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Abstract. The problem of system input selection, dubbed in the literature as Type

I Structure Identification problem, is addressed in this paper using an effective novel

method. More specifically, the fuzzy curve technique, introduced by Lin and Cunningham

(Lin 1995), is extended to an advantageous fuzzy surface technique; the latter is used for

fast building a coarse model of the system from a subset of the initial candidate inputs. A

simple genetic algorithm, enhanced with a local search operator, is used for finding an op-

timal subset of necessary and sufficient inputs by considering jointly more than one inputs.

Extensive simulation results on both artificial data and real world data have demonstrated

comparatively the advantages of the proposed method.
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1. Introduction. System identification from input-output data pairs has al-
ways been a challenging topic in engineering. Recently, computational intelli-
gence techniques, including neural networks and neuro-fuzzy models have been
successfully used, as universal model free estimators (Lee 1990, Lin 1992, Wang
1992a, Wang 1992b) for modeling, identification and control of ill-defined real
world processes. Despite the large number of published works on novel cogni-
tive models for modeling complex physical systems in a black-box fashion, the
computation of aconvenient structurefor a model, i.e. a model with both signifi-
cant identification performance and low complexity, remains active. Sugeno and
Yasukawa (Sugeno 1993) have dealt with the structure identification problem by
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dividing it into two other (sub)problems namely Type I and Type II problems. The
latter problem, which refers to both the architecture of a model and the parameter
identification (training), is beyond the scope of this paper. The Type I problem
refers to the selection of those inputs (or, equivalently, features in classification
literature) that affect the output of the system substantially. According to the au-
thors in (Sugeno 1993) the Type I structure identification problem is one hundred
times more important than the Type II structure identification problem. More-
over, the Type I problem is subdivided into Type Ia and Type Ib (sub)problems.
More specifically, the Type Ia problem concerns the ad-hoc definition of a set of
candidate inputs. This work focuses on the Type Ib structure identification prob-
lem, that is the selection of an optimal subset of inputs, which are necessary and
sufficient for describing the system.

The objective of input selection is to determine a feature space with a) low
dimensionality, b) retention of sufficient information, c) enhancement of separa-
bility of the feature space, for example in different categories by removing effects
due to noisy features, and d) comparability of features among examples in same
category (Piramuthu 2004).

Various methods have been proposed in the literature for system input selec-
tion including statistical (Fukunaga 1990, Kittler 1975), geometrical information-
theoretic measures (Battiti 1994), mathematical programming (Bradley 1998)
methods, etc. More specifically, in statistical analysis, forward and backward
stepwise multiple regression (SMR) are widely used to select features, with for-
ward SMR used more often due to fewer calculations. In the latter case the output
is the smallest subset of features resulting in a correlation coefficient value that
explains a significantly large amount of the variance. Similarly, in (Malki 1991),
the K-L transform was applied to the training examples in order to obtain the
initial training vectors. Training is started in the direction of the major eigenvec-
tors of the correlation matrix of the training examples. The main drawback of the
aforementioned methods is that they seek input interdependencies exclusively in
the input space, ignoring the influence of each input to the output of the system.

In (Siedlecki 1998) genetic algorithms were used for feature selection by en-
coding an initial set ofn features asn-element bit string with 1 and 0 repre-
senting the presence and absence, respectively, of features in the set. The au-
thors used classification accuracy as the fitness function (for genetic algorithms,
while selecting features) and obtained good neural network results compared to
branch-and-bound and sequential search algorithms. However, latter work (Hop-
kins 1994) was shown that classification accuracy may be a poor fitness function
measure when seeking to reduce the dimension of the feature set. Also, the time
complexity of the method is overwhelming due to the training process required
for each input combination.

Rough sets theory was also used to determine the degree of dependency of
sets of attributes for selecting binary features. Features leading to a minimal pre-
set decision tree, which is the one with the minimal length of all paths from root to
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leaves, were selected. Best first search was also used stopping after a user defined
number of non-improving node expansions (Piramuthu 2004). Similar algorithms
including the IDG algorithm use the positions of examples in the instance space
to select features for decision trees; they limit their attention to boundaries sepa-
rating examples belonging to different classes, while rewarding (penalizing) rules
that separate examples from different (same) classes (Piramuthu 2004). Decision
trees generated using the proposed algorithm had better accuracy. Nevertheless,
an inherent drawback of this hierarchical approach is that the structure of a de-
cision tree depends on the specific sequence of features to be tested, apart from
the features themselves. Neural networks were also used to measure the contri-
bution of individual inputs to the output of the neural network (Piramuthu 2004).
These methodologies have to undergo the time-consuming training process of the
network used to test every input combination.

The most popular input selection methods in machine learning literature are
variations of sequential forward search (SFS) and sequential backward search
(SBS) (Piramuthu 2004). SFS (SBS) obtains a chain of nested subsets of features
by adding (subtracting) the locally best (worst) feature in the set. The serious
weakness of this approach is that it adds or subtracts one feature at a time, hence
it may result in getting trapped in local minima because it fails to encode all
possible combinations.

In (Lin 1995) Lin and Cuningham proposed a very fast method for input se-
lection introducing the fuzzy curve technique. More specifically, a fuzzy curve is
a non-linear continuous curve, which establishes a connection between a specific
input and the output, performing a projection of the multidimensional input out-
put space on the (probed input)- output space. The height of the projected output
is the measure of importance of the corresponding input as follows: On the one
hand, if the height is sizeable the respective input is considered significant. On
the other hand, a substantial input results in a flat fuzzy curve. The basic advan-
tage of this approach is the linear time complexity of the probing process in the
number of inputs. The serious weakness of the method arises from the fact that
during probing a particular input the rest ones are ignored. Hence, a specific input
could be rejected if probed alone, although the same input could be significant if
considered jointly with another one.

In this work we use a simple genetic algorithm for feature selection by ex-
ploring simultaneously different combinations of inputs. To cope with the above
mentioned weakness, we introduce the fuzzy surface concept as an extension of
the fuzzy curve. The fuzzy surface is used for developing a coarse model for
each input combination. Evaluation of the models is performed by a fitness func-
tion combining both the learning performance and the size of the selected input
subset. In conclusion, the minimum input subset is identified as that which pro-
vides low dimensionality feature space while retaining sufficient information as
described here.
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The rest of the paper is organized as follows. Section 2 details the proposed
fuzzy surface method. In section 3 we present the genetic algorithm used to se-
lect the optimal input combination. Section 4 presents experimental application
results in three artificial examples and three real word problems. Finally, section
5 summarizes the contribution of this work including plans for future work.

2. The proposed method.Consider am-input single output system de-
scribed by a nonlinear function of the form:y = f(x ), where x =
[x1, ..., xj , ..., xm]T is the input vector andy denotes the output of the sys-
tem. Also, let ℘q,m,1 denote the observed input/output data set comprising
q m-input/output observed patterns:℘q,m,1 =

{
(xk, yk ), k = 1, ..., q

}
.

Let =m,1 = {x1, x2, ..., xj , ..., xm} be the set of candidate inputs. Also let
=n,` | 1 ≤ n ≤ m, ` = 1, ...,m!/(m − n)! be a particular subset of=m,1

comprisingn of m inputs. The numbern represents the cardinality of=n,`. The

index` denotes a specific input subset of ordern. There are
m!

(m− n)!
subsets of

ordern. The total number of subsets of any order derived from the set ofm can-
didate inputs, excluding the empty subset, equals2m− 1. Given a specific subset
=n,` the corresponding℘q,m,` of the specificn-inputs-output data observed data
points is a subset of℘q,m,1 . For eachn-input-output datum in℘q,n,` a fuzzy rule
with crisp output is created in the following form:

Rk : if x1 isAk
1 andx2 isAk

2 and...and xn isAk
n then y is yk (1)

where the membership functionµk
j (xj) of a fuzzy setAk

j | j = 1, ..., n and k ∈
{1, ..., q} is given by:

µk
j (xj) = exp[−(

xk
j − xj

σj
)2] (2)

Each bell-shaped function is located atxk
j ; the parameterσj has a fixed value

for each inputxj , equal to 5-15% of thexj variable range. Hence, a fuzzy rule
base is generated comprisingq rules,Rk, k = 1, ..., q in the form of equation
(1). Having determined the product as the fuzzy implication method and using
the centroid defuzzification technique, the output of the fuzzy model is given by
the formula:

y = FSn,`(x) =

q∑
k=1

[
n∏

j=1

(µk
j (xk

j ))

]
· yk

q∑
k=1

[
n∏

j=1

µk
j (xj)

] (3)

Equation (3), which provides a continuous and parameter free surface, is used
as a fuzzy model approximating the input-output data.
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The mean absolute percentage error is used to estimate the quality of the
approximation:

Eq,n,` =
100
q

q∑

k=1

∣∣FSn,`(xk)− yk
∣∣

|yk| % (4)

To overcome the risk of overfitting due to the large number of rules, the data
set is subdivided into two subsets, each consists of the one half (q/2) of in-
put/output patterns. The fuzzy surface is built using the first data subset℘q/2,n,`

and it is valuated on the whole data set℘q,n,` according to (4).
During the last years, the fuzzy modeling approach has gained considerable

interest for solving real world problems, including modeling of highly com-
plex systems, signal processing and pattern recognition (Siedlecki 1998, Hopkins
1994, Lin 1995, Wang 1995, Papadakis 2002, Piramuthu 2004). Extensive exper-
imentation has demonstrated that fuzzy systems exhibit a number of significant
advantages compared to other artificial intelligence models, such as the neural
network models (Hopkins 1994, Wang 1995, Papadakis 2002). First of all, the
neural networks are global models where training is performed on the entire pat-
tern range. On the contrary, owing to the partition of the input space, the fuzzy
models perform a fuzzy blending of local models. As a result, faster convergence
is achieved. Secondly, fuzzy neural networks are capable of incorporating both
numerical data (quantitative information) and expert knowledge (qualitative in-
formation) and describe them in the form of linguistic IF-THEN rules. In that
respect, they provide a unified framework for integrating the computational par-
allelism and low-level learning of neural networks with the high-level reasoning
of fuzzy systems. The above feature may assist in determining the initial struc-
ture, also leading to models with fewer parameters when compared to neural
networks.

As regards the representation capabilities, it has been verified based on ana-
lytical aspects that fuzzy models are free function approximators (Wang 1992a).
To this end, fuzzy models can be employed to identify a broad class of systems
described in terms of a general non-linear functional expansion including lagged
inputs and outputs. Let us consider a discrete-time dynamical system of this type,
represented by:

y(t) = f [y(t− 1), y(t− 2), . . . , y(t− ny), u(t), u(t− 1), . . . , u(t− nu)]+e(t) (5)

wherey(t) is the output of the system at time instantt, u(t− i), i = 1, ..., nu

are the external inputs at previous time steps, andny, nu are the maximum lags
for the output and the input terms, respectively. Furthermore,e(t) is the mod-
eling error regarded as additive white noise, andf(·) is a functional form rep-
resenting the input-output mapping. The above description, which belongs to
a general system formulation, is referred to the literature as the non-linear au-
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toregressive moving average with exogenous inputs (NARMAX) (Chen 1989).
This is an extension to the nonlinear framework of the traditional linear model
regression analysis (Box 1970). It is rigorously proved (Leontaritis 1985) that
a discrete-time, time-invariant system can be described by means of the model
formalism in (5), provided that two sufficient conditions are valid, namely, the
response functionf [·] is finitely realizable, and a realizable model exists in the
vicinity of the chosen equilibrium point.

It should be noticed that for a practical system, the functional formf [·] is
very complicated and usually, not available in advance. Hence, a model needs
to be devised to implement the input-output mapping. In this paper, the fuzzy
model (3) is used to model the non-linear system described by (5). Initiating the
modeling procedure, we define a state vector that is composed of past values of
the external input and the output of the system as:

x = [y(t− 1), . . . , y(t− ny), u(t), . . . , u(t− nu)]T (6)

The state vector is formulated through the use of tapped delay lines, with
the state components regarded as inputs to the fuzzy model. Following a series-
parallel approach (Feng 2002) shown in Fig. 1, the system is approximated by

y(t) = f̂ [x] + ε(t) (7)

where f̂ [x] is an approximation of the actual system functional, a task ac-
complished by means of the fuzzy modelFSn,`(x), andε(t) is the residual er-
ror. The identification process involves two major issues that should be properly
addressed. The first issue regards the selection of the model inputs and it is the
primary focus of the present paper. Since the lag orders are generally unknown,
a selection mechanism has to be developed, so that among the pool of past in-
put and output values, the most significant ones are chosen as model inputs. The
second issue to be tackled relates to the construction of the fuzzy model. This
consists of determining the fuzzy partition of the input space, that is, define the
number of the fuzzy rules and the location of the membership functions. Ad-
ditionally, the parameter values at the consequent part of the rules should be
computed, based on the available input-output data.

It should be noticed that in our input selection approach, a separate fuzzy
model is generated for each subset of inputs of the candidate inputs set, con-
sidered in the genetic algorithm, to be presented in the sequel. In that respect,
since the modeling task is embedded within the input combination search, we fol-
low the simplified modeling technique discussed above. Owing to the increased
complexity and the large number of fuzzy rules included in the formulation, the
aforementioned model cannot be used as a regular model in order to identify the
system. Nevertheless, it serves as means to built a coarse model for each input
combination. Thus we avoid any time-consuming adaptation procedure, reducing
the overall computational burden considerably.



A GA based approach to the Type I structure identification problem 7

1z

1z

1z

1z

( )u t

( 1)u t

( )uu t n

( )y t

( 1)y t

( )yy t n

Plant

Fuzzy Model

( )e t

ˆ( )y t

ˆ ( )f x

Fig. 1. Series-parallel configuration for the identification of dynamical
systems using the suggested fuzzy model.

Parametersσj play a very important role in the proper identification of the
system as follows: On the one hand, if the values of the parameters are extremely
small the fuzzy surface-based model (FS) results in over fitting the data, increas-
ing Eq,n,` due to poor generalization. On the other hand, very large value of
the parametersσj result in inadequate identification performance, increasing the
Eq,n,` due to poor identification. Empirical studies have shown that a value cal-
culated by the formula:

σj = δ · (max(xk
j )−min(xk

j )
)
, k = 1, ..., q | δ ∈ [0.05, 0.15] (8)

is an appropriate option. Moreover, this calculation is adopted in (Lin 1995).
Henceforth, all values of the tunable parameters are calculated by formula (8)
overcoming any iterative time-consuming processes.

3. The genetic based input selection algorithm.For each subset=n,` of
inputs a fuzzy surfaceFSn,` can be built using the first℘q/2,n,` input data, ac-
cording to equation (3). For each fuzzy surfaceFSn,` an evaluation measure
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Rn,`, related both to the modeling performance and to the complexity ofFSn,`,
is computed by the formula:

Rn,` = w · 100 · Eq,n,`

Emax
+ (1− w) · n

m
| w ∈ (0, 1) (9)

where theEmax = max{Eq,1,`}`=1,...,m, is used as normalization factor of
Eq,n,` values. The smaller the value ofRn,` the greater is the importance of
FSn,` and the associated input combination. If a particular subset=n,` includes
non-important inputs, then both terms in (9) increase, raising the respectiveRn,`

value. Inserting significant inputs or discarding insignificant ones the respective
terms in (9) decrease resulting in smallerRn,` values. In the case that two input
combinations are equivalent in the first term of (9), the preferred one is that with
the lowest ordern.

The objective of the proposed input selection method is to track down the
subset=n,` with the minimumRn,` value among all2m − 1 subsets of can-
didate’s inputs=m. In case the cardinalitym of =m is small probing all pos-
sible combinations is feasible. Nevertheless, for a large set of candidate inputs
the number of combinations to be probed is prohibitively high. The minimiza-
tion of Rn,` can be formulated as a combinatorial unconstrained optimization
problem, treated here by an enhanced genetic algorithm with binary encoding,
adaptive crossover/mutation rates and elitism (Papadakis 1996). More specifi-
cally, the chromosome of each individual consists ofm genes of one bit. Each
bit bj ∈ {b1, b2, ..., bm} encodes either the presence ’1’ or the absence ’0’ of its
refereed input variablexj | j = 1, ..., m thus creating a particular=n,` ⊆ =m,1.
Hence, the phenotype of each individual represents a specific subset=n,` to be
valuated by means of equation (9), which is used as the fitness function of the
genetic algorithm.

In order to enhance the effectiveness of the applied genetic algorithm, a spe-
cific local search operator, namely Digital Hill Climbing Operator (DHCO) (Pa-
padakis 2002) is applied to the elite individual of each generation. This operator
selects randomly a relatively small number of bits (i.e. 4 bits) from the elite’s
chromosome and generates all possible chromosomes (15 chromosomes) by per-
muting the selected bits and keeping the rest ones intact. The chromosome with
the best fitness value is adopted as the new elite chromosome replacing the initial
one.

4. Experimental results. In order to clarify some functional aspects of the
proposed approach, three artificial examples are investigated at first. Then, the
method is applied to two real world data sets. Finally, the proposed input selection
method is applied to an industrial problem
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4.1. Example I. Consider the following three-input, single output, non-
linear system (Lin 1995):

y = [x1.5
1 − 1.5 sin(3x2)]2 + 5x3 | x1, x2, x3 ∈ [0, 3] (10)

Three hundred (q = 300) input/output data pairs[x1, x2, x3, y]k, k = 1, 2, ..., 300
were generated to create the initial data set℘q,m,1 that comprisesm = 3 inputs
andq = 300 data points. The first (q/2 = 150) data pairs were used to build
the fuzzy surfaces for each input subset and the whole data set was used to val-
uate the importance of the respective input combination through equation (9).
For each datum the input values are randomly generated within the interval [0,3]
and the respective output is calculated according to (10). In (9), the value of the
weight w equalsw = 0.8. Since the number of candidate inputs is small, all
the combinations were probed without genetic optimization. The simulation re-
sults are summarized in Table 1, ranked in ascending order with respect to their
importance. The combination that comprises all inputs achieves the least value
(R3,1 = 9.10) and hence, it is the most important one as explained in section 2.

Moreover, the valuation of the impact of each individual input to the output of
the system is feasible by examining the simulation results forn = 1. Forn = 1
the inputx2 achieves the smallerR1,1 value amongx2 andx3. The next most
important single input isx1 and follows inputx3. The orderx2, x1, x3 is also
reported in (Lin 1995). The time required to evaluate all input permutations was
0.38 sec on a Pentium III 1.2Ghz computer.

Table 1. Input Evaluation for the system described by equation (10)

n ` =n,` Rn,`

3 1 x1, x2, x3 9.10
2 1 x1, x2 25.04
2 2 x2, x3 28.13
1 1 x2 46.51
2 3 x1, x3 47.65
1 2 x1 65.80
1 3 x3 80.06

Note that the results in Table 1 are not mutually exclusive. There is a reliabil-
ity constraint introduced in (Leontaritis 1987) as follows: LetÂ be a comparative
operator regarding the relative importance of two inputsxa, xb. E.g. xa Â xb

means thatxa is more important thanxb. The implication:

xrxt Â xsxt ⇐⇒ xr Â xs ∀ r, s, t (11)

has to be satisfied (Leontaritis 1987). i.e.x1x2 Â x1x3 ⇐⇒ x2 Â x3. This
reliability constraint is satisfied in Table 1.
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It has to be stressed that implication (11) holds in the case where the in-
putsxr, xs, xt are independent. In the case of interdependent inputs the implica-
tion (11) doesn’t hold in general. The following interpretation is proposed. Let
xr, xs, xt be three inputs wherexr, xt are interdependent. Also, letxr Â xs.
Sincexr, xt are interdependent, the inputxt does not offer anything new to the
combinationxr, xt and, hence,xr, xt is nearly equivalent toxr. On the contrary,
inputxt jointly with xs could be more important thanxr (or xr, xt), due toxs, xt

independence.

4.2. Example II. The next example is a modification of the previous one.
A dummy input is introduced to the input space, with no impact to the output of
the system by modifying equation (10) as follows:

y = [x1.5
1 − 1.5 sin(3 · x2)]2 + 5 · x3 | x1, x2, x3, x4 ∈ [0, 3] (12)

The input data points were created by extending each input vector[x1, x2, x3]k,
generated in the previous example by one more component that represents
the xk

4 dummy-input value. Hence, 300 data points[x1, x2, x3, x4, y]k | k =
1, 2, ..., 300 were produced as in Example I. After applying the proposed method,
the best combination isx1, x2, x3 with R3,1 = 8.93. The input variablex4 is
clearly rejected. The combinationx1, x2, x3, x4 that includes thex4 input was
valuated withR4,1 = 21.21 which is 225% greater than the best combina-
tion. Additionally, when inputx4 was probed individually, it was valuated with
R1,4 = 85.43 as the worst option.

In the following, the proposed method is compared to two other feature se-
lection techniques from the literature, namely, the principal component analy-
sis (PCA) (Haykin 1994), and the structure I identification method suggested in
(Sugeno 1993). The PCA method, also known as the Karhunen-Loeve transfor-
mation (K-L transform) in communication systems, applies an invertible linear
transformationT to the original input vectorx such that the transformed vector
Tx provides maximal variance truncation with regard to the vector components,
in the mean square sense. The PCA leads to dimensionality reduction of the in-
put space, with the selection of the effective features decided by observing the
size of the eigenevectors of the correlation matrix formulated byx . Applying
the PCA method, we are led to the input setx = [x1, x2, x3, x4]T . The resulting
combination includes all input candidates, thus failing to recognize the redundant
componentx4. As expected, this is a reasonable outcome, since PCA focuses on
the correlation analysis of the input components, ignoring their relevance to the
model’s output. Finally, the input selection method suggested in (Sugeno 1993)
belongs to the family of sequential forward search (SFS) techniques, proceeding
along the following steps. At level 1, we search for a sole input component, being
optimal among the set of candidate input set. At subsequent levels, the optimal
set, currently available, is augmented by introducing an additional input compo-
nent. The process is iteratively repeated to higher levels, until the optimal input
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subset is finally attained. At each level of the process, evaluation of a specific
input combination is carried out on the basis of the regularity criterion, requiring
the time consuming construction (due to training process) of two separate fuzzy
models. Applying the above method, the correct input combinationx1, x2, x3

was derived. Nevertheless, the above result was obtained at the expense of con-
siderably larger computational cost when compared to our method. Additionally
the input combination obtained, depends on the order the input variables were
considered in the selection process, thus leading to suboptimal solutions.

4.3. Example III. In this example we examine the case of interdependent
inputs. Suppose we have a system governed by the non linear equation:

y = sin(x1) + sin(x2) + 10−4 · x3 where x2 = 3 · sin(x1) (13)

Inputsx1, x2 are interdependent, by means of equationx2 = 3 · sin(x1) (or
x1 = sin−1(x2/3)) while the inputx3 affects slightly the output. Three-hundred
input-output data pairs were generated in a manner similar to Example I. The
input vector[x1, x2, x3]k, k = 1, ..., 300 comprises random numbers within the
range [0,3] and the corresponding outputyk is calculated by equation (13). The
evaluation of the inputs indicatesx2 as the best option withR1,1 = 2.37. The
combinationx1, x2 was valuated withR2,1 = 2.43. Hence, bothx1 andx3 inputs
were rejected.

x1-Fuzzy Curve x2-Fuzzy Curve x3-Fuzzy Curve

0 1 2 3
0

0.5

1

1.5

2

0 1 2 3
0

0.5

1

1.5

2

0 1 2 3
0

0.5

1

1.5

2

Fig. 2. The Fuzzy Curves of variablesx1, x2, x3. Both x1, x2 inputs are
considered significant.

We also applied the PCA method in this example. According to the eigenvalue
ordering we were lead to the input rankingx3, x2, x1. Hence, PCA suggests that
x3 is the most significant input because it corresponds to the largest eigenvalue.

Owing to the inherent drawback of the PCA approach, the method was unable
to recognize the small impact ofx3, as well as the interdependency of inputs
x1, x2. Finally, the method suggested in (Lin 1995) is applied, where the decision
as to which inputs should be selected is made by means of the fuzzy curves
associated to each input component. The method rejected inputx3 since a fuzzy
curve with negligible height is observed due to the small exponent multiplying
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this input in equation (13). Nevertheless, the method suggests that both inputs
x1 andx2 should be regarded as significant, since both variables provide fuzzy
curves with sizable heights as shown in Fig. 2. Although the approach presented
in (Lin 1995) exhibits a linear time complexity with respect to the number of
inputs, it is inefficient because the input candidates are independently evaluated,
thus failing to detect a potential interdependence between several inputs.

4.4. The Fisher Iris benchmark. This benchmark data set comprises four
candidate inputs that represent measured attributes of a crinum family such as
x1:sepal-length,x2:sepal-width,x3:petal-length,x4:petal-width. The lilies are
classified into three categories (Iris sestosa-versicolor-virginica) represented by
an integer number from 1 to 3. The data set consists of 150 input-output data
points. Our method is applied to track down the attributes, which are necessary
and sufficient to describe a classification system. The first 75 points were used
for building the fuzzy surfaces. The proposed input selection method suggests
the combinationx1, x2, x3, x4 as the best one, withR4,1 = 3.10. The next best
in order wasx3, x4 with R3,1 = 3.18. All combinations that include thex2

input obtain relatively large values, while thex2 input was the worst option when
valuated alone. Following the methodology presented in (Lin 1995), the input
x2 would be rejected due to a flat fuzzy curve although its combination with the
other three inputs affects significantly the output of the system. The latter is a
major advantage of the algorithm proposed here.

Introducing a pseudo input to the set of candidates inputs as in Example II,
and reapplying our input selection algorithm the combinationx1, x2, x3, x4 is
recognized again as the most important one acquiring a valuationR4,1 = 2.46.
The combinationx3, x4 is again the next best option withR2,1 = 2.52, while the
combinationx1, x2, x3, x4, x5 that includes the pseudo inputx5 is worse enough,
obtaining an evaluation measure valueR5,1 = 13.85. Moreover, the inputx5,
when probed alone, is ranked in the last place.

4.5. The gas furnace problem.The Box & Jenkins (Box 1970) gas fur-
nace problem, a well-known real world application, has been considered. This
dynamic problem involves a single inputu(t) that represents the gas flow at time
t, and a single outputy(t) which corresponds to theCO2 concentration in the
exhaust gas of the furnace. The objective of many modeling techniques (Box
1970, Barada 1998, Lin 1995, Sugeno 1993) has been the prediction ofy(t),
using past values of both the inputu(t) and the outputy(t).

To this end, a fuzzy model is sought in the functional form described by equa-
tion (5), providing one-step ahead predictions of the outputy(t). The model in-
puts are past values of the external input and the output, as shown in Fig. 1. The
philosophy underlying the formulation of the input vector is described as follows:
Since the proposed fuzzy model (equation (3)) is non-linear but static in principle,
there is a need to formulate the dynamic nature of the process under considera-
tion, in an efficient manner. Embedding the process dynamics is accomplished
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Table 2. Comparison of the proposed input selection approach

Training Checking
Method Input Selection R Error Error

(mse) (mse)
Our Method u(t− 2), u(t− 4), y(t− 1) 26.83 0.032 0.68

(Sugeno 1993) u(t− 3), u(t− 4), y(t− 1) 28.61 0.031 0.73
(Lin 1995) u(t− 5), u(t− 6), y(t− 1) 42.77 0.070 1.12

(Barada 1998) u(t− 4), u(t− 5), y(t− 1) 35.60 0.061 0.67

through the presentation to the model of selected projections of the time varying
events onto a spatial representation of parallel inputs. The above approach cor-
responds to discretizing the process signals, considering past time windows of
adequate size, such that a significant amount of information is preserved. Actu-
ally, a transformation is performed from the time domain to the spatial domain
through the parallel presentation of the inputs. Hence, despite the fact that the
model is static, dynamic systems can be effectively handled, provided an appro-
priate transformation. In other words, an input selection mechanism should be
developed, selecting the input and output values at proper time instants in the
past. These values are then handled by the model, providing future estimates of
the system’s output. Note that the past time horizon of the model may have a
significant impact on the complexity of the resulting fuzzy model.

In the present case, the candidates input set consists of 20 inputsu(t), u(t −
1), ..., u(t − 10), y(t − 1), y(t − 2), ..., y(t − 10) that is220 − 1 = 1, 048, 575
input combinations. The targeted output isy(t). The genetic algorithm presented
in section 3 is applied to locate the combination with the minimumR-value. The
chromosome of the algorithm comprises20 bits and the fitness function is given
by equation (9). A population of 25 individuals was employed. After 50 gen-
erations the best individual achieved a fitness score ofR3,1 = 26.83 suggesting
x = [u(t−2), u(t−4), y(t−1)] as the most effective input combination. It has to
be pointed out that different methods in literature agree on the number of inputs
to be used. However they propose a different subset ofn = 3 inputs. In (Sugeno
1993), the proposed input subset was:x = [u(t− 3), u(t− 4), y(t− 1)], in (Lin
1995) the three most important inputs were:x = [u(t − 5), u(t − 6), y(t − 1)]
and in (Barada 1998):x = [u(t − 4), u(t − 5), y(t − 1)]. In order to assess the
validity of each result a feed forward neural network consisting of one hidden
layer with 20 neurons, 3 inputs and 1 output is used for evaluating the different
input combinations in a relatively fair manner, overcoming any complex mod-
eling details related to each one. The Leverbeng-Marquat method is applied to
train each neural network for 1000 epochs. The mean square error (mse) is used
as a performance index to estimate both the identification and prediction quality
of each network.

The effectiveness of our proposed input selection method is shown compara-
tively in Table 2, both in terms of the identification and also in terms of the gen-



14 S.E. Papadakis et al.

eralization capabilities of the final model that will be used to model the process
(in this case the neural network). Moreover, the coherence between the value of
R and the effectiveness of the respective input combination has been confirmed.
Finally, the proposed method exhibits low time complexity since the total sim-
ulation time was4.33 min on a Pentium III computer at 1.2Ghz. Moreover the
total number of probed input combinations was: 50 generations× (25 evaluations
per generation for reproduction+16 evaluations per generation for DHCO opera-
tor)=2048, which is far less than the total number of220 − 1 input combinations.

4.6. An industrial modeling application. In this section the proposed
method is applied to data prepossessing in the modeling of the pan granulator
device in the Phosphoric Fertilizers Industry (PFI), Nea Karvali, Greece. The
industrial problem is described in the following.

4.6.1. The industrial problem.The industrial production of nitrogenous
fertilizers consists of two processes realized sequentially, namely "Wet Process"
and "Dry Process". The former process produces an Ammonium Nitrate (AN) so-
lution, which is fed to the latter one. More specifically, a highly concentrated hot
AN melt is sprayed to the rotating pan granulator from a spraying nozzle mani-
fold. The fertilizer "end product" consists of small fertilizer granules, each having
size in the range of a few millimeters. The average size of the granules is the main
factor that defines the fertilizer quality. A desired quality size can be obtained by
tuning the values of several pan granulator operating parameters/variables and
the latter are summarized in Table 3.

Work is currently in progress for developing a feedback automatic control
mechanism for the pan granulator. In this context a dependable open loop model
of the pan granulator is needed. It turns out that not all pan granulator operating
parameters in Table 3 are important as explained below.

4.6.2. Data acquisition.Data samples have been collected during the last
five years for several fertilizer types. More specifically, several pan granulator
operating variables have been sampled manually every two hours around the
clock. In addition, the corresponding average (fertilizer granule) diameter size
has been recorded. All the data corresponded to a steady state operation of the
pan granulator.

The data used in this work included samples of fourteen operating variables
involved in the production of fertilizer type CaN26 during late April/early May
2003 in the Phosphoric Fertilizers Industry (PFI). The aforementioned variables
are shown in Table 3, including the corresponding units; in particular note that
the units for the Nozzle Vertical Distance (rings) and the Spraying Angle (lines)
are customized units used in the industry. A number of 174 data vectors had been
available. Twenty data vectors including one (or more) missing values have been
removed in the context of this work.
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Table 3. Operating variables available for modeling the operation of the
pan granulator in the Phosphoric Fertilizers Industry (PFI).

# Variable name Unit Selected Features
1 AN Melt Flow m3/h

√
2 Recycled Fertilizer T/h

√
3 AN Melt Temperature oC

√
4 AN Melt Pressure bar

√
5 Granulation Temperature oC −
6 Pan Inclination degrees −
7 Pan Rotation Speed Hz

√
8 Nozzle Vertical Distance rings −
9 Nozzle Distance from the pan cm

√
10 Scraper Speed Hz −
11 Spraying Angle lines −
12 Coarse Screen Vibration % −
13 Fine Screen Vibration % −
14 Mg(NO3)2 Supply % −

4.6.3. Input selection.Using the method presented here eight of the oper-
ating variables shown in Table 3 have been discarded. The selected six operating
variables are marked by (

√
) in Table 3. That is a significant reduction of com-

plexity from a 14-dimensional input space to a 6-dimensional input space. The
practical significance of the selected variables has been confirmed by interview-
ing human operator experts in the industry. It might be interesting to point out
that a visual inspection of the operating variables samples revealed that the sam-
ples of both the Coarse- and the Fine- Screen Vibration variables have all been
constant equal to 80%, hence our variable selection method discarded the latter
variables right. Due to the scope of this paper further modeling details will be
presented in future work.

5. Conclusion. This work has presented a novel, fast and consistent (in
terms of equation (11)) methodology for calculating the importance of a subset of
inputs, from a set of candidate inputs, which jointly influence the output of a sys-
tem. The proposed methodology employs the fuzzy surface technique, that is an
enhanced extension of the fuzzy curve technique from the literature (Lin 1995).
A genetic search has been used for probing combinations of inputs. Extensive
simulation results, on both benchmark and real world data, have demonstrated
the effectiveness of the proposed methodology. Future work will detail industrial
fuzzy system modeling applications, where input variables will be selected using
the methodology proposed here.
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A genetic based approach to the Type I structure identification problem

S.E. Papadakis, P. Tzionas, V.G. Kaburlasos, J.B. Theocharis

The problem of system input selection, is dealt with here using an effective novel
method based on fuzzy surfaces. A simple genetic algorithm considers jointly more than
one input, for finding an optimal subset of necessary and sufficient inputs. Extensive sim-
ulation results on both benchmark data and real world data have demonstrated compara-
tively the advantages of the proposed method.


