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Abstract – This work presents novel mathematical tools developed during a study of an industrial-yield 

prediction problem. The set F of Fuzzy Interval Numbers, or FINs for short, is studied in the framework of lattice 

theory. A FIN is defined as a mapping to a metric lattice of generalized intervals, moreover it is shown 

analytically that the set F of FINs is a metric lattice. A FIN can be interpreted as a convex fuzzy set, moreover a 

statistical interpretation is proposed here. Algorithm CALFIN is presented for constructing a FIN from a 

population of samples. An underlying positive valuation function implies both a metric distance and an inclusion 

measure function in the set F of FINs. Substantial advantages, both theoretical and practical, are shown. Several 

examples illustrate geometrically on the plane both the utility and the effectiveness of novel tools. It is outlined 

comparatively how some of the proposed tools have been employed for improving prediction of sugar production 

from populations of measurements for Hellenic Sugar Industry, Greece. 

 

Index Terms – Fuzzy Interval Numbers (FINs), Lattice Theory, Prediction Models, Sugar Production. 

 

I.  INTRODUCTION 
 

 The amount of sugar required for the needs of the Greek market is supplied, at large, by the production 

of Hellenic Sugar Industry (HSI). An early season accurate prediction of sugar production is critical for 

planning effectively the annual sugar-beet campaign. A detailed problem description in the HSI domain and 

extensive experimental results using various prediction methods have been reported in the literature. More 

specifically, [27] reports prediction results using both intelligent-clustering and first-principles modelling 

techniques; furthermore the work in [42] shows results by a probabilistically motivated predictor, namely 

Bayesian Combined Predictor (BCP), whose local predictors include linear regressors, artificial neural 

networks, polynomial predictors, etc. Lately, the application of a nearest neighbour classifier has been 

presented for prediction of sugar production based on Fuzzy Interval Numbers, or FINs for short [41]. While 

the emphasis in [41] is primarily on an application of FINs in the HSI domain, this work details an analytic 

study of FINs. In addition, a few experimental results are briefly presented here comparatively. 

                                                 
1  This work has been supported in part by Hellenic Sugar Industry, Greece from July 2000 to June 2001. 
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 A FIN is presented here as a “mathematical object”, which can be interpreted as a convex fuzzy set; 

additional interpretations are shown including a statistical interpretation. In the context of this work a FIN is 

computed from a population of samples using algorithm CALFIN. A FIN is represented as a set of 

generalized intervals. Rigorous analysis is carried out based on lattice theory [3], [10], [19]. It is shown that 

the set F of FINs is a metric (mathematical) lattice. An underlying positive valuation function implies both a 

metric distance and an inclusion measure function in F. A practical advantage of the techniques introduced 

here is that a much larger number of metric distances as well as inclusion measure functions between FINs 

can be defined, both theoretically and practically, for tuning performance in an application. 

 A potentially important outcome of this work is that the mathematical tools presented here could be 

effective for general fuzzy system design. It is remarkable that even though the lattice ordering relation of 

fuzzy sets was acknowledged since the introduction of fuzzy set theory [58], as well as during its later 

development [59], the ordering relation in question has not been taken advantage of in practice. For instance, 

in [32] the ordering of fuzzy numbers is addressed using a user-defined satisfaction function, whereas in [57] 

a method is proposed for ranking fuzzy numbers based on signed distances. This work suggests a useful 

alternative for dealing with fuzzy numbers. 

 The layout of this paper is as follows. Section II details metric lattices of generalized intervals. Section 

III shows both metric distances and inclusion measure functions in the set of FINs. Section IV presents 

algorithm CALFIN for constructing a FIN from a population of measurements, moreover a statistical 

interpretation of a FIN is presented. Section V shows comparatively experimental results for prediction of 

sugar production based on FINs. Section VI concludes by summarizing the contribution of this work and 

discussing future work. Mathematical proofs of useful theoretical results are included in the Appendix. 

 

II.  LATTICES Mh OF GENERALIZED INTERVALS 
 

 The notion “interval” has been used for both analysis and design in mathematics as well as in engineering 

[1], [4], [29], [33], [35], [36], [49]. The notion generalized interval has been introduced in regression and 

modelling problems [22], [24], [41]. A generalized interval is defined in the following. 
 

Definition 1: A generalized interval of height h is a mapping given by  
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 An interpretation of a generalized interval depends on an application; for instance a positive generalized 

interval could indicate the presence, whereas a negative generalized interval could indicate the absence of 

certain features. No specific interpretation is necessary for the theoretical analysis in this section. 

 The above definition implies that , for x)(µ
],[ 21

xhxx

h
+

h
+

1≠x2, is a function of x; nevertheless, µ  is not 

a function because x=x

)(
],[ 11

xhxx

−M U
0(∈h

1 is mapped to both values –h and h. A generalized interval will be denoted, more 

compactly, as [x1,x2]h. More specifically, if x1<x2 (x1>x2) then [x1,x2]h is called positive (negative) generalized 

interval; furthermore [x1,x1]h is called trivial generalized interval. The set of positive (negative) generalized 

intervals of height h will be denoted by M  (M ); furthermore the corresponding set of trivial generalized 

intervals will be denoted by M . The set of generalized intervals of height h will be denoted by M

h
−

h
0

h
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U
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h; it follows 

Mh= M ∪M ∪M , where M ,  and M  are pairwise disjoint. The set-union of the Mh
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hs, h∈(0,1] is the 

set M of generalized intervals, symbolically M= . Likewise the symbols = , 

 and M =  denote the sets of negative, trivial and positive generalized intervals, 

respectively. A couple of useful functions regarding generalized intervals are defined in the following. 
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 The support (of a generalized interval) is a function which maps a generalized interval to its 

conventional interval support set; in particular support([x1,x2]h)=[x1,x2] for positive generalized intervals, 

support([x1,x2]h)=[x2,x1] for negative generalized intervals, whereas support([x1,x1]h)={x1} for trivial 

generalized intervals. Furthermore, function sign maps a positive generalized interval to number +1, a 

negative generalized interval to number –1, moreover it maps a trivial generalized interval to number 0. 

 

A.  Metric Distances and Inclusion Measure Functions in Lattice Mh 
 

 An ordering relation in the set Mh, h∈(0,1] of generalized intervals is introduced in the following. 

(OR1) [a,b]h
hM

≤ [c,d]h ⇔ support([a,b]h) ⊆ support([c,d]h), for both [a,b]h and [c,d]h in M , h
+

(OR2) [a,b]h
hM

≤ [c,d]h ⇔ support([c,d]h) ⊆ support([a,b]h), for both [a,b]h and [c,d]h in M , and h
−

(OR3) [a,b]h
hM

≤ [c,d]h ⇔ support([a,b]h)∩ support([c,d]h)≠∅, for [a,b]h in M  and [c,d]h
−

h in . h
+M

 We remark that the ordering relation hM
≤  also accommodates trivial generalized intervals. The subscript 

in symbol “ ” was meant to explicitly identify the underlying set MhM
≤ h. Note that when symbol ≤ is 

employed here without a subscript it refers to the total ordering relation in the lattice R of real numbers. 
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 It can be easily shown that the ordering relation hM
≤  is a partial ordering relation2. Note that partial 

ordering relation ≤  does not hold for all pairs of generalized intervals. If neither rhM 1≤ hM
r2 nor r2 hM

≤ r1 hold 

for r1,r2∈Mh, then r1 and r2 are called incomparable generalized intervals, symbolically r1 || hM
r2 (Fig.1). It is 

understood that if r1∈M  and r1h

M
≤

2∈  (with h2hM 1≠h2) then generalized intervals r1 and r2 are incomparable 

because they are elements of different partially ordered sets. The following result fully characterizes the 

partial ordering relation  in Mh
h [22], [41]. 

 

Proposition 2:  The partially ordered set Mh of generalized intervals of height h is a (mathematical) lattice3. 

 

 For any two generalized intervals in Mh there exist both a greatest lower bound (g.l.b.) and a least upper 

bound (l.u.b.) in Mh [22], [24], [41]. Fig.2 enumerates exhaustively all cases which could be encountered in 

the computation of the lattice join (r1 hM
∨ r2) and the lattice meet (r1 hM

∧ r2) for two generalized intervals r1 

and r2. We remark that Mh is not a complete lattice because the lattice R of real numbers is not a complete 

lattice [10]. Moreover for x,y∈R it holds x∧Ry = x∧y = min{x,y}, and x∨Ry = x∨y = max{x,y}; note also that 

the elements of lattice R are totally ordered, that is for a pair or real numbers x,y it is either x≤y or y≤x. A 

useful function in a general lattice L is shown next. 

 

Definition 3:  A valuation in a lattice L is a real function v: L→R which satisfies v(x)+v(y)=v(x∨Ly)+v(x∧Ly), 

x,y∈L. A valuation is called monotone if and only if x≤Ly implies v(x)≤v(y), and positive if and only if x<Ly 

implies v(x)<v(y) for x,y∈L. 

 

 A positive valuation function v(.) in a lattice L implies a metric distance4 d: L×L→R given by 

d(x,y)=v(x∨Ly)-v(x∧Ly) for x,y∈L [3]. Furthermore, it is well-known that a positive valuation function v(.) in 

a complete lattice L implies an inclusion measure function k: L×L→[0,1] given by k(x,u)= 
)(

)(
uxv

uv

L∨
, where 

the latter function quantifies a degree of inclusion of a lattice element x into another one u [24], [25], [38], 

[39]. Since a lattice Mh of generalized intervals is not a complete lattice the following definition is proposed 

here for an inclusion measure. 

                                                 
2 A partial ordering relation, symbolically ≤S, in a set S has to be: (PO1) reflexive (x≤S x), (PO2) antisymmetric (x≤S y 
and y≤S x imply x=y), and (PO3) transitive (x≤S y and y≤S z imply x≤S z), where x,y,z∈S. 
3 A lattice is a partially ordered set L any two of whose elements have a greatest lower bound (g.l.b.) or “meet” denoted 
by x∧L y, and a least upper bound (l.u.b.) or “join” denoted by x∨L y. A lattice L is called complete when each of its 
subsets X has a l.u.b. and a g.l.b in L. 
4 A metric distance in a set S is a real function d: S×S→R which satisfies: (MD1) d(x,y) ≥ 0, x,y∈S, (MD2) d(x,y)=0 ⇔ 
x=y, x∈S, (MD3) d(x,y) = d(y,x), x,y∈S, - Symmetry, (MD4) d(x,y) ≤ d(x,z) + d(z,y), x,y,z ∈S - Triangle Inequality. 
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Definition 4:  Let L be a non-complete lattice. An inclusion measure σ in L is a map σ: L×L→[0,1] such that 

for u,w,x∈L the following conditions are satisfied 

(IM1) σ(x,x) = 1, 

(IM2) u <L w ⇒ σ(w,u) < 1, and 

(IM3) u ≤L w ⇒ σ(x,u) ≤ σ(x,w)   -  Consistency Property. 

 

 In can be argued that σ(x,u) indicates a degree of inclusion of x in u [25], [39]. Therefore, from 

henceforward the notations σ(x,u) and σ(x≤Lu) will be used interchangeably. 

 For the totally-ordered lattice R of real numbers, in particular, any strictly increasing function f(.) is a 

positive valuation function, which can be used for introducing a positive valuation function in a lattice Mh of 

generalized intervals as detailed in the following. 

 

Proposition 5:  Let f: R→R be a strictly increasing real function in R, namely underlying positive valuation 

function. Then the real function v: Mh→R given by v([a,b]h)=sign([a,b]h)c(h)  is a positive 

valuation function in M

∫ −
b

a

dxafxf )]()([

h, where function sign: Mh→{-1, 0, +1} has been defined above, c: (0,1]→R+ is a 

positive real function, and  is the conventional integral operator. ∫ (.)

 

 We remark that the positive multiplicative coefficient c(h) has been inserted above for normalization; for 

instance it could be c(h)=h which indicates that, all other things being equal, a larger value of v(.) is assigned 

to a generalized interval of a larger height. Proposition 5 can be proved easily by considering exhaustively all 

the cases shown in Fig.2 so as to confirm that function v satisfies the conditions for a positive valuation 

function of definition 3. 

 Given a positive valuation function in Mh there follows a metric distance in Mh given by 

dh(x,y)=v(x y)-v(x y) as it has been shown above. As a special application consider f(x)=x and c(h)=h 

in proposition 5; it follows that the distance between two generalized intervals [a,b]

hM∨ hM∧

h and [c,d]h equals 

dh([a,b]h,[c,d]h)= h(|a-c|+|b-d|). Furthermore, a metric can be defined in the space M=  as follows U
],(

M
10∈h

h

 dM([ ,[ )= 1], hba 2], hdc
2
1 [dh([ ,[ ) + d1], hba 1], hdc h([ ,[ )] (1) 2], hba 2], hdc

It is straightforward to show that the aforementioned function dM satisfies conditions (MD1)–(MD4) of 

footnote 4; note that for h1=h2 it follows dM≡dh. An inclusion measure is introduced in the following in the 
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lattice Mh\M  of non-negative generalized intervals of height h. More specifically, it is straightforward to 

show that the following function 

h
−

 k(x,u)= 
)(

)(

M uxv
uv

h∨
 (2) 

satisfies conditions (IM1)-(IM3) of definition 4, therefore k(x,u) is an inclusion measure function in the 

lattice Mh\  (in fact, the aforementioned proof follows along the proof of Theorem 5 in [39], the latter 

proof is given in a complete lattice). Note that lattice M

h
−M

h\M  is a non-complete one because the set R of real 

numbers is a non-complete (totally-ordered) lattice [10]. It follows that the lattice M

h
−

h\M  of non-negative 

generalized intervals is a fuzzy lattice whose definition is shown in the following. 

h
−

 

Definition 6:  A fuzzy lattice is a pair <L,µ> where L is a crisp lattice and (L×L,µ) is a fuzzy set such that 

µ(x,y)=1 if and only if x≤Ly. 

 

 We remark that a fuzzy set is denoted in this work by a pair (X,µ), where X is the universe of discourse 

and µ is a fuzzy membership function µ: X→[0,1]. The collection of fuzzy lattices is referred to as 

framework of fuzzy lattices or FL-framework for short [25], [38], [39]. It follows that <Mh\M ,k> is a fuzzy 

lattice. The function k(x u) quantifies a degree of inclusion of non-negative generalized interval x to the 

non-negative generalized interval u in a “fuzzy lattice sense”. That is, given a positive valuation function v(.) 

in M

h
−

hM
≤

h, ratio k(x≤ u)= hM )
)(

M u
uv

h∨(xv
 expresses the size of interval u in terms of the size of the smallest 

interval which includes both intervals x and u, the latter size is considered as unit. 

 

B.  Remarks, Perspectives and Examples 
 

 In the definition of positive valuation function v: Mh→R, in proposition 5, the calculation of the definite 

integral  is required. Without loss of generality it can be assumed f(0)=0 because for any 

strictly monotone increasing, integrable real function f

∫ −
b

a

dxafxf )]()([

1(.) with f1(.)≠0 another one f0(.) with f0(0)=0 can 

always be defined from f1(.) by subtracting f1(0) from f1(x), ∀x∈R. Functions f1(.) and f0(.) give identical 

results when either of them is used for computing the definite integral  due to the linearity ∫ −
b

a

dxafxf )]()([ 11

 6



property of the integral operator:   

. In the sequel it is assumed f(0)=0 for all underlying positive valuations functions. The 

cardinality of all metric distances in a set M

=−∫
b

a

dxafxf )]()([ 11 =−−−∫
b

a

dxfaffxf )}]()({)}()([{ 00 1111

∫ −
b

a

dxafxf )]()([

1M

1M∨

∫ −
b

a

dxafxf )]()([ 00

1M∧

h of generalized intervals is shown in the following paragraph. 

 Proposition 5 implies that there is a one-one correspondence between metric distances in Mh and strictly 

increasing functions in the set R of real numbers. Since there are ℵ1 different strictly increasing functions in 

R, where ℵ1 is the cardinality of the set R of real numbers [22]; there follow ℵ1 different metric distances in 

Mh. 

 The essential role of a positive valuation function v: L→R is known to be a mapping from a lattice L of 

semantics to the mathematical field R of real numbers for carrying out computations [23]. Regarding, in 

particular, the domain R of an underlying positive valuation function f(.) note that the aforementioned 

domain is treated here as a totally ordered lattice; that is, the operations addition and multiplication in the 

domain of f(x) were of no concern. Nevertheless, the range of function f(.) was treated as the conventional 

mathematical field [20] of real numbers where both the addition and the multiplication operations involving 

f(x1) and f(x2) have been employed, e.g. for computing the integral  in proposition 5. The 

practical implication of the latter remark is that the tools presented here are applicable in any totally-ordered 

universe of discourse L provided an underlying positive valuation function in L. 

 From a mathematical viewpoint the set Mh of generalized intervals is still a metric lattice for h>1. 

Nevertheless, interest is focused in this work on metric lattices Mh with h∈(0,1] because generalized 

intervals in the latter lattices can be interpreted as a-cuts of fuzzy sets as explained below. The following 

examples illustrate on the plane the calculation of distance d(.,.) between generalized intervals in Mh. 

 

Example 7:  Consider two real numbers a and b (≠ a). Let [a,a]1 and [b,b]1 be the corresponding trivial 

generalized intervals in M  shown in Fig.3(a). Consider generalized intervals [a,a]1
0

1∨ [b,b]1 and 

[a,a]1 [b,b]1 in Fig.3 (b) and (c), respectively. Using the positive valuation function v(.) defined in 

proposition 5 with underlying positive valuation function f(x)=x, it follows v([a,a]1 [b,b]1)=c(1)|a-b| 

furthermore v([a,a]1
1M∧ [b,b]1)=-c(1)|a-b|, where |.| is the absolute value of its (real number) operand. In 

conclusion, d1([a,a]1,[b,b]1)=2c(1)|a-b|. Choosing c(1)=0.5, equality d([a,a]1,[b,b]1) = |a-b| is forced, the 

latter is the conventional distance between numbers a and b. 
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 Using a different underlying positive valuation function than f(x)=x, the distance between two 

generalized intervals can change as demonstrated in the following example. 

 

Example 8:  Consider generalized intervals [-1,1]1 and [2,4]1. Fig.4(a) and Fig.4(b) show, respectively, two 

different underlying positive valuation functions in the set R of real numbers. On the one hand, a steeply 

increasing underlying positive valuation function f1 is shown in Fig.4(a), that is in particular f1(x)=x3. The 

computation of positive valuation function v(.) with f=f1 and c(1)=0.5, results in d([-1,1]1,[2,4]1)=f([-

1,1]1∨ 1M [2,4]1)-f([-1,1]1
1M∧ [2,4]1)=32.5+3.5=36. On the other hand, a slowly increasing (saturated) 

underlying positive valuation function is shown in Fig.4(b), that is in particular the logistic function 

12
2 −

+ −xe
f (

1
=x) . The computation of positive valuation function of v(.) with f=f2 and c(1)=0.5, results in 

d([-1,1]1,[2,4]1) = f([-1,1]1
1M∨ [2,4]1)-f([-1,1]1

1M∧ [2,4]1) ≈ 0.713072 + 0.149738 ≈ 0.862810. 

 

 The latter example has demonstrated that different underlying positive valuation functions result in 

different distances between “fixed” intervals. Apparently, an underlying positive valuation function is an 

instrument for introducing non-linearities. The author of this work expects that the definition of a “good” 

underlying positive valuation function depends on an application. Since the goal of this work is to introduce 

novel tools rather than to optimise the utility of the (novel) tools introduced here, the positive valuation 

f(x)=x has been employed for simplicity henceforward. 

 

III.  THE METRIC FUZZY LATTICE F OF FINS 
 

 The previous section has studied lattices Mh, h∈(0,1] of generalized intervals. It was explained how ℵ1 

different positive valuation functions can be introduced in a lattice Mh, where ℵ1 is the cardinality of the set 

R of real numbers, moreover a positive valuation function in Mh implied both a metric distance dh and an 

inclusion measure function k; furthermore, a metric dM was introduced in the space M= . Based on 

the previous analysis useful tools are introduced in this section. Consider the following definition. 

U
],(

M
10∈h

h

 

Definition 9:  A Fuzzy Interval Number (FIN) is a continuous function F: (0,1]→M  (positive FIN), or       

F: (0,1]→M  (trivial FIN), or F: (0,1]→M  (negative FIN) such that h

h
+

h
0

h
− 1≤h2 ⇒ support(F(h1)) ⊇ 

support(F(h2)), where 0 < h1 ≤ h2 ≤ 1. 
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 We remark that without loss of generality the generalized interval F(1) can be a trivial generalized 

interval. Also, in the above definition a FIN F is required to be a continuous function in the sense that for 

h0∈(0,1), given ε>0, there is a δ(ε)>0 such that for all h∈(0,1) with |h-h0|<δ it follows dM(F(h),F(h0))<ε. The 

set of FINs is denoted by F; more specifically the sets of positive, trivial and negative FINs will be denoted, 

respectively, by F ,  and F . Fig.5 shows a positive FIN (F+ 0F − p), a trivial FIN (Ft) and a negative FIN (Fn) 

along the horizontal axis. 

 We point out explicitly that a FIN is a “number” not adhered to a specific interpretation; in other words, 

a FIN is regarded as an abstract “mathematical object”. FINs could have various interpretations and uses. For 

instance [26] employs a normed linear space of FINs, including both positive and negative FINs, for function 

approximation. Note that positive FINs can be interpreted as conventional convex fuzzy sets. Furthermore, a 

statistical interpretation for a positive FIN F is presented here below. An ordering relation has been 

introduced in the set F of FINs as follows. 

 

Definition 10:  Let F1,F2∈F, then F1 ≤F F2 ⇔ F1(h) hM≤ F2(h), for all h in (0,1]. 

 

 That is, a FIN F1 is smaller-than or equal-to another FIN F2 if and only if every generalized interval F1(h) 

of F1 is smaller-than or equal-to the corresponding generalized interval F2(h) of F2 for h∈(0,1]. The 

following proposition establishes that the ordering relation ≤F is a partial ordering relation. 

 

Proposition 11:  The set F of FINs is a partially ordered set because the ordering relation ≤F is 

(a) reflexive: F1 ≤F F1, 

(b) antisymmetric: F1 ≤F F2 and F2 ≤F F1 ⇒ F1 = F2, and 

(c) transitive: F1 ≤F F2 and F2 ≤F F3 ⇒ F1 ≤F F3, for F1, F2, F3 in F. 

 

 The proof of proposition 11 is shown in the Appendix. 

 It turns out that the partially ordered set F is a lattice. The following proposition introduces a metric 

distance in lattice F. 

 

Proposition 12:  Let F1 and F2 be FINs in lattice F. A metric distance function dK: F×F→R is given by 

dK(F1,F2)= , where c is a positive normalizing coefficient, d∫
1

0
21h ))(),(( dhhFhFdc h(F1(h),F2(h)) is a metric 

distance between generalized intervals F1(h) and F2(h), and  is the conventional integral operator. ∫ (.)
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 The proof of proposition 12 is shown in the Appendix. 

 A specific value for the positive normalizing coefficient c in proposition 12 depends on the application. 

Furthermore, we point out that negative generalized intervals are used implicitly in the computation of metric 

dK. More specifically the computation of dK is based on the metric distance dh(F1(h),F2(h)) whose 

computation involves explicitly negative generalized intervals. 

 It has been pointed out above that positive FINs can be interpreted as conventional convex fuzzy sets. 

Recall from [58] that a fuzzy set is convex if and only if the crisp set Γa, namely a-level set or equivalently a-

cut defined by Γa={x|µ(x) ≥ a}, is convex for a in (0,1]. It follows that when a FIN A is interpreted as a 

convex fuzzy set then the a-cut Γa of A is a closed interval such that a ≤ b implies Γa ⊇ Γb, more specifically 

it is Γh = support(F(h)). It turns out, when positive FINs are interpreted as convex fuzzy sets, that the lattice 

ordering relation ≤F between (positive) FINs is identical with the standard fuzzy subset relation [58]. 

 The metric dK presented above reduces to the metric distance d1(X,Y)= ∫
=

−+−
1

0

|)||(|
2
1

a

a
r

a
r

a
l

a
l dayxyx

a
lx a

rx a
ly a

ry

 

between two fuzzy numbers X and Y reported in the literature [5], [6], where [ , ] and [ , ] stand for 

the corresponding a-cuts of the fuzzy numbers X and Y, respectively. Note that lattice theory is not 

mentioned in [5], [6]. Using the terminology and notation presented in this work the latter metric distance 

d1(X,Y) can be regarded as a specific form of the metric distance dK for underlying positive valuation 

function f(x)=x, c(h)=1 and c=
2
1 . 

 It is also interesting to compare metric distance dK with another well-known metric distance between 

convex fuzzy sets given by the following equation 

 dp(u,v)= pp dad ([(  (3) aa
H vu /1

1

0

))][,]∫

whose calculation is based on the Hausdorf metric distance dH between the a-cuts [u]a and [v]a of two fuzzy 

sets u and v, respectively, as detailed in [12]; note also that the aforementioned metric dp(u,v) for both p=1 

and p=∞ also appears in [45], [60]. The Hausdorf metric dH(.,.) is a generalization of the distance between 

two points in a metric space to two compact nonempty subsets of the space [60]. For practical and theoretical 

purposes the membership functions of the fuzzy sets involved in the computation of dp(u,v) have been 

restricted to be upper semicontinuous [12]. Advantages and disadvantages of the metric distances dp and dK 

are discussed comparatively in the following. 

 The metric distance dp can be computed in space RN for any number N of dimensions based on the 

Hausdorf metric dH, whereas the metric dK is computed in RN only via its computation in R based on the 

metric dh. It follows that the metrics dH and dh produce different results in space R1; for instance consider 

two conventional intervals [a,b] and [c,d]. Then based on the Hausdorf separation function [12] the 
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Hausdorf metric is given by dH([a,b],[c,d])= max{|a-c|,|b-d|}, whereas metric dh with underlying positive 

valuation function f(x)=x and h=1 is given by dh([a,b],[c,d])= |a-c|+|b-d|. Moreover the employment of dh 

produces “intuitively expected” results, whereas the Hausdorf metric dH may produce “counter-intuitive” 

results as explained in the following. For instance dH([1,2],[3,9])= max{2,7}= 7, moreover dH([1,2],[8,9])= 

max{7,7}= 7; whereas, dh([1,2],[3,9])= 2+7= 9, moreover dh([1,2],[8,9])= 7+7= 14. In words, the metric dh 

concludes that intervals [1,2] and [3,9] are closer to each other than intervals [1,2] and [8,9] are, the latter is 

considered “intuitive”. Whereas, the Hausdorf metric dH concludes that intervals [1,2] and [3,9] are as far 

from each other as intervals [1,2] and [8,9] are, the latter is “counter-intuitive”. 

 Furthermore there is an overwhelming advantage, both theoretically and practically, for the employment 

of metric dK versus metric dp as explained in the following. From a theoretical point of view, there are ℵ0 

different metrics dp for all different integer values p=1,2,3,… whereas there exist ℵ1=  > ℵ02ℵ

,(
0

vu

0 different 

metrics dK, where ℵ0 and ℵ1 are the cardinalities of the sets of integers and real numbers, respectively. From 

a practical point of view note that only a finite number of metric distances between fuzzy numbers can be 

computed due to the finite word-length of a digital computer. More specifically, on the one hand, only a 

small number of distinct metrics dp, p=1,2,… can be used in practice because number  is practically 

no different than number  in a digital computer for large p

)d p

),(10
vud p + 0. On the other hand, the capacity to 

calculate metric dK based on any strictly increasing function f can potentially produce a much larger (finite) 

number of metrics dK thus taking full advantage of the existing digital computer memory resources. 

 The aforementioned advantages extend to inclusion measure functions σK in the non-complete lattice 

Fnn=F\  as explained in the following. −F

 

Proposition 13:  Let F1 and F2 be non-negative FINs in Fnn=F\F . An inclusion measure function σ− K: 

Fnn×Fnn→[0,1] is defined by σK(F1,F2)= , where k(F∫
1

0
21 ))(),(( dhhFhFk 1(h),F2(h)) is an inclusion measure 

function between non-negative generalized intervals F1(h) and F2(h), and  is the conventional integral 

operator. 

∫ (.)

 

 The proof of proposition 13 is shown in the Appendix. 

 Since σK(F1,F2) quantifies a degree of inclusion of FIN F1 into FIN F2 symbol σK(F1≤FF2) might be used 

instead of symbol σK(F1,F2) in the sequel. Both computations of the metric distance dK and the inclusion 

measure σK between FINs involve the computation of a definite integral. Furthermore note that both dK and 

σK constitute mathematically sound alternatives for quantifying the “relative position” on a FIN with respect 

to another one, which (alternatives) could be useful in applications. 
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 Alternative definitions of a fuzzy inclusion index have been proposed in the literature for quantifying a 

degree of inclusion of a fuzzy set into another one [7], [30], [44], [47]. The aforementioned alternative 

definitions have been proposed in a fuzzy set-theoretic context furthermore the fuzzy sets involved need to 

overlap otherwise the corresponding inclusion index equals zero. On the other hand, the fuzzy inclusion 

measure σK proposed here can quantify a degree of inclusion of one fuzzy set into another one in a “fuzzy 

lattice sense”. Therefore σK is typically non-zero for non-overlapping fuzzy sets; the latter has been valuable 

in various pattern recognition applications as pointed out in [25] in a discussion on the extended choice 

(Weber) function. It should also be pointed out that there exists at least one more inclusion measure function 

σ given as follows 

 
)(

L
L uv

uxv
uxs

)(
)(

∧
=≤  (4) 

where x, u are elements of a general lattice L with positive valuation function v:L→R; it follows s(x≤Lu)= 0 

for x||Lu [40]. If positive FINs are interpreted as convex fuzzy sets then it follows that the fuzzy degree of 

inclusion s(x≤Lu) of a fuzzy set A to a non-overlapping fuzzy set B equals zero. 

 A number of examples are shown in the following to illustrate the utility of the aforementioned tools σK 

and dK in the lattice F  of positive FINs. +

 

Example 14:  Consider FINs E and F1 in Fig.6(a) with triangular membership functions. FINs F1L and F1R 

shown, respectively, in Fig.6 (b) and (c) have been produced from FIN F1 by moving the top of F1 by 0.2 to 

the left and to the right, respectively. It is expected intuitively that FIN F1 should be included (in a fuzzy 

lattice sense) in FIN E less than it does FIN F1L; nevertheless FIN F1 should be included in FIN E more than 

it does FIN F1R. Computation of numbers σK(F1≤FE), σK(F1L≤FE) and σK(F1R≤FE) as shown in proposition 13 

has resulted in σK(F1≤FE)≈ 0.2512, σK(F1L≤FE)≈ 0.2537 and σK(F1R≤FE)≈ 0.2488, as expected intuitively. 

 

Example 15:  In this example the degree of inclusion σK is calculated of FIN F1 into both FINs E1 and E2 

shown in Fig.7(a). By inspecting Fig.7(a) it might be intuitively expected that the degree of inclusion 

σK(F1≤FE2) of FIN F1 into FIN E2 should be larger than the degree of inclusion σK(F1≤FE1) of FIN F1 into 

FIN E1 (in a fuzzy lattice sense) because FIN E2 “leans more towards” FIN F1 than FIN E1 does. Using 

formula σK(F1≤FF2)=  of proposition 13, it follows σ∫
1

0
21 ))(),(( dhhFhFk K(F1≤FE1)≈ 0.2465 and 

σK(F1≤FE2)≈ 0.2602 as expected intuitively. Fig.7(b) plots functions k(F1(h),Ei(h)) i=1,2 versus h for 

h∈(0,1]. The integral of a function k(F1(h),Ei(h)) i=1,2, that is the area under a curve plotted in Fig.7(b), 

equals the corresponding degree of inclusion of FIN F1 into FIN Ei, i=1,2. 
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 Equipped with an inclusion measure σK(.,.) the lattice Fnn=F\F  of non-negative FINs becomes a fuzzy 

lattice <F

−

nn,σK>. Recall that metric dK is also available in the lattice Fnn. Both the inclusion measure σK and 

the metric distance function dK can be used for quantifying the “relative position” of two FINs. In particular, 

inclusion measure σK(F1≤FF2) can be used for quantifying a fuzzy lattice degree of inclusion of FIN F1 into 

FIN F2, whereas the metric distance dK(F1,F2) can be used for quantifying the proximity of FINs F1 and F2. It 

follows that lattice Fnn could be used for unifying rigorously heterogeneous data including fuzzy sets, 

numbers and intervals [24], [37]. However, the employment of σK could be misleading as demonstrated in 

the following example. 

 

Example 16:  Fig.8 shows two pairs of FINs, namely pair E and F1 (above) and pair E and F2 (below). Using 

formula σK(F1≤FF2)=  of proposition 13, it was calculated σ∫
1

0
21 ))(),(( dhhFhFk K(E≤FF1)=0.1256 and 

σK(E≤FF2)=0.3768, that is FIN E is included more in FIN F2 than it is in FIN F1, as it might be expected 

intuitively by inspecting Fig.8. Nevertheless it is σK(F1≤FE) = 0.3140 = σK(F2≤FE), that is FIN F1 is included 

in FIN E as much as FIN F2 is included in FIN E. The latter counter-intuitive equality is due to the fact that 

the computation of k(Fi(h),E(h)), i=1,2 in proposition 13 is based on the computation of v(Fi(h) E(h)) 

i=1,2 where the left-end of generalized interval F

hM∨

hMi(h) i=1,2 has no effect in the computation of Fi(h)∨ E(h); 

it follows σK(F1≤FE) = σK(F2≤FE). 

 The aforementioned counter-intuitive result can be amended using the metric distance dK instead. More 

specifically it has been computed dK(E,F2) ≈ 5.1667 ≤ 5.8334 ≈ dK(E,F1); the latter inequality is expected 

intuitively from Fig.8. It is worthwhile pointing out that in extensive experiments using real world data in the 

Hellenic Sugar Industry (HSI) domain regarding prediction of sugar production, the employment of dK has 

resulted in more accurate predictions than the employment of σK. 

 

 The following section IV illustrates how a positive FIN can be constructed from a population of samples 

(measurements), moreover a statistical interpretation for a (positive) FIN F is proposed. 

 

 

IV.  CONSTRUCTION AND A STATISTICAL INTERPRETATION OF A FIN 
 

 This section presents algorithm CALFIN for constructing a positive FIN from a population of numbers. A 

statistical interpretation of a constructed FIN is also shown. Finally, it is explained how the techniques 

introduced in this work can be used for calculating a (metric) distance between either two sets of real 

numbers or two probability density functions. 
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A.  Calculating a FIN from a Population of Measurements 
 

 Consider a vector of real numbers (samples/measurements) x=[x1,x2,…,xN] such that the numbers 

x1,x2,…,xN are ordered incrementally, that is x1 ≤ x2 ≤ … ≤ xN. A FIN can be constructed according to the 

following procedure. Calculate the median5 number median(x) of the N numbers in vector x=[x1,x2,…,xN]. 

Insert number median(x) in a vector pts. Split vector x into two “half vectors”, these are x_left which 

contains the numbers of vector x smaller than median(x), and vector x_right which contains the numbers 

of vector x larger than median(x). The aforementioned procedure is repeated again for vectors x_left and 

x_right in order to calculate the numbers median(x_left), median(x_right), which are both inserted in 

vector pts. The previous procedure is repeated recursively log2N times, until “half vectors” are computed 

including a single number xi, i=1,…,N; the latter numbers are median numbers by definition. The 

computed median values are stored (sorted) in vector pts whose entries constitute the abscissae values of 

a positive FIN’s membership function. The corresponding ordinate values are computed in vector val as 

explained in the following. 

 

CALFIN: An Algorithm for Calculating a FIN 

1. Let x be a vector of real numbers. 

2. Order incrementally the numbers in vector x. 

3. Initially vector pts is empty. 

4. function calfin(x) 

5. { while (|x| ≠ 1) 

6. med:= median(x) 

7. insert med in vector pts 

8. x_left:= elements in vector x less-than number median(x) 

9. x_right:= elements in vector x larger-than number median(x) 

10. calfin(x_left) 

11. calfin(x_right) 

12. endwhile 

13. } //function calfin(x) 

14. Sort vector pts incrementally. 

15. Let |pts| denote the cardinality of vector pts. Store in vector val, |pts|/2 numbers from 0 up to 1 in steps of 

2/|pts| followed by another |pts|/2 numbers from 1 down to 0 in steps of 2/|pts|. 

                                                 
5 The median(x), where x=[x1,x2,…,xN] is a vector, is defined to be a number such that half of the N numbers x1,x2,…,xN 
are smaller than median(x) and the other half are larger than median(x); for instance, the median([x1,x2,x3]) with x1 < x2 
< x3 equals x2, whereas the median([x1,x2]) with x1 < x2 was computed here as median([x1,x2])= (x1 + x2)/2. 
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 Algorithm CALFIN computes two vectors, namely pts and val, where vector val includes the degrees of 

fuzzy membership of the corresponding real numbers in vector pts. Note that during a preprocessing step, 

when identical numbers appear in the original vector x, then only the first one is retained whereas each of the 

subsequent identical numbers is replaced by the sum of its previous number and a very small user-defined 

positive number ε; in this way identical numbers are replaced by distinct numbers in an arbitrarily small 

neighbourhood. Algorithm CALFIN produces a positive FIN with membership function µ(x) such that 

µ(x)=1 for exactly one number x. 

 Fig.9 displays FIN G constructed from 222 random numbers generated according to the normal 

probability density function N(0,1) with mean 0 and standard deviation 1. Note that the maximum value (1) 

of FIN G is attained close to the mean 0 of probability density function N(0,1). 

 

B.  A Statistical Interpretation of FINs, etc. 
 

 Due to the aforementioned construction algorithm of a FIN F it follows that when algorithm CALFIN is 

applied on a vector x=[x1,x2,…,xN] of numbers then approximately 100(1-h) % of the n numbers in vector x 

are within interval support(F(h)). If a large number of samples is drawn independently according to a 

probability distribution function f0(x) and a FIN F is constructed using algorithm CALFIN, then interval 

support(F(h)) constitutes, by construction, an interval of confidence at level-h. That is, a random number 

drawn according to the probability distribution function f0(x) is expected to be included in interval 

support(F(h)) with confidence 100(1-h)%. 

 The previous analysis implies a one-one correspondence between FINs and probability density functions 

(pdfs) as explained in the following. Based on the one-one correspondence between pdfs and cumulative 

distribution functions (CDFs), a one-one correspondence will be shown between CDFs and FINs. In the one 

direction, it is shown how a CDF G(x) is mapped to a FIN F: Let x0 be such that G(x0)=0.5. Let the 

membership function µF(.) of a FIN F be defined such that µF(x)=2G(x) for x ≤ x0 furthermore µF(x)=2[1-

G(x)] for x ≥ x0. In the other direction, it is shown how a FIN F is mapped to a CDF: Let x0 be such that 

µF(x0)=1. A CDF G(x) is defined such that G(x)=0.5µF(x) for x ≤ x0 furthermore G(x)=1-0.5µF(x) for x ≥ x0. 

From the previous it follows that a FIN which corresponds to a uniform probability distribution over a range 

[a,b] is a FIN with isosceles triangular membership function of unit height with base [a,b]. The previous 

analysis also implies that metric dK(,.,) can be employed for calculating a distance between either two 

probability density functions or two cumulative distribution functions. 

 It might be useful to point out that another function for calculating proximity of two probability 

distributions is the so-called Kullback-Leibler (KL) distance [17]. On the one hand, a disadvantage of KL-

distance is that the CDFs involved in the calculations need to be defined on the same elements of a set 

otherwise spurious results are produced such as 0 or ∞. On the other hand, distance dK can be used to 
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calculate the proximity of two CDFs defined even on mutually disjoint intervals of numbers. Finally note 

that KL-distance is not a metric because it does not satisfy laws D3 (Symmetry) and D4 (Triangle 

Inequality). 

 An additional potential for algorithm CALFIN stems from the construction of a FIN from a population of 

numbers. Therefore, function dK(F1,F2) can also be used for computing a (metric) distance between two 

populations of numbers as demonstrated in the following example. 

 

Example 17:  Three populations of random numbers were generated randomly according to the uniform 

probability distribution in the ranges [0,2], [0.9,1.1], and [0.2, 2.2], respectively. Each population included 

111 random numbers. The averages of the three populations of random numbers have been, respectively, 

1.0467, 1.0030 and 1.1625. Fig.10 shows the three FINs constructed using algorithm CALFIN. The 

following distances were calculated: dK(F1,F2)=0.2843, dK(F2,F3)=0.3480 and dK(F1,F3)=0.1002. The 

aforementioned distances dK confirm what might have been expected by observing Fig.10, that is the 

proximity of the two populations of random numbers in the ranges [0,2] and [0.2, 2.2] is larger than the 

proximity of the two populations of numbers in the ranges [0,2] and [0.9,1.1], even though both [0.9,1.1] ⊆ 

[0,2] and the two populations of numbers drawn randomly in the ranges [0,2] and [0.9,1.1] have nearly equal 

average values. It is worthwhile pointing out that should the distances between the population averages were 

used then the first two populations of numbers would be the nearest to each other. 

 This example also demonstrates experimentally the fact that a FIN F, constructed from N numbers drawn 

randomly according to the uniform probability distribution, has nearly an isosceles triangular membership 

function. More specifically in the limit when N becomes very large then FIN F becomes an isosceles triangle 

as it has been confirmed experimentally using progressively larger values of N than N=111. 

 

V.  PREDICTION OF SUGAR PRODUCTION BASED ON FINS 
 

 The sugar-production prediction problem is outlined briefly in this section, in the HSI (Hellenic Sugar 

Industry) domain, followed by experimental results and discussion. 

 The majority of sugar produced in Europe is extracted from the storage root of Beta Vulgaris L (common 

name: sugar-beet), which is planted in early spring and harvested during late-summer/early-fall. In particular 

in Greece, sugar production is organized in five agricultural districts with factories located at Larisa, Platy, 

Serres, Xanthi, and Orestiada. In the beginning of a year a set of pilot fields is selected in every agricultural 

district for sampling. An early season accurate prediction of sugar production is critical for safeguarding the 

continuous operation of a sugar production factory since interruptions are very costly. 

 Sample measurements of ten production variables and eight meteorological variables were available in 

this work for eleven years from 1989 to 1999 from three agricultural districts, namely Larisa, Platy, and 
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Serres [41]. The production variables included: 1) average root weight, in g, 2) POL: percentage of sugar in 

fresh root weight, 3) a-amino-Nitrogen (a-N), in meq/100g root, 4) potassium (K), in meq/100g root, 5) 

sodium (Na), in meq/100g root, 6) Leaf Area Index (LAI): leaf area per field area ratio, 7) TOP: plant top 

weight, in kg/hectare, 8) Roots Weight (RW), in kg/hectare, 9) Nitrogen-test (N-test): NO3-N content in 

petioles, in mg.kg-1, and 10) the planting date. Sugar production was calculated as POL*RW. The 

meteorological variables included: 1) average daily temperature, in oC, 2) maximum daily temperature, in 
oC, 3) minimum daily temperature, in oC, 4) relative humidity, 5) wind speed, daily average in miles/hour, 6) 

daily precipitation, in mm, 7) daily evaporation, in mm, and 8) sunlight, in hours/day. The production 

variables were sampled every 20 days, whereas the meteorological variables were sampled daily. The term 

population of measurements is used here to denote either, first, a collection of a production variable samples 

obtained during 20 days from all pilot fields or, second, a collection of meteorological variable samples 

obtained daily in an agricultural district during the aforementioned 20 days. 

 In the context of this work prediction was effected “by classification” using a nearest neighbour 

classifier as explained in the following. Each training year was labelled by an expert as “poor”, “medium”, or 

“good” according to the corresponding industrial sugar yield; finally a testing year was assigned the category 

label of its nearest neighbour training year. Two types of distances were employed here comparatively. First, 

the conventional Euclidean distance between the average values of populations of measurements; second, the 

metric distance dK between FINs computed, respectively, from the corresponding populations of 

measurements using algorithm CALFIN. Details regarding the application of a nearest neighbour classifier 

FINkNN are shown in [41]. Some aspects of the application of classifier FINkNN are outlined in the 

following using public meteorological data for the months of July and August for the port of Thessaloniki 

area, that is where sugar-beets are grown in Greece. 

 Fig.11(a) displays four FINs, namely T89, T92, T96 and T99 computed by algorithm CALFIN from daily 

average temperatures for July and August of the years 1989, 1992, 1996 and 1999, respectively. 

Furthermore, Fig.11(b) displays four FINs, namely H89, H92, H96 and H99 computed likewise from daily 

relative humidities for July and August, respectively. Table I displays the distances dK between all pairs of 

FINs among T89, T92, T96 and T99, whereas Table II shows the distances dK between all pairs of FINs 

among H89, H92, H96 and H99. 

 Table III shows experimental results using four different prediction methods. The results in Table III are 

shown in the chronological order of their publication. More specifically, a minimum sugar prediction error 

around 6% has been published in [42] by Bayesian Combined Predictor (BCP) whose local predictors 

include linear regressors, artificial neural networks, polynomial predictors, etc.; the results in Table III by 

both a first-principles model (15%) and intelligent-clustering techniques (5%) have been published in [27]; 

finally, the result by FINkNN classifier (2%) is from [41]. The first three methods in Table III replace a 

population of measurements by the corresponding average. The last two methods in Table III achieve 
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prediction “by classification” as outlined above; more specifically the method “Intelligent clustering 

techniques” (line 3 in Table III) uses the distances between the averages of populations of measurements, 

whereas method “Classifier FINkNN” uses the distances between FINs. 

 Classifier FINkNN in Table III used FINs computed from populations of selected input variables. More 

specifically, input variables Relative Humidity, and Roots Weight were selected for the Larisa agricultural 

district, input variables Daily Precipitation, Sodim (Na), and Average Root Weight for Platy, furthermore 

input variables Daily Precipitation, Average Root Weight, and Roots Weight were selected for the Serres 

agricultural district as detailed in [41]. Therefore, it seems reasonable to expect that different input variables 

would be the most effective for predicting sugar production in other countries. 

 The experimental goal was to achieve prediction of sugar production by classification in one of the 

classes “good”, “medium”, or “poor”; in particular, the goal in this work was to predict the sugar production 

level in September based on data available at the end of July. For all agricultural districts a “leave-one-out” 

series of eleven experiments was carried out such that one year among years 1989 to 1999 was left out, in 

turn, for testing whereas the remaining ten years were used for training as detailed in [41]. Note that the 

computational model for “prediction by classification” outlined in this work is highly transferable and, 

provided that sufficient data are available, can be trained for any region or country. The error rate of 2% 

reported in Table III for classifier FINkNN is the average over both three agricultural districts and eleven 

years per agricultural district. 

 The improved classification result of 2.0% by classifier FINkNN (line 4 of Table III) has been attributed 

to the employment of FINs. More specifically it is argued in [41] that using the average value of a population 

of measurements in a prediction model could be misleading. For instance, two different daily precipitation 

patterns in a month may be characterized by identical average values, nevertheless their effect on the annual 

sugar production level might be drastically different; in contrast, the computation of metric dK between FINs 

is sensitive to both higher order statistics and other features of a distribution of samples/measurements, e.g. 

the skewness of a distribution, etc. A FIN, computed from a population of measurements, has been treated as 

a single datum; in conclusion a whole population of measurements are jointly considered instead of 

considering a single, “best” in a sense, measurement the latter is a typical practice in the probabilistic data 

processing framework. 

 

VI.  DISCUSSION AND CONCLUSION 
 

 This work has presented novel mathematical tools developed for improving prediction of sugar 

production for Hellenic Sugar Industry (HSI), Greece. Previous prediction models replace a population of 

measurements by the corresponding average then a prediction model is used [9], [18], [27], [28], [34], [42], 

[53], [54]. In the context of this work a population of measurements was represented by a FIN (Fuzzy 
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Interval Number) producing improved prediction results “by classification”. Detailed experimental results 

have been shown comparatively elsewhere [41]. Moreover, the prediction problem in the HSI domain has 

been also detailed in [27] where a software package has been developed and can be updated on a yearly 

basis. This work focuses on an analytic study of FINs in the context of mathematical lattice theory. 

 A FIN was described as a set of generalized intervals either, positive, trivial or negative generalized 

intervals. Based on lattice theory both a metric distance dK and a lattice inclusion measure function σK were 

introduced analytically in the set F of FINs. A FIN has been presented here as a number not adhered to a 

specific interpretation. It was explained how a positive FIN can be interpreted also as a convex fuzzy set. 

 A simple form of the aforementioned metric dK has been presented and applied in the literature in a fuzzy 

set-theoretic context based on a–cuts [5], [6]. The enhanced metric dK has introduced novel (lattice theoretic) 

perspectives with useful practical implications. For instance, the universe of discourse has been separated 

from the mathematical field R of real numbers using a underlying positive valuation function. There 

followed ℵ1 different metric distances between FINs, whereas there are “only” ℵ0 different metric distances 

between convex fuzzy sets, where ℵ0 and ℵ1 are the cardinalities of the sets of integers and real numbers, 

respectively, with ℵ1 = 2  > ℵ0ℵ
0 [48]. It was discussed how generalized intervals based on an underlying 

positive valuation function, can imply a much larger (finite) number of metrics than a-cuts can imply in 

practical applications. 

 Algorithm CALFIN was presented for constructing a FIN from a population of samples/measurements. 

Moreover, a statistical interpretation of a FIN F(h) was proposed such that interval support(F(h)) was 

interpreted as an interval of confidence at level-h. 

 The mathematical tools presented in this work can be useful in a number of applications. For instance a 

(metric) distance function, such as distances dK, is typically required in fuzzy-, and interval regression 

analysis [2], [11], [13], [16], [50], [51], [56]. 

 Furthermore, an employment of the lattice inclusion measure σK in neuro-fuzzy models [21], [55] could 

be useful for analysis and design (Note that the effectiveness of the lattice inclusion measure function σK, as 

an activation function in neural-computing, has already been demonstrated in applications [25], [38], [40]). 

Moreover note that the logistic function, which is often used as an activation function by the neurons of a 

neural network, has been presented in example 8 here as a “saturated” underlying positive valuation 

function. Alternative non-linear underlying positive valuation functions could be employed by the neurons of 

a neural network to improve the effectiveness of various neural-fuzzy techniques in applications. 

 Fuzzy sets, in both fuzzy regression and neuro-fuzzy modelling techniques, are frequently employed for 

approximating a real function f: Rm→Rn. The introduction of potentially ℵ1 different metric distances in the 

lattice of convex fuzzy sets could improve the design of Fuzzy Inference Systems (FIS) [14], [31], [43], [46], 

[52] using standard function approximation tools [8]. 

 19



APPENDIX 

 

A.  Proof of Proposition 11 

(a) Let F1∈F. Then F1(h)≤ FhM 1(h) for all h in (0,1], hence F1 F≤ F1. 

(b) Let F1,F2∈F. First, F1 F≤ F2 is equivalent to F1(h) hM≤ F2(h) for all h in (0,1]. Second, F2 F≤ F1 is 

equivalent to F2(h) FhM≤ 1(h) for all h in (0,1]. Since Mh is a lattice, F1(h) hM≤ F2(h) and F2(h) hM≤ F1(h) 

jointly imply F1(h) = F2(h) for all h in (0,1]. In conclusion, F1 = F2. 

(c) Let F1,F2,F3∈F. Then F1≤F F2 is equivalent to F1(h) hM≤ F2(h), and F2 F≤ F3 is equivalent to 

F2(h) FhM≤ 3(h) for h in (0,1]. Since Mh is a lattice, F1(h) hM≤ F2(h) and F2(h)≤ FhM 3(h) jointly imply 

F1(h) FhM≤ 3(h) for all h in (0,1]. In conclusion, F1 F≤ F3. 

Thus, the proposition has been proven. 

 

B.  Proof of Proposition 12 

 Function dh(F1(h), F2(h)), h∈(0,1] has been introduced as a metric distance in the lattice Mh of generalized 

intervals. To prove that dK(F1,F2)=  defines a metric distance in the lattice F of FINs, 

laws (MD1)-(MD4) (see in footnote 4) need to be satisfied. For simplicity, and without loss of generality, it 

is assumed in the remaining of this proof that c=1. 

∫
1

0
21h ))(),(( dhhFhFdc

(MD1) dK(F1,F2)= , where d∫
1

0
21h ))(),(( dhhFhFd h(F1(h),F2(h)) ≥ 0. Therefore dh(F1, F2) ≥ 0. 

(MD2) On the one hand, dK(F1,F1)=  =  = 0. ∫
1

0
11h ))(),(( dhhFhFd ∫

1

0

0dh

 On the other hand, let dK(F1,F2)=0, that is let  = 0. It is known that 

d

∫
1

0
21h ))(),(( dhhFhFd

h(F1(h),F2(h)) ≥ 0, hence dh(F1(h),F2(h)) is equal to zero almost everywhere. Note that the term 

almost everywhere is used here in a “measure theoretic sense”, that is dh(F1(h),F2(h)) is larger than 0 

on a set of measure zero [15]. It follows that F1(h) = F2(h) almost everywhere on (0,1]. Since, 

according to definition 9, both functions F1 and F2 are continuous, it follows F1(h)=F2(h), h∈(0,1]; 

hence F1=F2. 

(MD3) dK(F1,F2)=  =  = d∫
1

0
21h ))(),(( dhhFhFd ∫

1

0
12h ))(),(( dhhFhFd K(F2,F1). 
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(MD4) dK(F1,F3)=  ≤  =  

+  = d

∫
1

0
31h ))(),(( dhhFhFd

3 ))(), dhhFh

∫ +
1

0
32h21h ))](),(())(),(([ dhhFhFdhFhFd ∫

1

0
21h ))(),(( dhhFhFd

∫
1

0
2h ((Fd K(F1,F2) + dK(F2,F3). 

Thus, the proposition has been proven. 

 

C.  Proof of Proposition 13 

 It is shown below that function σK(F1,F2)=  satisfies conditions (IM1)-(IM3) of 

definition 4. 

∫
1

0
21 ))(),(( dhhFhFk

(IM1) σK(F1,F1)=  =  = 1. ∫
1

0
11 ))(),(( dhhFhFk ∫

1

0

1dh

(IM2) Let F1 F< F2. Since both functions F1 and F2 are continuous it follows F1(h)< FhM 2(h) hence 

k(F2(h),F1(h)) < 1 on a non-zero set. In conclusion, σK(F2,F1)=  < 1. ∫
1

0
12 ))(),(( dhhFhFk

(IM3) Let F1 F≤

),(h

F2. It follows F1(h)≤ FhM 2(h) hence k(X(h),F1(h)) ≤ k(X(h),F2(h)) ⇒  ≤ 

 ⇒ σ

∫
1

0
1 ))(),(( dhhFhXk

∫
1

0
2 ))(( dhhFXk K(X,F1) ≤ σK(X,F2) for X∈Fnn=F\F . −

Thus, the proposition has been proven. 
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Fig. 1 Incomparable generalized intervals r1 and r2 in Mh, symbolically r1 || hM

r2, when 

 (a) r1, r2∈M  (positive generalized intervals), h
+

 (b) r1, r2∈M  (negative generalized intervals), and h
−

 (c) r1∈M , rh
+ 2∈M  (one positive and one negative generalized interval). h

−

 Different fill-in patterns are shown for partially overlapped generalized intervals. 
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Fig. 2 The join (r1∨ hM

r2) and meet (r1 hM
∧ r2) for various pairs r1 and r2 of generalized intervals r1,r2∈Mh. 

Different fill-in patterns are used for partially overlapped generalized intervals. 

 (a) “Intersecting” positive generalized intervals, 

 (b) “Non-intersecting” positive generalized intervals, 

 (c) “Intersecting” negative generalized intervals, 

 (d) “Non-intersecting” negative generalized intervals, 

 (e) “Intersecting” positive & negative generalized intervals, and 

 (f) “Non-intersecting” positive & negative generalized intervals. 
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Year 1999: FIN T99
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Year 1999: FIN H99
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Fig. 11 (a) Four FINs T89, T92, T96 and T99 produced from daily average temperatures for July and 

August of years 1989, 1992, 1996 and 1999, respectively, at the Thessaloniki area, Greece. 

 (b) Four FINs H89, H92, H96 and H99 produced from daily relative humidities for July and 

August of years 1989, 1992, 1996 and 1999, respectively, at the Thessaloniki area, Greece. 
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 TABLE I  
DISTANCES dK BETWEEN FINS T89, T92, T96 AND T99 SHOWN IN FIG.11(a) 

 
 T89 

(Year 1989) 
T92 

(Year 1992) 
T96 

(Year 1996) 
T99 

(Year 1999) 
T89  (Year 1989) 0 1.2472 0.5821 1.8213 
T92  (Year 1992) 1.2472 0 0.8528 0.5741 
T96  (Year 1996) 0.5821 0.8528 0 1.3249 
T99  (Year 1999) 1.8213 0.5741 1.3249 0 

 
 
 
 
 
 
 

TABLE II 
DISTANCES dK BETWEEN FINS H89, H92, H96 AND H99 SHOWN IN FIG.11(b) 

 
 H89 

(Year 1989) 
H92 

(Year 1992) 
H96 

(Year 1996) 
H99 

(Year 1999) 
H89  (Year 1989) 0 4.6267 14.7569 14.3932 
H92  (Year 1992) 4.6267 0 10.1907 9.8272 
H96  (Year 1996) 14.7569 10.1907 0 0.8226 
H99  (Year 1999) 14.3932 9.8272 0.8226 0 

 
 
 
 
 
 

TABLE III 
APPROXIMATE % SUGAR PRODUCTION PREDICTION ERROR FOR VARIOUS 

METHODS ARRANGED IN THE CHRONOLOGICAL ORDER OF THEIR PUBLICATION 
 

Prediction Method Approximate % Prediction Error 
Bayesian Combined Predictors (BCP) 6.0 
First principles model 15.0 
Intelligent clustering techniques 5.0 
Classifier FINkNN 2.0 
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