ [a, b]g [c, d] .

Hence

(a, b) u (c, d) = (a ∨ b, c ∧ d)⇒ [a, b]f [c, d] = [a ∨ c, b ∧ d]
(a, b) t (c, d) = (a ∧ c, b ∨ d)⇒ [a, b]g [c, d] = [a ∧ c, b ∨ d] .

and the proof of the proposition is complete.¥

Proof of Proposition 4.8 Let fh : R → R be a strictly increasing function. It will be shown that the

function vh : M
h → R defined by

vh([a, b]
h) = fh(b)− fh(a).

is a positive valuation in
¡
Mh,¹¢, that is function vh satisfies the two conditions of definition 2.4.

First, let [a, b]h and [c, d]h be generalized intervals in Mh. It follows
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vh([a, b]
h) + vh([c, d]

h) = [fh(b)− fh(a)] + [fh(d)− fh(c)]

= [fh(b) + fh(d)]− [fh(a) + fh(c)]

= [fh(b ∨ d) + fh(b ∧ d)]− [fh(a ∨ c) + fh(a ∧ c)]
= [fh(b ∨ d)− fh(a ∧ c)] + [fh(b ∧ d)− fh(a ∨ c)]
= vh([a ∧ c, b ∨ d]h) + vh([a ∨ c, b ∧ d]h)
= vh([a, b]

h ∨ [c, d]h) + vh([a, b]
h ∧ [c, d]h).

That is, vh is a valuation function.

Second, let [a, b]h < [c, d]h for generalized intervals [a, b]h and [c, d]h in Mh. There are three cases:

1. Both [a, b]h and [c, d]h are in Mh
+. It follows ((c ≤ a) and (b < d)) or ((c < a) and (b ≤ d)).

2. Both [a, b]h and [c, d]h are in Mh−. It follows ((b ≤ d) and (c < a)) or ((b < d) and (c ≤ a)).

3. [a, b]h is in Mh− and [c, d]h is in Mh
+. Since always is b < a, there is a point x ∈ [c, d] such that at least

one of (b < x) or (x < a) holds; it follows either (b < d) or (c < a), respectively.

All three cases above imply the following strict inequality

fh(b) + fh(c) < fh(a) + fh(d).

Hence, [a, b]h < [c, d]h implies

fh(b) + fh(c) < fh(a) + fh(d) =⇒ fh(b)− fh(a) < fh(d)− fh(c) =⇒ vh([a, b]
h) < vh([c, d]

h).

That is, vh is a positive valuation function.¥

Proof of Proposition 4.9 It will be shown that card(Dh) ≥ ℵ1. This is actually rather easy. From
Proposition 4.8 it is known that every strictly increasing function fh (x) yields a metric dh by the formula

dh

³
[a, b]h , [c, d]h

´
= fh (a ∨ c)− fh (a ∧ c) + fh (b ∨ d)− fh (b ∧ d) .

Now, choose any κ ∈ R+0 and define fκh (x) = κx. Evidently,

dκh

³
[a, b]h , [c, d]h

´
= κ · ((a ∨ c)− (a ∧ c) + (b ∨ d)− (b ∧ d))

is a metric; furthermore when κ 6= λ, it follows dκh 6= dλh. Since card
¡
R+0
¢
= ℵ1, there are ℵ1 distances dκh

and, since the set {dκh}κ∈R+0 ⊆ Dh it follows that ℵ1 = card
³
{dκh}κ∈R+0

´
≤card(Dh).¥
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Figure Captions

Figure 1:

(a) Mass function m1(x) = 1.

(b) The Gaussian probability density function m2(x) =
1

σ
√
2π
e−

(x−µ)2
2σ2 , with µ = −1 and σ = 1, can be

used as a mass function.

(c) Mass function m3(x) = 2e
−(x−1)/(1 + e−(x−1))2.

(d) Polynomial mass function m4(x) = 0.01x
4 + 0.02x3 − 0.41x2 − 0.42x+ 4.44.

Figure 2:

(a) The linear underlying positive valuation function f1(x) =
xR
0

m1(t)dt = x derived from the mass

function m1(t) in Fig.1(a).

(b) A normal cumulative distribution function can be used as an underlying positive valuation function.

This positive valuation function is derived from the mass function m2(t) in Fig.1(b).

(c) The saturated logistic (sigmoid) underlying positive valuation function f3(x) =
xR
0

m3(t)dt =
2

1+e−(x−1)−
1 derived from the mass function m3(t) in Fig.1(c).

(d) An unbounded polynomial underlying positive valuation function f4(x) =
xR
0

m4(t)dt = 0.002x5 +

0.005x4 − 0.1367x3 − 0.21x2 + 4.44x derived from the mass function m4(t) in Fig.1(d).

Figure 3:

(a) Three fuzzy numbers F1, F2, and E, whose domain interval [0,1] is shown on the vertical axis. The

left sides of F1 (solid line) and F2 (dashed line) coincide. The membership functions of fuzzy numbers F1

and F2 are denoted explicitly by f1(x) and f2(x), respectively.

(b) The mass function mh(t) = h, for h=1.

(c) The mass function mh(t) = 4he
−7(t−1.5)/(1 + e−7(t−1.5))2, for h=1.

Figure 4:

The fuzzy numbers F1, F2, and E mentioned below are shown in Fig.3(a).

(a) The metric distance functions dK(F1(h), E(h)) and dK(F2(h), E(h)) are plotted in solid and dashed

lines, respectively, using the mass function mh(t) = h shown in Fig.3(b) for h = 1. The area underneath

a curve equals the corresponding distance between two fuzzy numbers; it turns out dK(F1, E) ≈ 3.0 >

2.9754 ≈ dK(F2, E).

(b) The metric functions dK(F1(h), E(h)) and dK(F2(h), E(h)) are plotted, respectively, in solid and

dashed lines using the mass function mh(t) = 4he
−7(t−1.5)/(1 + e−7(t−1.5))2 shown in Fig.3(c) for h = 1.

The area underneath a curve equals the distance between two fuzzy numbers; it turns out dK(F1, E) ≈
0.3587 < 0.3811 ≈ dK(F2, E).
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