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1. Introduction

Recent demands in sophisticated mobile robots require many semi-autonomous or even au-
tonomous operations, such as decision making, simultaneous localization and mapping, mo-
tion tracking and risk assessment, while operating in dynamic environments. Most of these
capabilities depend highly on the quality of the input from the cameras mounted on the mo-
bile platforms and require fast processing times and responses. However, quality in robot
vision systems is not given only by the quantitative features such as the resolution of the cam-
eras, the frame rate or the sensor gain, but also by the qualitative features such as sequences
free of unwanted movement, fast and good image pre-processing algorithms and real-time
response. A robot having optimal quantitative features for its vision system cannot achieve
the finest performance when the qualitative features are not met. Image stabilization is one
of the most important qualitative features for a mobile robot vision system, since it removes
the unwanted motion from the frame sequences captured from the cameras. This image se-
quence enhancement is necessary in order to improve the performance of the subsequently
complicated image processing algorithms that will be executed.
Many image processing applications require stabilized sequences for input while other
present substantially better performance when processing stabilized sequences. Intelligent
transportation systems equipped with vision systems use digital image stabilization for sub-
stantial reduction of the algorithm computational burden and complexity (Tyan et al. (2004)),
(Jin et al. (2000)). Video communication systems with sophisticated compression codecs in-
tegrate image stabilization for improved computational and performance efficiency (Amana-
tiadis & Andreadis (2008)), (Chen et al. (2007)). Furthermore, unwanted motion is removed
from medical images via stabilization schemes (Zoroofi et al. (1995)). Motion tracking and
video surveillance applications achieve better qualitative results when cooperating with ded-
icated stabilization systems (Censi et al. (1999)), (Marcenaro et al. (2001)), as shown in Fig. 1.
Several robot stabilization system implementations that use visual and inertial information
have been reported. An image stabilization system which compensates the walking oscilla-
tions of a biped robot is described in (Kurazume & Hirose (2000)). A vision and inertial coop-
eration for stabilization have been also presented in (Lobo & Dias (2003)) using a fusion model
for the vertical reference provided by the inertial sensor and vanishing points from images.
A visuo-inertial stabilization for space variant binocular systems has been also developed in
(Panerai et al. (2000)), where an inertial device measures angular velocities and linear acceler-
ations, while image geometry facilitates the computation of first-order motion parameters. In
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Fig. 1. Performance of automatic license plate recognition system: a) sample frame, b) pro-
cessed frame only by zooming algorithm, c) processed frame only by stabilization algorithm,
d) processed frame by both stabilization and zooming algorithms.

(Zufferey & Floreano (2006)), course stabilization and collision avoidance is achieved using a
bioinspired model of optic flow and inertial information applied to autonomous flying robots.

2. Image Stabilization

Image stabilization schemes can be classified into three major categories. The optical image
stabilizer employs a prism assembly that moves opposite to the shaking of camera for stabi-
lization (Cardani (2006)), (Tokyo (1993)). A two axis gyroscope is used to measure the move-
ment of the camera, and a microcontroller directs that signal to small linear motors that move
the image sensor, compensating for the camera motion. Other designs move a lens somewhere
in the optical chain within the camera. The electronic image stabilizer compensates the im-
age sequence by employing motion sensors to detect the camera movement for compensation
(Oshima et al. (1989)), (Kinugasa et al. (1990)). Gyroscopes are still used to detect the jitter,
but instead of altering the direction of the prism, the image is simply shifted in software by
a certain number of pixels. Both electronic and optical image stabilizers are hardware depen-
dent and require built-in devices such as inertial sensors and servo motors. The digital image
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Fig. 2. Typical architecture of an image stabilization technique.

stabilizer (DIS) does not need any mechanical or optical devices since the image compensa-
tion is made through image processing algorithms. This attribute makes it suitable for low
cost electronics (Ko et al. (1999)), (Vella et al. (2002)), (Xu & Lin (2006)), (Pan & Ngo (2005)).
The DIS comprises two processing units: the motion estimation unit and the motion compen-
sation unit. The purpose of motion estimation unit is to estimate reliably the global camera
movement through the local motion estimation vectors of the acquired image sequence. The
effectiveness of a DIS is closely tied with the accuracy of detecting the local motion vectors,
in order to produce the right global motion vector. Following motion estimation, the motion
compensation unit generates the compensating motion vector and shifts the current picking
window according to the compensating motion vector to obtain a smoother image sequence.
Motion compensation can take up 10% of the total computation of a digital stabilizer (Chen
et al. (2007)). Various algorithms have been developed to estimate the local motion vectors,
such as representative point matching (Vella et al. (2002)), edge pattern matching (Paik et al.
(1992)), block matching (Xu & Lin (2006)) and bit plane matching (Ko et al. (1999)). All the pre-
vious algorithms, despite their high accuracy and reliability, are strictly constrained to regular
conditions exhibiting high sensitivity to various irregular conditions such as moving objects,
intentional panning, sequences acquired in low signal-to-noise ratio or zooming. For moving
objects, solutions have been proposed such as in (Erturk (2003)). For sequences acquired in
low signal-to-noise ratio, a blind DIS with the use of genetic algorithms is proposed in (Nait-
Ali (2007)). Intentional panning has also been greatly improved using background estimation
(Hsu et al. (2005)). For zooming, CMOS digital image stabilization schemes have been pro-
posed in (Cho et al. (2007)) and (Cho & Hong (2007)). However, due to the fact that they are
based on the distortion effect caused by the rolling shuttering mechanism of the CMOS sensor,
they are effective only in CMOS sensors.
A typical architecture of a DIS is shown in Fig. 2. The motion estimation unit computes the
motion between two consecutive frames. This is achieved firstly by the local motion estima-
tion subunit, which estimates the local motion vectors within frame regions. Secondly, the
global motion estimation unit determines the global motion vectors by processing the pre-
viously estimated local motion vectors. Following the motion estimation unit, the motion
compensation unit firstly, generates the compensating motion vector and secondly, shifts the
current picking window according to the compensating motion vector to obtain a free of high
frequency image sequence but still keep the global ego-motion of the sequence.

3. Active robot vision

The term active vision is used to describe vision systems, where the cameras do not stand still
to observe the scene in a passive manner, but, by means of actuation mechanisms, they can
aim towards the point of interest. The most common active stereo vision systems comprise
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Fig. 1. Performance of automatic license plate recognition system: a) sample frame, b) pro-
cessed frame only by zooming algorithm, c) processed frame only by stabilization algorithm,
d) processed frame by both stabilization and zooming algorithms.

(Zufferey & Floreano (2006)), course stabilization and collision avoidance is achieved using a
bioinspired model of optic flow and inertial information applied to autonomous flying robots.

2. Image Stabilization

Image stabilization schemes can be classified into three major categories. The optical image
stabilizer employs a prism assembly that moves opposite to the shaking of camera for stabi-
lization (Cardani (2006)), (Tokyo (1993)). A two axis gyroscope is used to measure the move-
ment of the camera, and a microcontroller directs that signal to small linear motors that move
the image sensor, compensating for the camera motion. Other designs move a lens somewhere
in the optical chain within the camera. The electronic image stabilizer compensates the im-
age sequence by employing motion sensors to detect the camera movement for compensation
(Oshima et al. (1989)), (Kinugasa et al. (1990)). Gyroscopes are still used to detect the jitter,
but instead of altering the direction of the prism, the image is simply shifted in software by
a certain number of pixels. Both electronic and optical image stabilizers are hardware depen-
dent and require built-in devices such as inertial sensors and servo motors. The digital image
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stabilizer (DIS) does not need any mechanical or optical devices since the image compensa-
tion is made through image processing algorithms. This attribute makes it suitable for low
cost electronics (Ko et al. (1999)), (Vella et al. (2002)), (Xu & Lin (2006)), (Pan & Ngo (2005)).
The DIS comprises two processing units: the motion estimation unit and the motion compen-
sation unit. The purpose of motion estimation unit is to estimate reliably the global camera
movement through the local motion estimation vectors of the acquired image sequence. The
effectiveness of a DIS is closely tied with the accuracy of detecting the local motion vectors,
in order to produce the right global motion vector. Following motion estimation, the motion
compensation unit generates the compensating motion vector and shifts the current picking
window according to the compensating motion vector to obtain a smoother image sequence.
Motion compensation can take up 10% of the total computation of a digital stabilizer (Chen
et al. (2007)). Various algorithms have been developed to estimate the local motion vectors,
such as representative point matching (Vella et al. (2002)), edge pattern matching (Paik et al.
(1992)), block matching (Xu & Lin (2006)) and bit plane matching (Ko et al. (1999)). All the pre-
vious algorithms, despite their high accuracy and reliability, are strictly constrained to regular
conditions exhibiting high sensitivity to various irregular conditions such as moving objects,
intentional panning, sequences acquired in low signal-to-noise ratio or zooming. For moving
objects, solutions have been proposed such as in (Erturk (2003)). For sequences acquired in
low signal-to-noise ratio, a blind DIS with the use of genetic algorithms is proposed in (Nait-
Ali (2007)). Intentional panning has also been greatly improved using background estimation
(Hsu et al. (2005)). For zooming, CMOS digital image stabilization schemes have been pro-
posed in (Cho et al. (2007)) and (Cho & Hong (2007)). However, due to the fact that they are
based on the distortion effect caused by the rolling shuttering mechanism of the CMOS sensor,
they are effective only in CMOS sensors.
A typical architecture of a DIS is shown in Fig. 2. The motion estimation unit computes the
motion between two consecutive frames. This is achieved firstly by the local motion estima-
tion subunit, which estimates the local motion vectors within frame regions. Secondly, the
global motion estimation unit determines the global motion vectors by processing the pre-
viously estimated local motion vectors. Following the motion estimation unit, the motion
compensation unit firstly, generates the compensating motion vector and secondly, shifts the
current picking window according to the compensating motion vector to obtain a free of high
frequency image sequence but still keep the global ego-motion of the sequence.

3. Active robot vision

The term active vision is used to describe vision systems, where the cameras do not stand still
to observe the scene in a passive manner, but, by means of actuation mechanisms, they can
aim towards the point of interest. The most common active stereo vision systems comprise
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a pair cameras horizontally aligned (Gasteratos et al. (2002)), (Samson et al. (2006)). In these
systems the movement of the stereo rig is done by means of 2 degrees of freedom: one for
the horizontal movement (pan) and the other for the vertical one (tilt); moreover each of the
cameras obeys to an independent pan movement (vergence), which raises the total degrees of
freedom of the system to four. To these apparatuses are often incorporated other sensors, such
as gyros, accelerometers or acoustical ones (Lungarella et al. (2003)). The integration of other
than visual sensors on an active stereo head is used as a supplementary source of information
from the environment. They are utilized in additional feedback loops, in order to increase the
system robustness. Such an application is the utilization of gyros for image stabilization and
gaze control (Panerai et al. (2003)).
When a robot with a vision system moves around its environment undesirable position fluc-
tuations in its visual field might occur, due to its locomotion. It is apparent that such fluctua-
tion degrades the robot’s visual functions and, thus, it is critical to avoid them, by stabilizing
the images. In biological systems this is avoided owing to Vestibulo-Ocular Reflex (VOR),
which derives from the brain and governs compensatory eye movements. However, in a tele-
operated robot there is not any mean to wire the operator’s brain with the actuators on the
robot head. In this case a local control loop should be applied, that replicates the VOR on the
tele-operated head. Figure 3 depicts a rough block diagram of the closed-loop control scheme
for the pan dof, which incorporates a look-ahead control loop for the external horizontal dis-
turbance. The look-ahead control strategy is utilized to predict the image fluctuations due to
abrupt disturbances on the stereo head. The horizontal component of the disturbance applied
on the head is measured by the inertial sensor. This signal is then fed into the look-ahead
controller, which produces a control signal for the controller of the pan degree of freedom
(Gc). The controller Gc is a standard PID controller (Gc = Kp +

Ki
s + Kd × s), which produces

a counteracting order to the actuator that moves the pan (Gp). This way the rotational com-
ponent of the horizontal disturbance is suppressed. At the final stage, the horizontal retinal
slippage is computed on two sequential image frames using a differential technique. This is
used as a feedback signal in a closed-loop that fine-tunes the image stabilization. An identical
local control loop is utilized for vertical disturbance and the tilt (having the same PID param-
eters). Images are stabilized in two axes in this manner, and the operator’s suffering from fast
image changes is compensated.

4. Evaluation measures

Evaluation procedures for image stabilization algorithms and architectures are presented in
(Engelsberg & Schmidt (1999)), (Morimoto & Chellappa (1998)) and (Balakirsky & Chellappa
(1996)). In robot vision the factors that are more important in the image stabilization schemes
are the accuracy of the system in terms of image quality and the displacement range in terms
of pixels or degrees per second. The quality of a stabilized sequence can be measured with
the help of the interframe transformation fidelity which is defined as the PSNR between two
consecutive stabilized frames, which is given by:

ITF =
1

N − 1

N−1

∑
k=1

PSNR(Ik, Ik+1) (1)

Gs

Gc Gp

H

++ ++
-

-
R(s)

D(s)

Stabilized
images

R(s): Input
D(s): Disturbance

Gc : Controller
Gp : Pan motor
Gs : Look-ahead controller
H  : Horizontal retinal slippage 

Fig. 3. Control scheme for compensation of the horizontal disturbances. The inertial sensors
are used for a look-ahead mechanism, which directly measures the disturbance and provides
a negative input to the controller. The horizontal component of the optic flow measured in
both cameras is used as feedback to the system.

with N the number of frames of the sequence. The PSNR between two consecutive frame Ik
and Ik+1 is given by:

PSNR(Ik, Ik+1) = 20 × log10

(
MAXI

RMSE(Ik, Ik+1)

)
(2)

5. Case study

A rotational and translational image stabilization system for a pan and tilt active stereo camera
head will be presented. The system is designed to fit into mobile rover platforms allowing the
architecture to be modular and the whole system expandable. Special attention was paid
to the real-time constraints, particularly for the control part of the system. The stabilization
system as shown in Fig. 4, consists of a stereo vision head (Gasteratos & Sandini (2001)), two
high resolution digital cameras, a DSP inertial sensor, four actuators and controllers and two
processing units. Pan and tilt compensation is achieved though mechanical servoing while
vertical and horizontal compensation is achieved by frame shifting through a digital frame
stabilization algorithm. A key feature is the real-time servo control system, written in C,
using Open Source Software which includes a Linux-based Real-Time Operating System, a
Universal Serial Bus to RS-232 serial driver, CAN bus drivers and an open source network
communication protocol for the communication between the two processing units.

5.1 Hardware Architecture
The system functions can be separated into information processing and motion control. In-
formation processing includes the gyrosensor output and the image processing. However,
image processing presents a high computational burden and recourses while it demands the
full usage of certain instruction sets of a modern microprocessor. In contrast, motion control
requires the operation system to be able to execute real-time tasks. This demand for high mul-
timedia performance and real-time motion control has forced us to adopt a computer structure
consisting of a computer with Windows operating system for the image processing and a com-
puter with RT-Linux operating system for the control tasks. The computers are connected to
each other by a high speed network protocol for synchronization and frame compensation
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5. Case study
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head will be presented. The system is designed to fit into mobile rover platforms allowing the
architecture to be modular and the whole system expandable. Special attention was paid
to the real-time constraints, particularly for the control part of the system. The stabilization
system as shown in Fig. 4, consists of a stereo vision head (Gasteratos & Sandini (2001)), two
high resolution digital cameras, a DSP inertial sensor, four actuators and controllers and two
processing units. Pan and tilt compensation is achieved though mechanical servoing while
vertical and horizontal compensation is achieved by frame shifting through a digital frame
stabilization algorithm. A key feature is the real-time servo control system, written in C,
using Open Source Software which includes a Linux-based Real-Time Operating System, a
Universal Serial Bus to RS-232 serial driver, CAN bus drivers and an open source network
communication protocol for the communication between the two processing units.

5.1 Hardware Architecture
The system functions can be separated into information processing and motion control. In-
formation processing includes the gyrosensor output and the image processing. However,
image processing presents a high computational burden and recourses while it demands the
full usage of certain instruction sets of a modern microprocessor. In contrast, motion control
requires the operation system to be able to execute real-time tasks. This demand for high mul-
timedia performance and real-time motion control has forced us to adopt a computer structure
consisting of a computer with Windows operating system for the image processing and a com-
puter with RT-Linux operating system for the control tasks. The computers are connected to
each other by a high speed network protocol for synchronization and frame compensation
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Fig. 4. The stereo head vision system. The modules shown here are: the stereo vision head
with the fixed actuators, the two digital cameras, the inertial sensor and the four controllers.

purposes. This inter-host communication protocol between the computers uses a higher level
abstraction, built on top of sockets, meeting the requirements for low latency. The interfaces
used are CAN bus for the controllers (Tindell et al. (1994)), USB 2.0 for the cameras a USB 1.0
to serial output for the inertial sensor. The drivers for the interfaces connected to the RT-Linux
computer are open source under the General Public License.
In order to fully utilize the advantages and precision of the modern digital servo drives a fine
tuning process (Astrom & Hagglund (1995)) for the pan and tilt PID controllers was carried
out. The tuning was orientated for position control and due to the different inertia load seen
on the motor shaft of the pan and tilt axis the integral, derivative and proportional band values
were set to different values for each axis respectively. In order to determine the internal camera
geometric and optical characteristics, camera calibration was necessary. A variety of methods
have been reported in the bibliography. The method we used is described in (Bouget (2001))
using its available C Open Source code. The method is a non self-calibrating thus, we used
a projected chessboard pattern to estimate the camera intrinsics and plane poses. Finally, the
calibration results were used to rectify the images taken from cameras in order to have the
best results in the subsequent image processing algorithms.

5.2 Software Architecture
Key feature for the implementation of the real-time control is the operating system we used.
Since critical applications such as control, need low response times, OCERA operating system
(OCERA project home page (2008)) was chosen. OCERA is an Open Source project which pro-
vides an integrated execution environment for embedded real-time applications. It is based on
components and incorporates the latest techniques for building embedded systems. OCERA
architecture is designed to develop hybrid systems with hard and soft real-time activities as
shown in Fig. 5. In this case, we allocated the critical task of control at the RTLinux level and
the less critical tasks, such as inertial data filtering, at the Linux level. The interface for both
kinds of activities is a POSIX based interface.
For motion estimation, the rectified frames are processed with an optic flow method in order
to extract the global motion translation vector for the motion compensation. The affine model

Fig. 5. The chosen operating system combines the use of two kernels, Linux and RTLinux-GPL
to provide support for critical tasks (RTLinux-GPL executive) and soft real-time applications
(Linux kernel).

of the optic flow that was used is described in (Koenderink & van Doorn (1991)) for the basis
of frame translation, using a single camera input. For motion compensation process, the esti-
mation method in (Hsu et al. (2005)) was selected, in order to remove the undesired shaking
motion and simultaneously maintain the ego-motion of the stereo head.
The digital inertial sensor consists of a compact sensor package, which includes accelerome-
ters and gyros to measure accelerations and angular rates. The errors in the force measure-
ments introduced by accelerometers and the errors in the measurement of angular change in
orientation with respect to the inertial space introduced by gyroscopes are two fundamental
error sources which affect the error behavior of the rotational stabilization. Furthermore, in-
ertial measurements are corrupted by additive noise (Ovaska & Valiviita (1998)). The Kalman
filter (Welch & Bishop (2001)), (Trucco & Verri (1998)) was used which is a form of optimal
estimator, characterized by recursive evaluation using an estimated internal model of the dy-
namics of the system. The filtering is implemented on the RT-Linux computer where the iner-
tial sensor is attached. Finally, the optimized filter outputs of pan and tilt are the subsequent
feedback to the controllers for opposite movement of the pan and tilt axis, respectively.
The concurrency and parallelism was considered in the programming of the robotic system
by using a multi-thread model. The motor run time models are not using the wait.until.done()
function, while a change in the operator’s field of view indicates that the previous movement
should not be completed but a new motion position command should be addressed. Simulta-
neous and non-synchronized accesses to the same resources, such as servo motors, is a critical
aspect since both stabilization and head tracking movement are performed at the same time,
as shown in Fig. 6. Thus, a priority scheduling feedback loop (Locke (1992)) was imple-
mented. The priority feedback scheduler is implemented as an additional real-time periodic
task. The inputs are the measured response times of the control tasks and the inputs from both
sensors. Priority was given to head posing tracker since we were interested firstly in giving
the operator the desired view and then an optimized view by mechanical stabilization.
The RT-Linux kernel keeps track of the real time tasks execution cycles, thus allowing to re-
cover a precise measure of the control tasks execution times from the scheduling regulator. As
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Fig. 4. The stereo head vision system. The modules shown here are: the stereo vision head
with the fixed actuators, the two digital cameras, the inertial sensor and the four controllers.
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to provide support for critical tasks (RTLinux-GPL executive) and soft real-time applications
(Linux kernel).

of the optic flow that was used is described in (Koenderink & van Doorn (1991)) for the basis
of frame translation, using a single camera input. For motion compensation process, the esti-
mation method in (Hsu et al. (2005)) was selected, in order to remove the undesired shaking
motion and simultaneously maintain the ego-motion of the stereo head.
The digital inertial sensor consists of a compact sensor package, which includes accelerome-
ters and gyros to measure accelerations and angular rates. The errors in the force measure-
ments introduced by accelerometers and the errors in the measurement of angular change in
orientation with respect to the inertial space introduced by gyroscopes are two fundamental
error sources which affect the error behavior of the rotational stabilization. Furthermore, in-
ertial measurements are corrupted by additive noise (Ovaska & Valiviita (1998)). The Kalman
filter (Welch & Bishop (2001)), (Trucco & Verri (1998)) was used which is a form of optimal
estimator, characterized by recursive evaluation using an estimated internal model of the dy-
namics of the system. The filtering is implemented on the RT-Linux computer where the iner-
tial sensor is attached. Finally, the optimized filter outputs of pan and tilt are the subsequent
feedback to the controllers for opposite movement of the pan and tilt axis, respectively.
The concurrency and parallelism was considered in the programming of the robotic system
by using a multi-thread model. The motor run time models are not using the wait.until.done()
function, while a change in the operator’s field of view indicates that the previous movement
should not be completed but a new motion position command should be addressed. Simulta-
neous and non-synchronized accesses to the same resources, such as servo motors, is a critical
aspect since both stabilization and head tracking movement are performed at the same time,
as shown in Fig. 6. Thus, a priority scheduling feedback loop (Locke (1992)) was imple-
mented. The priority feedback scheduler is implemented as an additional real-time periodic
task. The inputs are the measured response times of the control tasks and the inputs from both
sensors. Priority was given to head posing tracker since we were interested firstly in giving
the operator the desired view and then an optimized view by mechanical stabilization.
The RT-Linux kernel keeps track of the real time tasks execution cycles, thus allowing to re-
cover a precise measure of the control tasks execution times from the scheduling regulator. As



Robot Vision268

Stabilization 
Command

Direction 
Command

Fig. 6. Concurrent movement commands are applied to the same axis.

the feedback scheduler is a simple feedback algorithm running at a slow rate, its computing
cost is quite low. The software programming infrastructure considered the shared resources
and critical sections in order to guarantee the expandability and flexibility of the stereo vision
system. The critical sections were easily implemented since the protected operations were lim-
ited. However, special attention was paid since critical sections can disable system interrupts
and can impact the responsiveness of the operating system.

5.3 Algorithm Implementation
5.3.1 Kalman Filtering
Discrete Kalman filter computes the best estimate of the systems’s state at tk, x̄, taking into
account the state estimated by the system model at tk−1 and the measurement, zk, taken at tk.
The Kalman filter equations are characterized by the state covariance matrices, Pk and P

′

k, and
the gain matrix, Kk. P

′

k is the covariance matrix of the k-th state estimate

x̄
′

k = Φk−1 x̄k−1 (3)

predicted by the filter immediately before obtaining the measurement zk, where Φk−1 is a
time dependent n × n matrix called state transition matrix. Pk is the covariance matrix of
the k-th state estimate, x̄k computed by the filter after integrating the measurement, zk, with
the prediction, x̄

′

k. The covariance matrices are a quantitative model of the uncertainty of
x
′

k and xk. Finally, Kk establishes the relative importance of the prediction, x̄
′

k, and the state
measurement, x̄k. Let Qk and Rk be the covariance matrices of the white, zero-mean, Gaussian
system and measurement noise respectively. The Kalman filter equations are

P
′

k = Φk−1Pk−1Φ�
k−1 + Qk−1 (4)

Kk = P
′

k H�
k (HkP

′

k H�
k + Rk)

−1 (5)

x̄k = Φk−1 x̄k−1 + Kk(zk − HkΦk−1 x̄k−1) (6)

Pk = (I − Kk)P
′

k(I − Kk)
� + KkRkK�

k (7)

Using (4) to (7), we estimate the state and its covariance recursively. Initial estimates of the co-
variance matrix P0 and of the state, x̄0, were set to 0 and 1 respectively (Welch & Bishop (2001)).
First, P

′

k is estimated according to (4). Second, the gain of the Kalman filter is computed by (5),
before reading the new inertial measurements. Third, the optimal state estimate at time tk, x̄k,
is formed by (6), which integrates the state predicted by the system model (Φk−1 x̄k−1) with
the discrepancy of prediction and observation (zk − HkΦk−1 x̄k−1) in a sum weighted by the
gain matrix, Kk. Finally, the new state covariance matrix, Pk, is evaluated through (7). In our

Fig. 7. Sample data during the experiment session. The input reference is 0.3deg/ses (black
line), the output of the inertial sensor (crosses) and the filtered Kalman output (gray line).

inertial sensor, the calibrated rate of turn noise density is 0.1units/
√

Hz with units in deg/s.
Operating in 40Hz bandwidth, the noise is 0.015deg/s. An experiment was carried out to
quantify the filtering behavior of the system in real-time. We applied a recursive motion pro-
file to the tilt axis with constant velocity of 0.3deg/sec. During the experiment the following
parameters were stored to estimate the overall performance: (i) the velocity stimulus input
reference (ii) position angle of the controlled tilt servo encoder, (iii) output of the inertial sen-
sor and (iv) the Kalman filter output. Figure 7 shows the sample data recorded during the test
session. As it can seen the Kalman filtered output is close to the input reference by estimating
the process state at a time interval and obtaining feedback in the form of the noisy inertial
sensor measurement.

5.3.2 Optic Flow and Motion Compensation
Techniques for estimating the motion field are divided in two major classes: differential tech-
niques (Horn & Schunck (1981)) and matching techniques (Barron et al. (1994)). A widely
used differential algorithm (Lucas & Kanade (1981)) that gives good results was chosen for
implementation. Given the assumptions of the image brightness constancy equation yields
a good approximation of the normal component of the motion filed and that motion field is
well approximated by a constant vector field within any small patch of the image plane, for
each point pi within a small, n × n patch, Q, we derive

(∇E)�v + Et = 0 (8)

where spatial and temporal derivatives of the image brightness are computed at
p1, p2, . . . , pN2 , with E = E(x, y, t) the image brightness and v, the motion filed. Therefore,
the optical flow can be estimated within Q as the constant vector, v̄, that minimizes the func-
tional

Ψ[v] = ∑
pi∈Q

[(∇E)�v + Et]
2 (9)

The solution to this least squares problem can be found by solving the linear system

A�Av = A�b (10)
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the feedback scheduler is a simple feedback algorithm running at a slow rate, its computing
cost is quite low. The software programming infrastructure considered the shared resources
and critical sections in order to guarantee the expandability and flexibility of the stereo vision
system. The critical sections were easily implemented since the protected operations were lim-
ited. However, special attention was paid since critical sections can disable system interrupts
and can impact the responsiveness of the operating system.

5.3 Algorithm Implementation
5.3.1 Kalman Filtering
Discrete Kalman filter computes the best estimate of the systems’s state at tk, x̄, taking into
account the state estimated by the system model at tk−1 and the measurement, zk, taken at tk.
The Kalman filter equations are characterized by the state covariance matrices, Pk and P

′

k, and
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predicted by the filter immediately before obtaining the measurement zk, where Φk−1 is a
time dependent n × n matrix called state transition matrix. Pk is the covariance matrix of
the k-th state estimate, x̄k computed by the filter after integrating the measurement, zk, with
the prediction, x̄
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k. The covariance matrices are a quantitative model of the uncertainty of
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k, and the state
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Using (4) to (7), we estimate the state and its covariance recursively. Initial estimates of the co-
variance matrix P0 and of the state, x̄0, were set to 0 and 1 respectively (Welch & Bishop (2001)).
First, P

′

k is estimated according to (4). Second, the gain of the Kalman filter is computed by (5),
before reading the new inertial measurements. Third, the optimal state estimate at time tk, x̄k,
is formed by (6), which integrates the state predicted by the system model (Φk−1 x̄k−1) with
the discrepancy of prediction and observation (zk − HkΦk−1 x̄k−1) in a sum weighted by the
gain matrix, Kk. Finally, the new state covariance matrix, Pk, is evaluated through (7). In our
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line), the output of the inertial sensor (crosses) and the filtered Kalman output (gray line).

inertial sensor, the calibrated rate of turn noise density is 0.1units/
√

Hz with units in deg/s.
Operating in 40Hz bandwidth, the noise is 0.015deg/s. An experiment was carried out to
quantify the filtering behavior of the system in real-time. We applied a recursive motion pro-
file to the tilt axis with constant velocity of 0.3deg/sec. During the experiment the following
parameters were stored to estimate the overall performance: (i) the velocity stimulus input
reference (ii) position angle of the controlled tilt servo encoder, (iii) output of the inertial sen-
sor and (iv) the Kalman filter output. Figure 7 shows the sample data recorded during the test
session. As it can seen the Kalman filtered output is close to the input reference by estimating
the process state at a time interval and obtaining feedback in the form of the noisy inertial
sensor measurement.

5.3.2 Optic Flow and Motion Compensation
Techniques for estimating the motion field are divided in two major classes: differential tech-
niques (Horn & Schunck (1981)) and matching techniques (Barron et al. (1994)). A widely
used differential algorithm (Lucas & Kanade (1981)) that gives good results was chosen for
implementation. Given the assumptions of the image brightness constancy equation yields
a good approximation of the normal component of the motion filed and that motion field is
well approximated by a constant vector field within any small patch of the image plane, for
each point pi within a small, n × n patch, Q, we derive

(∇E)�v + Et = 0 (8)

where spatial and temporal derivatives of the image brightness are computed at
p1, p2, . . . , pN2 , with E = E(x, y, t) the image brightness and v, the motion filed. Therefore,
the optical flow can be estimated within Q as the constant vector, v̄, that minimizes the func-
tional

Ψ[v] = ∑
pi∈Q

[(∇E)�v + Et]
2 (9)

The solution to this least squares problem can be found by solving the linear system

A�Av = A�b (10)
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Fig. 8. Horizontal frame sample data during the experiment session. The input before stabi-
lization (red line) and the output after stabilization (blue line) is demonstrated.

The i-th row of the N2 × 2 matrix A is the spatial image gradient evaluated at point pi

A = [∇E(p1),∇E(p2), . . . ,∇E(pN×N)]� (11)

and b is the N2-dimensional vector of the partial temporal derivatives of the image brightness,
evaluated at p1, p2 . . . pN2 , after a sign change

b = −[Et(p1), Et(p2), . . . , Et(pN×N)]� (12)

Finally, the optic flow v̄ at the center of patch Q can be obtained as

v̄ = (A�A)−1 A�b (13)

Furthermore, we applied to each captured rectified image a Gaussian filter with a standard
deviation of σs = 1.5. The filtering was both spatial and temporal in order to attenuate noise
in the estimation of the spatial image gradient and prevent aliasing in the time domain. The
patch used is 5× 5 pixels and three consecutive frames are the temporal dimension. The algo-
rithm is applied for each patch and only the optic flow for the pixel at the center of the patch
is computed, generating a sparse motion field with high performance speed of 10 f rames/sec
for 320 × 240 image resolution.
The Global Motion Vector (GMV) is represented by the arithmetic mean of the local motion
vectors in each of the patches and can be potentially effective when subtracting the ego-motion
commands of the stereo head which are available through the servo encoders. Subsequently,
the compensation motion vector estimation is used to generate the Compensating Motion Vec-
tors (CMVs) for removing the undesired shaking motion but still keeping the steady motion

Fig. 9. Vertical frame sample data during the experiment session. The input before stabiliza-
tion (red line) and the output after stabilization (blue line) is demonstrated.

of the image. The compensation motion vector estimation for the final frame shifting is given
by (Paik et al. (1992))

CMV(t) = k (CMV(t − 1))

+ (a GMV(t) + (1 − a) GMV(t − 1)) (14)

where t represents the frame number, 0 ≤ a ≤ 1 and k is a proportional factor for designating
the weight between current frame stabilization and ego-motion. Finally, frame shifting is
applied when both horizontal and vertical CMVs are determined.

5.4 System Performance
Due to the fact that rotational stabilization process runs on the RT-Linux computer we have
succeeded its real-time operation. Thus, stabilization can be considered as two separate pro-
cesses that operate independently, since the frame sequences captured from the camera have
been already rotationally stabilized by the mechanical servoing. The horizontal and vertical
stabilization experiments are demonstrated in Fig. 8 and Fig. 9, respectively. The results show
a frame sequence free of high frequency fluctuations, maintaining though, the ego-motion of
the trajectory. The overall system is capable of processing 320 × 240 pixel image sequences at
approximately 10 f rames/sec, with a maximum acceleration of 4 deg/sec2.

6. Conclusion

In this chapter, we covered all the crucial features of image stabilization in active robot vi-
sion systems. The topics included real-time servo control approaches for the electronic image
stabilization, image processing algorithms for the digital image stabilization, evaluation mea-
sures, and robot control architectures for hard and soft real-time processes. A case study of
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where t represents the frame number, 0 ≤ a ≤ 1 and k is a proportional factor for designating
the weight between current frame stabilization and ego-motion. Finally, frame shifting is
applied when both horizontal and vertical CMVs are determined.

5.4 System Performance
Due to the fact that rotational stabilization process runs on the RT-Linux computer we have
succeeded its real-time operation. Thus, stabilization can be considered as two separate pro-
cesses that operate independently, since the frame sequences captured from the camera have
been already rotationally stabilized by the mechanical servoing. The horizontal and vertical
stabilization experiments are demonstrated in Fig. 8 and Fig. 9, respectively. The results show
a frame sequence free of high frequency fluctuations, maintaining though, the ego-motion of
the trajectory. The overall system is capable of processing 320 × 240 pixel image sequences at
approximately 10 f rames/sec, with a maximum acceleration of 4 deg/sec2.

6. Conclusion

In this chapter, we covered all the crucial features of image stabilization in active robot vi-
sion systems. The topics included real-time servo control approaches for the electronic image
stabilization, image processing algorithms for the digital image stabilization, evaluation mea-
sures, and robot control architectures for hard and soft real-time processes. A case study of
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an active robot vision image stabilization scheme was also presented, consisting of a four de-
grees of freedom robotic head, two high resolution digital cameras, a DSP inertial sensor, four
actuators and controllers and one processing unit. Pan and tilt compensation was achieved
through mechanical servoing while vertical and horizontal compensation was achieved by
frame shifting through a digital frame stabilization algorithm. key feature was the real-time
servo control system, written in C, using Open Source Software which includes a Linux-based
Real-Time Operating System, a Universal Serial Bus to RS-232 serial driver, CAN bus drivers
and an open source network communication protocol for the communication between the two
processing units.
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an active robot vision image stabilization scheme was also presented, consisting of a four de-
grees of freedom robotic head, two high resolution digital cameras, a DSP inertial sensor, four
actuators and controllers and one processing unit. Pan and tilt compensation was achieved
through mechanical servoing while vertical and horizontal compensation was achieved by
frame shifting through a digital frame stabilization algorithm. key feature was the real-time
servo control system, written in C, using Open Source Software which includes a Linux-based
Real-Time Operating System, a Universal Serial Bus to RS-232 serial driver, CAN bus drivers
and an open source network communication protocol for the communication between the two
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