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Abstract 
This work introduces FINkNN, a k-nearest-neighbor classifier operating over the metric lattice of 
conventional interval-supported convex fuzzy sets. We show that for problems involving 
populations of measurements, data can be represented by fuzzy interval numbers (FINs) and we 
present an algorithm for constructing FINs from such populations. We then present a lattice-
theoretic metric distance between FINs with arbitrary-shaped membership functions, which forms 
the basis for FINkNN’s similarity measurements. We apply FINkNN to the task of predicting 
annual sugar production based on populations of measurements supplied by Hellenic Sugar 
Industry. We show that FINkNN improves prediction accuracy on this task, and discuss the 
broader scope and potential utility of these techniques. 
Keywords: k Nearest Neighbor (kNN), Fuzzy Interval Number (FIN), Metric Distance, 
Classification, Prediction, Sugar Industry. 

1 Introduction  
Learning and decision-making are often formulated as problems in N-dimensional Euclidean 
space RN, and numerous approaches have been proposed for such problems (Vapnik, 1988; 
Vapnik & Cortes, 1995; Schölkopf et al., 1999; Ben-Hur et al., 2001; Mangasarian & Musicant, 
2001; Citterio et al., 1999; Ishibuchi & Nakashima, 2001; Kearns & Vazirani, 1994; Mitchell, 
1997; Vidyasagar, 1997; Vapnik, 1999; Witten & Frank, 2000). Nevertheless, data 
representations other than flat, attribute-value representations arise in many applications 
(Goldfarb, 1992; Frasconi et al., 1998; Petridis & Kaburlasos, 2001; Paccanaro & Hinton, 2001; 
Muggleton, 1991; Hutchinson & Thornton, 1996; Cohen, 1998; Turcotte et al., 1998; Winston, 
1975). This paper considers one such case, in which data take the form of populations of 
measurements, and in which learning takes place over the metric product lattice of conventional 
interval-supported convex fuzzy sets. 

Our testbed for this research concerns the problem of predicting annual sugar production 
based on populations of measurements involving several production and meteorological variables 
supplied by the Hellenic Sugar Industry (HSI). For example, a population of 50 measurements, 
which correspond to the Roots Weight (RW) production variable from the HSI domain is shown 
in Figure 1. More specifically, Figure 1(a) shows 50 measurements on the real x-axis whereas 
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Figure 1(b) shows, in a histogram, the distribution of the 50 measurements in intervals of 400 
Kg/1000 m2. Previous work on predicting annual sugar production in Greece replaced a 
population of measurements by a single number, most typically the average of the population. 
Classification was performed using methods applicable to N-dimensional data vectors (Stoikos, 
1995; Petridis et al., 1998; Kaburlasos et al., 2002). 

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

3

6

9

12

15

Roots W eight (Kg/1000 m2)

no
. o

f s
am

pl
es

 

(a)

 (b)
 
Figure 1: A population of 50 measurements which corresponds to Roots Weight (RW) production 

variable from the HSI domain. 
 (a) The 50 RW measurements are shown along the x-axis. 
 (b) A histogram of the 50 RW measurements in steps of 400 Kg/1000 m2. 
 
 

In previous work (Kaburlasos & Petridis, 1997; Petridis & Kaburlasos, 1999) the authors 
proposed moving from learning over the Cartesian product RN=R×...×R to the more general case 
of learning over a product lattice domain L=L1×...×LN (where R represents the special case of a 
totally ordered lattice), enabling the effective use of disparate types of data in learning. For 
example, previous applications have dealt with vectors of numbers, symbols, fuzzy sets, events in 
a probability space, waveforms, hyper-spheres, Boolean statements, and graphs (Kaburlasos & 
Petridis, 2000, 2002; Kaburlasos et al., 1999; Petridis & Kaburlasos, 1998, 1999, 2001). This 
work proposes to represent populations of measurements in the lattice of fuzzy interval numbers 
(FINs). Based on results from lattice theory, a metric distance dK is then introduced for FINs with 
arbitrary-shaped membership functions. This forms the basis for the k-nearest-neighbor classifier 
FINkNN (Fuzzy Interval Number k-Nearest Neighbor), which operates on the metric product 
lattice FN, where F denotes the set of conventional interval-supported convex fuzzy sets. 

This work shows that lattice theory can provide a useful metric distance on the collection of 
conventional fuzzy sets defined over the real number universe of discourse. In other words, the 
learning domain in this work is the collection of conventional fuzzy sets (Dubois & Prade, 1980; 
Zimmerman, 1991). We remark that even though the introduction of fuzzy set theory (Zadeh, 
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1965) made an explicit connection to standard lattice theory (Birkhoff, 1967), to our knowledge 
no widely accepted lattice-inspired tools have been crafted in fuzzy set theory. This work 
explicitly employs results from lattice theory to introduce a useful metric distance dK between 
fuzzy sets with arbitrary shaped membership functions. 

Various distance measures have previously been proposed in the literature involving fuzzy 
sets. For instance, in Klir & Folger (1988) Hamming, Euclidean, and Minkowski distances are 
shown to measure the degree of fuzziness of a fuzzy set. The Hausdorf distance is used in 
Diamond & Kloeden (1994) to compute the distance between classes of fuzzy sets. Also, metric 
distances have been used in various problems of fuzzy regression analysis (Diamond, 1988; Yang 
& Ko, 1997; Tanaka & Lee, 1998). Nevertheless, all previous metric distances are restricted 
because they only apply to special cases, such as between fuzzy sets with triangular membership 
functions, between whole classes of fuzzy sets, etc. The metric distance function dK introduced in 
this work can compute a unique distance for any pair of fuzzy sets with arbitrary-shaped 
membership functions. Furthermore the metric dK is used here specifically to compute a distance 
between two populations of samples/measurements, and is shown to result in improved 
predictions of annual sugar production. 

The layout of this work is as follows. Section 2 delineates an industrial problem of prediction 
based on populations of measurements. Section 3 presents the CALFIN algorithm for 
constructing a FIN from a population of measurements. Section 4 presents mathematical tools 
introduced by Kaburlasos (2002), including convenient geometric illustrations on the plane. 
Section 5 introduces FINkNN, a k-nearest-neighbor (kNN) algorithm for classification in metric 
product-lattice FN of Fuzzy Interval Numbers (FINs). FINkNN is employed in Section 6 on a real 
task, prediction of annual sugar production. Concluding remarks as well as future research are 
presented in section 7. Appendix A shows useful definitions in a metric space, furthermore 
Appendix B describes a connection between FINs and probability density functions (pdfs). 

2 An Industrial Yield Prediction Problem 
The amount of sugar required for the needs of the Greek market is supplied, at large, by the 
production of Hellenic Sugar Industry (HSI). Sugar is produced in Greece from an annual (in 
farm practicing) plant, namely Beta Vulgaris L or simply sugar-beet. An early season accurate 
prediction of the annual production of sugar allows for both production planning and timely 
decision-making to fill efficiently the gap between supply and demand of sugar. An algorithmic 
prediction of annual sugar production can be effected based on populations of measurements 
involving both production and meteorological variables as explained below. 

2.1 Data Acquisition 
Sample measurements of ten production variables and eight meteorological variables were 
available in this work for eleven years from 1989 to 1999 from three agricultural districts in 
central and northern Greece, namely Larisa, Platy, and Serres. Tables 1 and 2 show, respectively, 
the production variables and the meteorological variables used in this work. Sugar production was 
calculated as the product POL*RW. The production variables were sampled every 20 days in a 
number of pre-specified pilot fields per agricultural district, whereas the meteorological variables 
were sampled daily in one local meteorological station per agricultural district. Production and 
meteorological variables are jointly called here input variables. The term population of 
measurements is used here to denote either 1) a number of production variable samples obtained 
during 20 days from each pilot field in an agricultural district, or 2) a collection of meteorological 
variable samples obtained daily during the aforementioned 20 days. 
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 Production Variable Name Unit 
1 Average Root Weight g 
2 POL - percentage of sugar in fresh root weight - 
3 α-amino-Nitrogen (α-N) meq/100g root 
4 Potassium (K) meq/100g root 
5 Sodium (Na) meq/100g root 
6 Leaf Area Index (LAI) - leaf area per field area ratio - 
7 TOP: plant top weight kg/1000 m2 
8 Roots Weight (RW) kg/1000 m2 
9 Nitrogen-test (N-test) - NO3-N content in pedioles mg.kg-1 

10 the Planting Date - 
 
Table 1: Production variables used for Prediction of Sugar Production. 
 
 

 Meteorological Variable Name Unit 
1 Average (daily) Temperature oC 
2 Maximum (daily) temperature oC 
3 minimum (daily) Temperature oC 
4 Relative Humidity - 
5 Wind Speed miles/hour 
6 Daily Precipitation mm 
7 Daily Evaporation mm 
8 Sunlight hours/day 

 
Table 2: Meteorological variables used for Prediction of Sugar Production. 
 
 

2.2 Algorithmic Prediction of Sugar Production 
Prediction of sugar production is made on the basis of the trend in current year compared to the 
corresponding trend in previous years. In previous work a population of measurements was 
typically replaced by a single number, the average value of the population. However, using the 
average value of a population of measurements in a prediction model can be misleading. For 
instance, two different daily precipitation patterns in a month may be characterized by identical 
average values, nevertheless their effect on the annual sugar production level might be drastically 
different. Previous annual sugar yield prediction models in Greece include neural networks 
(Stoikos, 1995), interpolation-, polynomial-, linear autoregression- and neural-predictors (Petridis 
et al., 1998), and intelligent clustering techniques (Kaburlasos et al., 2002). The best sugar 
prediction accuracy of 5% was reported in Kaburlasos et al. (2002). 
 

2.3 Prediction by Classification 
In order to capture to the fullest the diversity of a whole population of measurements this work 
proposes representing a population of measurements by a FIN (Fuzzy Interval Number) instead of 
representing it by a single number. Prediction is then made by classification. 

In line with the common practice by the agriculturalists at the HSI, the goal in this work was 
to achieve prediction of sugar production by classification in one of the classes “good”, 
“medium” or “poor”. In particular, the goal here was to predict the sugar production level in 
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September based on data available by the end of July. The characterization of a sugar production 
level (in Kg/1000 m2) as “good”, “medium” or “poor” was not identical for different agricultural 
districts as shown in Table 3 due to the different sugar production capacities of the corresponding 
agricultural districts. For instance, “poor sugar production” for Larisa means 890 Kg/1000 m2, 
whereas “poor sugar production” for Serres means 980 kg/1000 m2. (Table 3 contains 
approximate values provided by an expert agriculturalist.) 

 
 

Sugar  Agricultural District 
Production  
Level Larisa Platy Serres 
“good” 1040 1045 1165 

“medium”   970   960 1065 
“poor”   890   925   980 

 
Table 3: Annual sugar production levels (in Kg/1000 m2) for “good”, “medium”, and “poor” 
years, in three agricultural districts. 
 

2.4 A Driving Idea for Prediction by Classification 
Suppose that populations of measurements for various input variables are given for a year whose 
(unknown) sugar production level is to be predicted. The question is to predict the unknown sugar 
production level based on populations of measurements of other years whose sugar production 
level is known. The driving idea for prediction by classification in this work is the following. 
Compute a distance between populations of measurements, which correspond to a year, and 
populations of measurements, which correspond to the other years; then predict a sugar 
production level similar to the nearest year’s (known) sugar production level. 

There are two issues which need to be addressed for effecting the aforementioned prediction-
by-classification. First, there is a representation issue. Second, there is an issue of defining a 
suitable distance. The first issue is addressed in section 3 where a population of measurements is 
represented by a FIN (Fuzzy Interval Number); for instance, Figure 2 shows four FINs, namely 
MT89, MT91, MT95 and MT98, constructed from populations of 31 samples/measurements of the 
maximum daily temperatures (in centigrades) during the month of July in years 1989, 1991, 1995 
and 1998 in the Larisa agricultural district. The second issue above is addressed in section 4 by a 
metric distance between fuzzy sets (FINs) with arbitrary-shaped membership functions. 

3 Algorithm CALFIN for Constructing a FIN from a Population of 
Measurements 

Consider a population of n samples/measurements stored incrementally in vector x= [x1,…,xn], 
that is x1 ≤ x2 ≤ … ≤ xn. Algorithm CALFIN in Figure 3, in pseudo-code format, shows a 
recursive calculation of a FIN from vector x. 

We remark that the median median(x) of a vector x= [x1, x2,…,xn] of (real) numbers is a 
number such that half of the n entries x1, x2,…,xn of vector x are smaller than median(x) and the 
other half ones are larger than median(x). For example, median([1, 3, 7])= 3, whereas the 
median([-1, 2, 6, 9]) might be any number in the interval [2, 6] for instance median([-1, 2, 6, 9])= 
(2+6)/2= 4. 
The operation of algorithm CALFIN is explained in the following. Given a population of 
measurements stored incrementally in vector x= [x1, x2,…,xn], algorithm CALFIN returns two 
vectors: 1) vector pts, and 2) vector val, the latter vectors represent a FIN. More specifically, 
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vector pts holds the abscissae whereas vector val holds the ordinate values of the corresponding 
FIN’s fuzzy membership function. Step-1 in Figure 3 computes vector pts; by construction, |pts| 
equals the smallest power of 2 which is larger than |x| (minus one). Step-3 computes vector val. 
By construction, a FIN attains its maximum value of 1 at one point. 
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Figure 2: FINs MT89, MT91, MT95 and MT98 constructed from maximum daily temperatures 

during July in the Larisa agricultural district, Greece. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step-1: function abscissae(x) 
{ if (n ≠ 1) 
 med ← median(x) 
 x_left ← left half of vector x % all numbers in x less-than med 
 x_right ← right half of vector x % all numbers in x larger-than med
 abscissae(x_left) 
 abscissae(x_right) 
 endif 
 return med in vector pts 
} 

Step-2: Sort vector pts incrementally. 
Step-3: Let |pts| denote the cardinality of vector pts. Store in vector val, |pts|/2 numbers

from 0 up to 1 in steps of 2/|pts| followed by another |pts|/2 numbers from 1
down to 0 in steps of 2/|pts|. 

Figure 3: Algorithm CALFIN above computes a Fuzzy Interval Number (FIN) from a population 
of measurements stored incrementally in vector x. 
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An application of algorithm CALFIN on the population of measurements shown in Figure 

1(a) is illustrated in Figure 4. More specifically, a FIN is computed in Figure 4(b2) from a 
population of 50 samples/measurements of the Roots Weight (RW) input variable from 50 pilot 
fields in the last 20 days of July 1989 in the Larisa agricultural district. Identical figures Figure 
4(a1) and Figure 4(a2) show the corresponding 63 median values computed in vector pts by 
algorithm CALFIN. Figure 4(b1) shows, in a histogram, the distribution of the 63 median values 
in intervals of 400 Kg/1000 m2. Furthermore, Figure 4(b2) shows the ordinate values in vector val 
versus the abscissae values in vector pts. 

A motivation for proposing algorithm CALFIN to represent a population of numeric data by a 
fuzzy set (FIN) is that algorithm CALFIN guarantees construction of convex fuzzy sets which 
comply with definition 4.2 in section 4, and thus proposition 4.4 can be used for computing a 
metric distance between two fuzzy sets with arbitrary-shaped membership functions. Any other 
algorithm that guarantees construction of convex fuzzy sets would also have this property. 
Finally, we point out that there is a one-one correspondence between FINs constructed by 
algorithm CALFIN and probability density functions (pdfs). This connection is explained further 
in Appendix B. 
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Figure 4: Calculation of a FIN from a population of samples/measurements. 
 

 (a1), (a2) 63 median values in vector pts computed by algorithm CALFIN from the 50 
samples shown in Figure 1(a). 

 (b1) A histogram of the 63 median values in Figure 4(a1) in steps of 400 Kg/1000 m2. 
 (b2) The 63 median values of vector pts in Figure 4(a2) have been mapped to the 

corresponding entries of vector val computed by algorithm CALFIN. 
 

4 Metric Lattice F of Fuzzy Interval Numbers (FINs) 
A grounded example for computing a distance between FINs is shown in the following. In 
particular, Figure 5 shows four FINs, namely RW89, RW91, RW95 and RW98, constructed by 
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algorithm CALFIN from populations of the Roots Weight (RW) input variable. We would like to 
quantify the proximity of two years based on the corresponding populations of measurements. 
Table 4 shows metric distances (dK) computed between the abovementioned FINs. The remaining 
of this section details the analytic computation of a metric distance dK between arbitrary-shaped 
FINs following the original work by Kaburlasos (2002). 
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Figure 5: FINs RW89, RW91, RW95 and RW98 were constructed from samples of Roots Weight 

(RW) production variable in 50 pilot fields during the last 20 days of July in the Larisa 
agricultural district, Greece. 

 
 

FIN RW89 
 

RW91 
 

RW95 
 

RW98 
 

RW89 0 541 349 1576 
RW91 541 0 286 1056 
RW95 349 286 0 1292 
RW98 1576 1056 1292 0 

 
Table 4: Distances dK between FINs RW89, RW91, RW95 and RW98 in (Figure 5) 
 
 

The basic idea for introducing a metric distance between arbitrary-shaped FINs is illustrated 
in Figure 6, where FINs RW89 and RW91 are shown. Recall that a FIN is constructed such that 
any horizontal line εh, h∈[0,1] intersects a FIN at exactly two points – without loss of generality 
only for h=1 there exists a single intersection point. A horizontal line εh at h=0.8 results in a 
“pulse” of height h=0.8 for a FIN as shown in Figure 6. More specifically, Figure 6 shows two 
pulses for the two FINs RW89 and RW91, respectively. The aforementioned pulses are called 
generalized intervals of height h=0.8. Apparently, if a metric distance could be defined between 
two generalized intervals of height h then a metric distance is implied between two FINs simply 
by computing the corresponding definite integral from h=0 to h=1. 
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Figure 6: Generalized intervals of height h=0.8 which correspond to FINs RW89 and RW91. 
 
 

4.1 Metric Lattices Mh of Generalized Intervals 
Consider the notion generalized interval (of height h). 
 
Definition 4.1 A generalized interval of height h is a real function given either by 

, or by , where h∈(0,1] is called 

height of the corresponding generalized interval. 


 ≤≤

=
+ otherwise

xxxhxµ hxx ,0
,)( 21

],[ 21 

 ≤≤−

=
− otherwise

xxxhxµ hxx ,0
,)( 21

],[ 21

 
 A generalized interval may simply be denoted by [  (positive generalized interval) or 

by  (negative generalized interval). The collection of generalized intervals of height h 
will be denoted by Ph. An ordering relation can be introduced in Ph as follows. 

hxx +], 21
hxx −],[ 21

(R1) ≤  [  ⇔ c ≤ a ≤ b ≤ d, hba +],[  hP
hdc +],

(R2) ≤  [  ⇔ [   [ , and hba −],[  hP
hdc −], hdc +], hP

≤ hba +],

(R3)  [  ⇔ [a,b]∩[c,d]≠∅, where [a,b] and [c,d] denote conventional 

intervals (sets) of numbers. 

hba −],[  hP
≤ hdc +],

The ordering relation ≤  is a partial ordering relation, furthermore the set Ph is a lattice1. hP

                                                      
1 Recall that a relation is called partial ordering relation if and only if it is 1) reflexive (x≤x), 2) antisymmetric (x≤y and 
y≤x imply x=y), and 3) transitive (x≤y and y≤z imply x≤z). A lattice L is a partially ordered set any two of whose 
elements have a unique greatest lower bound or meet denoted by x∧Ly, and a unique least upper bound or join denoted 
by x∨Ly. 
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The set Mh with elements [a,b]h as described in the following is also a lattice: (1) if a<b then 
[a,b]h∈Mh corresponds to [ ∈Ph, (2) if a>b then [a,b]h∈Mh corresponds to [ ∈Ph, and (3) 

[a,a]h∈Mh corresponds to both [  and [  in Ph. To avoid redundant terminology, an 
element of Mh is called generalized interval as well, and it is denoted by [a,b]h. Figure 7 shows 
exhaustively all combinations for computing the lattice join q1 q2 and meet q1 q2 for two 

different generalized intervals q1,q2 in Mh. No interpretation is proposed here for negative 
generalized intervals because it is not necessary. It will be detailed elsewhere how an 
interpretation of negative generalized intervals is application dependent. 

hba +], hab −],

M
∧

haa +], haa −],

hM
∨ h

Real function v(.), defined as the area “under” a generalized interval, is a positive valuation 
function in lattice Mh therefore function d(x,y)= v(x y)-v(x∧ y), x,y∈Mh defines a metric 

distance in Mh as explained in Appendix A. For example, the metric distance between the two 
generalized intervals [5049, 5284]0.8 and [5447, 5980]0.8 of height h=0.8 shown in Figure 6 equals 
d([5049, 5284]0.8,[5447, 5980]0.8])= v([5049, 5980])-v([5447, 5284])= 0.8(931)+0.8(163)= 875.2. 

hM
∨ hM

Even though the set Mh of generalized intervals is a metric lattice for any h>0, the interest in 
this work is focused on metric lattices Mh with h∈(0,1] because the latter lattices arise from a-cuts 
of convex fuzzy sets as explained below. The collection of all metric lattices Mh for h in (0,1] is 
denoted by M, that is M= Mh. U

]1,0(∈h

4.2 The Metric Lattice F of FINs 
A Fuzzy Interval Number, or FIN for short, is a conventional interval-supported convex fuzzy set. 
In order to facilitate mathematical analysis below, the following definition is proposed for a FIN. 
 
Definition 4.2 A Fuzzy Interval Number, or FIN2 for short, is a function F: (0,1]→M such that h1 
≤ h2 ⇒ support(F(h1)) ⊇ support(F(h2)),  0 < h1 ≤ h2 ≤ 1. 
 

We remark that the support of a generalized interval in Mh is a function which maps a 
generalized interval to its interval support (set), in particular support([a,b]h)=[a,b] if a≤b, whereas 
support([a,b]h)=[b,a] if a≥b. Figure 8 shows the supports support(F(h1)) and support(F(h2)) of 
two generalized intervals, respectively, F(h1) and F(h2) stemming from a FIN F. 

The support(F(a)) of a generalized interval F(a) equals, by definition, the a-cut Γa of the 
corresponding “fuzzy set F with membership function µ: R→[0,1]”. Recall that an a-cut Γa has 
been defined in Zadeh (1965) as Γa= {x|µ(x) ≥ a}; that is Γa equals the set of real numbers x 
whose degree µ(x) of membership in F is greater-than or equal-to a. Apparently, an a-cut Γa for a 
FIN is an interval. 

Let F denote the collection of FINs. An ordering relation ≤  is defined as follows. F
 

Definition 4.3 Let F1,F2∈F, then F1  F2 if and only if F1(h) F2(h), h∈(0,1]. F≤ hM
≤

                                                      
2 We point out that the theoretical formulation presented in this work, regarding FINs with negative membership 
functions, might be useful for interpreting significant improvements reported in Chang and Lee (1994) in fuzzy linear 
regression problems involving triangular fuzzy sets with negative spreads. Note that fuzzy sets with negative spreads 
are not regarded as fuzzy sets by some authors (Diamond and Körner, 1997). 
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Figure 7: The join (q1∨Mhq2) and meet (q1∧Mhq2) for generalized intervals q1,q2∈Mh. 
 (a) “Intersecting” positive generalized intervals q1 and q2, 
 (b) “Non-intersecting” positive generalized intervals q1 and q2, 
 (c) “Intersecting” negative generalized intervals q1 and q2, 
 (d) “Non-intersecting” negative generalized intervals q1 and q2, 
 (e) “Intersecting” positive (q1) and negative (q2) generalized intervals, and 
 (f) “Non-intersecting” positive (q1) and negative (q2) generalized intervals. 
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Figure 8: FIN F: (0,1] → M  maps a real number h in (0,1] to a generalized interval F(h). The 

domain of function F is shown on the vertical axis, whereas the range of function F 
includes “rectangular shaped pulses” on the plane. 

 
 

It has been shown that F is a lattice. More specifically, the lattice join F1 F2 and lattice 

meet F1 F2 of two incomparable FINs F1 and F2, i.e. neither F1≤FF2 nor F2≤FF1, are shown in 
Figure 9. The theoretical exposition of this section concludes in the following result. 

F∨

F∧

 
Proposition 4.4 Let F1(h) and F2(h), h∈(0,1] be FINs in F. A metric distance function dK: F×F→R 

is given by dK(F1,F2)= , where d(.,.) is the metric in lattice Mh. ∫
1

0
21 ))(),(( dhhFhFd

 
We remark that a similar metric distance between fuzzy sets has been presented and used 

previously by other authors (Diamond & Kloeden, 1994; Chatzis & Pitas, 1995) in a fuzzy set 
theoretic context. Nevertheless the calculation of dK(.,.) based on generalized intervals implies a 
significant capacity for “tuning” as it will be shown elsewhere. The following two examples 
demonstrate the computation of metric distance dK. 
 
Example 4.5 
 

Figure 10 illustrates the computation of the metric distance dK between FINs RW89 and 
RW91 (Figure 10(a)), where generalized intervals RW89(h) and RW91(h) are also shown. FINs 
RW89 and RW91 have been constructed from real samples of the Roots Weight (RW) production 
variable in the years 1989 and 1991, respectively. 

For every value of the height h∈(0,1] there corresponds a metric distance 
d(RW89(h),RW91(h)) as shown in Figure 10(b). Based on proposition 4.4 the area under the curve 
in Figure 10(b) equals the metric distance between FINs RW89 and RW91. It was calculated 
dK(RW89,RW91)= 541.3. 

A practical advantage of metric distance dK is that it can capture sensibly the relative position 
of two FINs as demonstrated in the following example. 
 
Example 4.6 
 

In Figure 11 distances dK(.,.) are computed between pairs of FINs with triangular membership 
functions. In particular, in Figure 11(a) distances dK(F1, H1) ≈ 5.6669, dK(F2, H1) ≈ 5, and dK(F3, 
H1) ≈ 4.3331 have been computed. FINs F1, F2, and F3 have a common base and equal heights. 
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Figure 11(a) was meant to demonstrate the “common sense” results obtained analytically for 
metric dK, where “the more a FIN Fi, i=1,2,3 leans towards FIN H1” the smaller the 
corresponding distance dK is. Similar results are shown in Figure 11(b), the latter has been 
produced from Figure 11(a) by shifting the top of FIN H1 to the left. It has been computed 
analytically dK(F1, H2) ≈ 5, dK(F2, H2) ≈ 4.3331, and dK(F3, H2) ≈ 3.6661. Note that dK(Fi, H2) ≤ 
dK(Fi, H1), i=1,2,3 as expected by inspection because FIN H2 leans more towards FINs F1, F2, F3 
than FIN H1 does. We also cite the following distances dK(F1, F2) ≈ 0.6669, dK(F1, F3) ≈ 1.3339, 
and dK(F2, F3) ≈ 0.6669. 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 

(b) 

0 

0 

h1 

1 
h2 

F1∧FF2 
F1∨FF2

h1 

1 
h2 

F2F1

 
Figure 9: (a) Two incomparable FINs F1 and F2, i.e. neither F1≤FF2 nor F2≤FF1. 
 (b) F1∨FF2 is the lattice join, whereas F1∧FF2 is the lattice meet of FINs F1 and F2. 
 
 

5 FINkNN: A Nearest Neighbor Classifier 
Let g be a category function g: F→D which maps a FIN in F to an element of a label set D. 
Classification in metric lattice (F, dK) can be effected, first, by storing all the labeled training data 
pairs (E1, g(E1)),…,(En, g(En)) and, second, by mapping a new FIN E to the category g(E) which 
receives the majority vote among the k Nearest Neighbor (kNN) FINs. 

This work has considered N-dimensional vectors F of FINs F= (E1,…,EN) where a vector 
component Ei, i=1,…,N corresponds to an input variable, i.e. a production variable or a 
meteorological variable. The kNN classifier described above has been applied, in principle, in 
product lattice FN. In particular, since (F, dK) is a metric lattice, it follows that dp(x,y)= 
{dK(E1,H1)p+…+dK(EN,HN)p}1/p, p≥1, where x=(E1,…,EN),y=(H1,…,HN)∈FN, is a metric distance 
in product lattice FN. In conclusion a kNN classifier, namely FINkNN, has been applied here in the 
metric lattice (FN, d1). 

Classifier FINkNN has been cast in the framework of k Nearest Neighbor (kNN) classifiers, 
nevertheless FINkNN was applied in this work for k=1 for two reasons. First, there were only a 
few (11) pieces of data from 11 years partitioned in three categories and, second, k=1 gave better 
results than other values of k in this application. Classifier FINkNN is described below. 
 
Classifier FINkNN 
 

1. Store all labeled training data (F1, g(F1)),…,(Fn, g(Fn)), where Fi∈FN, g(Fi)∈D, i=1,…,n. 
2. Classify a new datum F∈FN to category g(FJ), where J= { d1(F, Fi) }. 

ni ,,1
minarg
K=
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Figure 10: Computation of the metric distance dK(RW89,RW91) between FINs RW89 and RW91. 

(b) 

 

 (a) FINs RW89 and RW91. Generalized intervals RW89(h) and RW91(h) are also shown. 
 (b) The metric distance d(RW89(h),RW91(h)) between generalized intervals RW89(h) 

and RW91(h) is shown as a function of the height h∈(0,1]. Metric dK(RW89,RW91)= 
541.3 equals the area under the curve d(RW89(h),RW91(h)). 

 
Apparently, classifier FINkNN is “memory based” (Kasif et al., 1998) like other methods for 

learning including instance-based learning, case-based learning, k nearest neighbor (Aha et al., 
1991; Kolodner, 1993; Dasarathy, 1991; Duda et al., 2001); the name “lazy learning” (Mitchell, 
1997; Bontempi et al., 2002) has also been used in the literature for memory-based learning. 

A critical difference between FINkNN and other memory-based learning algorithms is that 
the FINkNN can freely intermix “number attributes” and “FIN attributes” any place in the data, 
therefore “ambiguity”, in a fuzzy set sense (Dubois & Prade, 1980; Ishibuchi & Nakashima, 
2001; Klir & Folger, 1988; Zadeh, 1965; Zimmerman, 1991), can be dealt with. 
 

6 Experiments and Results 
In this section classifier FINkNN is applied on vectors of FINs, the latter stem from populations 
of measurements of production and/or meteorological variables. The objective is prediction of 
annual sugar production by classification. 

In the first place the significant differences in scale between different input variables, e.g. 
Maximum Temperature (Figure 2) versus Roots Weight (Figure 5), had to be smoothed out by a 
data preprocessing normalization procedure otherwise an input variable could be disregarded as 
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noise. Therefore a mapping to [0,1] was done by, first, translating linearly to 0 and, second, by 
scaling. 

A “leave-one-out” series of eleven experiments was carried out such that one year among 
years 1989 to 1999 was left out, in turn, for testing whereas the remaining ten years were used for 
training. 
 
 
 
 
 
 
 
 
 
 
 

(a) 

30

1 

65

F1 H1 

2 1 

h F2 F3

74 x98

 
 
 
 
 
 
 
 
 
 

(b) 430
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965
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Figure 11: (a) It has been computed dK(F1, H1) ≈ 5.6669, dK(F2, H1) ≈ 5, and dK(F3, H1) ≈ 

4.3331. That is “the more a FIN Fi, i=1,2,3 leans towards FIN H1” the smaller is 
the corresponding distance dK as expected intuitively by inspection. 

 (b) This figure has been produced from the above figure by shifting the top of FIN 
H1 to the left. It has been computed dK(F1, H2) ≈ 5, dK(F2, H2) ≈ 4.3331, and 
dK(F3, H2) ≈ 3.6661. 

 

6.1 Input Variable Selection 
Prediction of sugar production was based on populations of selected input variables among 18 
input variables x1,…,x18. We remark that variable selection might itself be an important problem 
in both engineering system design (Hong & Harris, 2001) and in machine learning applications 
(Koller & Sahami, 1996; Boz, 2002). A subset of input variables have been selected based on an 
optimization of an objective/fitness function as described in this section. 

Using data from ten training years a symmetric 10×10 matrix Sk of distances was calculated 
for each input variable xk, k=1,…,18. Note that an entry in matrix Sk, say entry eij, i,j∈{1,…,10}, 
quantifies a proximity between two years ‘i’ and ‘j’ based on the corresponding populations of 
input variable xk. A sum matrix S was defined as S= Sm+…+Sn for a subset {m,…,n} of input 
variables. A training year was associated with another one which corresponded to the shortest 
distance in a matrix S. A contradiction occurred if two training years (associated with the 
shortest distance) are in different categories among “good”, “medium” or “poor”. An 
objective/fitness function C(S) was defined as “the sum of contradictions”. There follows the 
optimization problem: Find a subset of indices m,…,n∈{1,…,18} such that C(S) is minimized. 
Apparently there exist a total number of 218 subsets of indices to choose from. 
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The above optimization problem was dealt with using, first, a genetic algorithm (GA), 
second, a GA with local search and, third, human expertise, as described in the following. First, 
the GA implementation was a simple GA, that is no problem-specific-operators or other 
techniques were employed. The GA encoded the 18 input variables using 1 bit per variable 
resulting in a total genotype length of 18 bits. A population of 20 genotypes (solutions) was 
employed and it was left to evolve for 50 generations. Second, in addition to the GA above a 
simple local search steepest descent algorithm was employed by considering different 
combinations of input variables at Hamming distance one; note that the idea for local search 
around a GA solution has been inspired from the microgenetic algorithm for generalized hill-
climbing optimization (Kazarlis et al., 2001). Third, a human expert selected the following input 
variables: variables Relative Humidity and Roots Weight were selected for Larisa agricultural 
district, variables Daily Precipitation, Sodium (Na) and Average Root Weight for Platy, and 
variables Daily Precipitation, Average Root Weight and Roots Weight were selected for the 
Serres agricultural district. 

The optimization problem was solved eleven times leaving, in turn, each year from 1989 to 
1999 out for testing whereas the remaining ten years were used for training. Two types of 
distances were considered between two populations of measurements: 1) the metric distance dK, 
and 2) the “L1-distance” representing the distance between the average values of two populations. 

6.2 Experiments and Comparative Results 
The leave-one-out paradigm was used to evaluate comparatively FINkNN’s capacity for 
prediction-by-classification as it has been described above. After selecting a subset of input 
variables, prediction was effected by assigning the “left out” (testing) year to the category 
corresponding to the nearest training year. The experimental results are shown in Table 5. 

The first line in Table 5 shows the average prediction accuracy over all testing years for 
Larisa, Platy and Serres, respectively, using algorithm FINkNN with expert selected input 
variables; line 2 shows the results using L1-distances kNN (with expert input variable selection). 
Line 3 shows the results using FINkNN (with GA local search input variable selection); line 4 in 
Table 5 shows the best results obtained using a L1-distances kNN (with a GA local search input 
variable selection). Line 5 reports the results obtained by FINkNN (with GA input variable 
selection); line 6 in Table 5 shows the results using L1-distances kNN (with GA input variable 
selection). The last three lines in Table 5 were meant to demonstrate that prediction-by-
classification is well posed in the sense that a small prediction error is expected from the outset. 
In particular, selection “medium” each year resulted in error rates 5.22%, 3.44%, and 5.54% for 
the Larisa, Platy, and Serres factories, respectively (line 7). Line 8 shows the average errors when 
a year was assigned randomly (uniformly) among the three choices “good”, “medium”, “poor”. 
Line 9 in Table 5 shows the minimum prediction error which would be obtained should each 
testing year be classified correct in its corresponding class “good”, “medium” or “poor”. The 
nearest to the latter minimum prediction error was clearly obtained by classifier FINkNN with an 
expert input variable selection. 

Table 5 clearly shows that the best results were obtained for the combination of dK distances 
(between FINs) with expert-selected input variables. The L1-distance kNN results (lines 2, 4, and 
6) use average values of populations of measurements, and were reported in previous work 
(Kaburlasos et al., 2002). In contrast, FINkNN is sensitive to the skewness of the distribution of 
measurements due to its use of FINs and the dK metric. In all but one of the nine possible 
comparisons in Table 5 (FINkNN versus L1-distance kNN for each region and for each selected 
set of input variables) results are improved using FINkNN. In general, it appears that an 
employment of FINs tends to improve classification results. Finally, we also observe that the 
selection of input variables significantly affects the outcome of classification. Input variables 
selected by a human expert produced better results than input variables selected computationally 
through optimization of an objective/fitness function. 
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 Prediction Method Larisa Platy Seres 
1 FINkNN 

(with expert input variable selection) 
1.11 2.26 2.74 

2 L1-distances kNN 
(with expert input variable selection) 

2.05 2.87 3.17 

3 FINkNN 
(with GA local search input variable selection) 

4.11 3.12 3.81 

4 L1-distances kNN 
(with GA local search input variable selection) 

3.89 4.61 4.58 

5 FINkNN 
(with GA input variable selection) 

4.85 3.39 3.69 

6 L1-distances kNN 
(with GA input variable selection) 

5.59 4.05 3.74 

7 “medium” selection 5.22 3.44 5.54 
8 Random prediction 8.56 4.27 6.62 
9 minimum prediction error 1.11 1.44 1.46 

 
Table 5: Average % prediction error rates using various methods for three factories of Hellenic 
Sugar Industry (HSI), Greece. 
 

Computation time for algorithm “random prediction” in line 8 of Table 5 was negligible, i.e. 
the time required to generate a random number in a computer. However more time was required 
for the algorithms in lines 1 - 6 of Table 5 to select the input variables on a conventional PC using 
a Pentium (r) II processor. More specifically, algorithm “L1-distances kNN” (with GA input 
variable selection) required computer time of the order 5-10 minutes. In addition, algorithm “L1-
distances kNN” (with GA local search input variable selection) required less than 5 minutes to 
select a set of input variables. In the last two cases the corresponding algorithm FINkNN required 
slightly more time due to the computation of distance dK between FINs. Finally, for either 
algorithm “FINkNN” or “L1-distances kNN” (with expert input variable selection) an expert 
needed around half an hour to select a set of input parameters. As long as input variables had 
been selected then computation time for all algorithms in lines 1 - 6 of Table 5 was less than 1 
second to classify a year to a category “good”, “medium” and “bad”. 

7 Conclusion and Future Research 
A nearest neighbor classifier, FINkNN, was introduced that applies in the metric product-lattice 
FN of fuzzy interval numbers (FINs), which are conventional interval-supported convex fuzzy 
sets. FINkNN effectively predicted annual sugar production based on populations of 
measurements supplied by the Hellenic Sugar Industry. The algorithm CALFIN was presented for 
constructing FINs from populations of measurements, and a novel metric distance was presented 
between fuzzy sets with arbitrary-shaped membership functions. 

The improved prediction results presented in this work have been attributed to the capacity of 
FINs to capture the state of the real world more accurately than single numbers because a FIN 
represents a whole population of samples/measurements. Future work includes an experimental 
comparison of FINkNN with alternative classification methods, e.g. decision trees, etc. 

The metric dK might potentially be useful in a number of applications. For instance, dK could 
be used to compute a metric distance between populations of statistical samples. Furthermore, dK 
could be useful in Fuzzy Inference System (FIS) design by calculating rigorously the proximity of 

 1495 



PETRIDIS AND KABURLASOS 

two fuzzy sets. Note also that a FIN can always be computed for any population size therefore a 
FIN could be useful as an instrument for data normalization and dimensionality reduction. 
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Appendix A 
This Appendix shows a metric distance in the lattice Mh of generalized intervals of height h. 
Consider the following definition. 
 
Definition A.1 A pseudo-metric distance in a set S is a real function d: S×S→R such that the 
following four laws are satisfied for x,y,z∈S: 
(M1) d(x,y) ≥ 0, (M3) d(x,y) = d(y,x), and 
(M2) d(x,x) = 0, (M4) d(x,y) ≤ d(x,z) + d(z,y)  - Triangle Inequality 
 

If, in addition to the above, the following law is satisfied 
 

(M0) d(x,y) = 0 ⇒ x=y 
 

then real function d is called a metric distance in S. 
 

Given a set S equipped with a metric distance d, the pair (S, d) is called metric space. If S=L 
is a lattice then metric space (L, d) is called, in particular, metric lattice. 

A distance can be defined in a lattice L as follows (Birkhoff, 1967). Consider a valuation 
function in L, that is a real function v: L→R which satisfies v(x)+v(y)= v(x∨Ly)+v(x∧Ly), x,y∈L. A 
valuation function is called monotone if and only if x≤Ly implies v(x)≤v(y). If a lattice L is 
equipped with a monotone valuation then real function d(x,y)=v(x∨Ly)-v(x∧Ly), x,y∈L defines a 
pseudo-metric distance in L. If, furthermore, monotone valuation v(.) satisfies “x<Ly implies 
v(x)<v(y)” then v(.) is called positive valuation and function d(x,y)=v(x∨Ly)-v(x∧Ly) is a metric 
distance in L. A positive valuation function is defined in the set Mh of generalized intervals in the 
following. 

Let v: Ph→R be a real function which maps a generalized interval to its area, that is function v 
maps a positive generalized interval [  to non-negative number h(b-a) whereas function v 

maps a negative generalized interval [  to non-positive number -h(b-a). It has been shown 
(Kaburlasos, 2002) that function v is a monotone valuation in Ph, nevertheless v is not a positive 
valuation. In order to define a metric in the set of generalized intervals, an equivalence relation ∼ 
has been introduced in Ph such that x∼y ⇔ d(x,y)=0, x,y∈Ph. The quotient (set) of Ph with respect 
to equivalence relation ∼ is lattice Mh, symbolically Mh= Ph/∼. In conclusion Mh is a metric lattice 
with distance d given by d(x,y)= v(x∨ y)-v(x y).  

hba +],
hba −],

hM hM
∧
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Appendix B 
A one-one correspondence is shown in this Appendix between FINs and probability density 
functions (pdfs). More specifically, based on the one-one correspondence between pdfs and 
Probability Distribution Functions (PDFs), a one-one correspondence is shown between PDFs 
and FINs as follows. In the one direction, a PDF G(x) was mapped to a FIN F with membership 
function µF(.) such that: if G(x0)= 0.5 then µF(x)= 2G(x) for x≤x0, whereas µF(x)=2[1-G(x)] for 
x≥x0. In the other direction, a FIN F was mapped to a PDF G(x) such that: if µF(x0)= 1 then G(x)= 

2
1 µF(x) for x≤x0, whereas G(x)= 1-

2
1 µF(x) for x≥x0. Recall, from the remarks following 

algorithm CALFIN, that µF(x0)= 1 at exactly one point x0. 
A statistical interpretation of a FIN is presented in the following. Algorithm CALFIN implies 

that when a FIN F is constructed then approximately 100(1-h) % of the population of samples are 
included in interval support(F(h)). Hence, if a large number of samples is drawn independently 
from one probability distribution then interval support(F(h)) could be regarded as “an interval of 
confidence at level-h”. 

The previous analysis may also imply that FINs could be considered as vehicles for 
accommodating synergistically tools from, on the one hand, probability-theory/statistics and, on 
the other hand, fuzzy set theory. For instance two FINs F1 and F2 calculated from two pdfs f1(x) 
and f2(x), respectively, could be used for calculating a metric distance (dK) between pdfs f1(x) and 
f2(x) as follows: dK(f1(x), f2(x))=dK(F1, F2). Moreover two FINs F1 and F2 calculated from two 
populations of measurements could be used for computing a (metric) distance between 
populations of measurements. 
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