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INTRODUCTION 

Computational Intelligence (CI) consists of an evolving collection of 
methodologies often inspired from nature (Bonissone, Chen, Goebel & Khedkar, 1999, 
Fogel, 1999, Pedrycz, 1998). Two popular methodologies of CI include neural networks 
and fuzzy systems. 

Lately, a unification was proposed in CI, at a “data level”, based on lattice theory 
(Kaburlasos, 2006). More specifically, it was shown that several types of data including 
vectors of (fuzzy) numbers, (fuzzy) sets, 1D/2D (real) functions, graphs/trees, (strings of) 
symbols, etc. are partially(lattice)-ordered. In conclusion, a unified cross-fertilization was 
proposed for knowledge representation and modeling based on lattice theory with 
emphasis on clustering, classification, and regression applications (Kaburlasos, 2006). 

Of particular interest in practice is the totally-ordered lattice (R,≤) of real numbers, 
which has emerged historically from the conventional measurement process of successive 
comparisons. It is known that (R,≤) gives rise to a hierarchy of lattices including the 
lattice (F,≤) of fuzzy interval numbers, or FINs for short (Papadakis & Kaburlasos, 2007). 

This article shows extensions of two popular neural networks, i.e. fuzzy-ARTMAP 
(Carpenter, Grossberg, Markuzon, Reynolds & Rosen 1992) and self-organizing map 
(Kohonen, 1995), as well as an extension of conventional fuzzy inference systems 
(Mamdani & Assilian, 1975), based on FINs. Advantages of the aforementioned 
extensions include both a capacity to rigorously deal with nonnumeric input data and a 
capacity to introduce tunable nonlinearities. Rule induction is yet another advantage. 
 
BACKGROUND 

Lattice theory has been compiled by Birkhoff (Birkhoff, 1967). This section 
summarizes selected results regarding a Cartesian product lattice (L,≤)= 
(L1,≤1)×…×(LN,≤N) of constituent lattices (Li,≤i), i=1,…,N. 

Given an isomorphic function θi: (Li,≤i)→(Li,≤i)∂ in a constituent lattice (Li,≤i), 
i=1,…,N, where (Li,≤i)∂ ≡ (Li,≤ i

∂ ) denotes the dual (lattice) of lattice (Li,≤i), then an 
isomorphic function θ: (L,≤)→(L,≤)∂ is given by θ(x1,…,xN)=(θ1(x1),…,θN(xN)). 

Given a positive valuation function vi: (Li,≤i)→R in a constituent lattice (Li,≤i), 
i=1,…,N then a positive valuation v: (L,≤)→R is given by v(x1,…,xN)=v1(x1)+…+vN(xN). 

It is well-known that a positive valuation vi: (Li,≤i)→R in a lattice (Li,≤i) implies a 
metric function di: Li×Li→R  given by d0

+
i(a,b) = vi(a∨b) - vi(a∧b). 

Minkowski metrics dp: (L1,≤1)×…×(LN,≤N)= (L,≤)→R are given by 

dp(x,y) = 
1/
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x= (x1,…,xN), y=(y1,…,yN), p∈R. 
An interval [a,b] in a lattice (L,≤) is defined as the set [a,b]≐{x∈L: a≤x≤b, a,b∈L}. 

Let τ(L) denote the set of intervals in a lattice (L,≤). It turns out that (τ(L),≤) is a lattice, 
ordered by set inclusion. 

Definition 1. The size Zp: τ(L)→ 0
+R  of a lattice (L,≤) interval [a,b]∈τ(L), with 

respect to a positive valuation v: (L,≤)→R, is defined as Zp([a,b])=dp(a,b). 
 
NEURAL/FUZZY COMPUTING BASED ON LATTICE THEORY 

This section delineates modified extensions to a hierarchy of lattices stemming 
from the totally ordered lattice (R,≤) of real numbers. Then, it details the relevance of 
novel mathematical tools. Next, based on the previous mathematical tools, this section 
presents extensions of ART/SOM/FIS. Finally, it discusses comparative advantages. 
 
Modified Extensions in a Hierarchy of Lattices 

Consider the product lattice (∆,≤) = (R×R,≤∂×≤) = (R×R,≥×≤) of generalized 
intervals. A generalized interval (element in ∆) will be denoted by [a,b] and will be 
called positive (negative) for a≤b (a>b). The set of positive (negative) generalized 
intervals will be denoted by ∆+ (∆-) − We remark that the set of positive generalized 
intervals is isomorphic to the set of conventional intervals in the set R of real numbers. 

A decreasing function θR: R→R is an isomorphic function θR: (R,≤)→(R,≤)∂; 
furthermore, a strictly increasing function vR: R→R is a positive valuation vR: (R,≤)→R. 
Hence, function v∆: (∆,≤)→R given by v∆([a,b])= vR(θR(a))+vR(b) is a positive valuation 
in lattice (∆,≤). There follows a metric function d∆: ∆×∆→ 0

+R  given by d∆([a,b],[c,d])= 
[vR(θR(a∧c))-vR(θR(a∨c))] + [vR(b∨d)-vR(b∧d)]; in particular, for θR(x)= -x and vR(x)= x it 
follows v∆([a,b])= |a-c| + |b-d|. Choosing parametric functions θR(.) and vR(.) there follow 
tunable nonlinearities in lattice (R,≤). Moreover, note that ∆ is a real linear space with 

• addition defined as [a,b] + [c,d] = [a+c,b+d], and 
• multiplication (by a real k) defined as k[a,b] = [ka,kb]. 
It turns out that ∆+ (as well as ∆-) is cone in linear space ∆ − Recall that a subset C 

of a linear space is called cone if for all x∈C and λ>0, we have λx∈C. 
Definition 2. A generalized interval number (GIN) is a function f: (0,1]→∆. 
Let G denote the set of GINs. It follows that (G,≤) is a lattice, in particular (G,≤) is 

the Cartesian product of lattices (∆,≤). Moreover, G is a real linear space with 
• addition defined as (G1 + G2)(h) = G1(h) + G2(h), h∈(0,1], and 
• multiplication (by a real k) defined as (kG)(h) = kG(h), h∈(0,1]. 
We remark that the cardinality of set G equals 1

1
ℵℵ = ( ) 1

02
ℵℵ = 0 12ℵ ℵ = 2 =ℵ1ℵ 2 > ℵ1, 

where ℵ1 is the cardinality of the set R of real numbers. 
Proposition 3. Consider metric(s) d∆: ∆×∆→ 0

+R  in lattice (∆,≤). Let G1,G2∈(G,≤). 
Assuming that the following integral exists, a metric function dG: G×G→  is given by 0

+R

dG(G1,G2) = . 
1
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0
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Our interest here focuses on the sublattice (F,≤) of lattice (G,≤), namely sublattice 
of fuzzy interval numbers (FINs). A FIN is defined rigorously as follows. 

Definition 4. A fuzzy interval number (FIN) F is a GIN such that either (1) both 
F(h)∈∆+ and h1≤h2 ⇒ F(h1)≥F(h2), for all h∈(0,1] (positive FIN) or (2) there is a positive 
FIN P such that F(h) = -P(h), for all h∈(0,1] (negative FIN). 

Let F+ (F-) denote the set of positive (negative) FINs. Note that both F+∪F- = F and 
F+∩F-=∅ hold. Furthermore, F+ (F-) is a cone with cardinality ℵ1 (Kaburlasos & 
Kehagias, 2006). The previous mathematical analysis may potentially produce useful 
techniques based on lattice vector theory (Vulikh, 1967). A positive FIN will simply be 
called “FIN”. A FIN may admit different interpretations including a (fuzzy) number, an 
interval, and a cumulative distribution function. 
 
Relevance of Novel Mathematical Tools 

A fundamental mathematical result in fuzzy set theory is the “resolution identity 
theorem”, which states that a fuzzy set can, equivalently, be represented either by its 
membership function or by its α-cuts (Zadeh, 1975). The aforementioned theorem has 
been given little attention in practice to date. However, some authors have capitalized on 
it by designing effective as well as efficient fuzzy inference systems (FIS) involving 
fuzzy numbers whose α-cuts are conventional closed intervals (Uehara & Fujise, 1993, 
Uehara & Hirota, 1998). 

This work builds on the abovementioned mathematical result as follows. In the first 
place, we drop the possibilistic interpretation of a membership function. Then, we 
consider the corresponding “α-cuts representation”. Next, we consider the metric cone 

 of (positive) FINs. In conclusion, we propose extensions of established neural/fuzzy 
algorithms, including ART (adaptive resonance theory), SOM (self-organizing map), and 
FIS (fuzzy inference systems), in 

N
+F

N
+F  (Kaburlasos, 2007). A novelty of this work is an 

improved mathematical notation, which emphasizes relevance with the aforementioned 
“resolution identity theorem”. 
 
An Extension of Fuzzy-ARTMAP 

A fuzzy-ARTMAP extension, namely fuzzy lattice reasoning (FLR), is presented in 
this section based on a similarity measure (function) defined in the following. 

Definition 5. A similarity measure in a set S is a function µ: S×S→(0,1], which 
satisfies the following conditions. 

(S1) µ(a,b) = 1 ⇔ a = b. 
(S2) µ(a,b) = µ(b,a). 

(S3) 1 1 1 1
( , ) ( , ) ( , ) ( , )a b x x a x x b

+ ≤ +
µ µ µ µ

. 

A similarity measure is defined based on a metric function next. 
Proposition 6. If function d: S×S→ 0

+R  is a metric then function µ: S×S→(0,1] 
given by µ(a,b) = 1/[1+d(a,b)] is a similarity measure. 

 

 



FLR for training 
FLR-0: A set RB = {(u1,C1),…,(uL,CL)} is given, where ul∈ N

+F  and Cl∈C, l=1,…,L is a 
class label in the finite set C. 

FLR-1: Present the next input pair (xi,Ki)∈ N
+F ×C, i=1,…,n to the initially “set” RB. 

FLR-2: If no more pairs are “set” in RB then store input pair (xi,Ki) in the RB; L←L+1; 
goto step FLR-1. 

 Else, compute the similarity µ(xi,ul) of input xi∈ N
+F  with a “set” element ul∈ N

+F , 
l=1,…,L in RB. 

FLR-3: Competition among the “set” pairs in the RB: Winner is pair (uJ,CJ) such that 
J≐ . In case of multiple winners, choose the one with the 

smallest size Z
i{1,..., }

( , )ll L
arg x u

∈
µmax

1(.). 
FLR-4: Assimilation Condition: Both (1) size Z1(xi∨uJ) is less than a user-defined 

threshold size Zcrit, and (2) Ki = CJ. 
FLR-5: If the Assimilation Condition is not satisfied then “reset” the winner pair (uJ,CJ); 

goto step FLR-2. 
 Else, replace the winner uJ by the join-interval xi∨uJ; goto step FLR-1. 

 
The corresponding testing phase is carried out by winner-take-all competition 

based on the similarity measure function µ(.,.). 
 
An Extension of SOM 

A straightforward SOM extension, namely granular SOM (grSOM), is presented in 
this section in cone F . N

+

 
grSOM for training 

GR-0: The user defines the size L of a L×L grid of neurons. Each neuron can store both 
a N-dimensional FIN Wi,j∈ N

+F , i,j∈{1,…,L} and a class label Ci,j∈C, where C is 
a finite set. Initially all neurons are uncommitted. 

GR-1: Memorize the first training data pair (x1,K1)∈ N
+F ×C by committing, randomly, a 

neuron in the L×L grid. 
 Repeat the following steps a user-defined number Nepochs of epochs. 
GR-2: For each training datum (xk,Kk)∈ N

+F ×C, k=1,…,n “reset” all L×L grid neurons. 
Then carry out the following computations. 

GR-3: Calculate the Minkowski metric distance d1(xk,Wi,j) between xk and committed 
neurons Wi,j, i,j∈{1,…,L}. 

GR-4: Competition among the “set” (and, committed) neurons in the L×L grid: Winner 
is neuron (I,J) whose weight WI,J is the nearest to xk, that is 
(I,J)≐ . 1 k i, ji, j {1,..., }

( , )
L

arg d x W
∈
min

GR-5: Assimilation Condition: Both (1) Vector Wi,j is in the neighborhood of vector 
WI,J on the L×L grid, and (2) CI,J = Kk. 

GR-6: If the Assimilation Condition is satisfied then compute a new value W  as i, j′

 



i, jW ′ ≐ i, j k
1 I,J i, j 1 I,J i, j

( ) ( )1
1 ( , ) 1 ( , )

h k h kW x
d W W d W W

 
− + 
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 Else, “reset” the winner (I,J); goto GR-4. 
GR-7: If all the L×L neurons are “reset” then commit an uncommitted neuron from the 

grid, and memorize the current training datum (xk,Kk). 
 If there are no more uncommitted neurons then increase L by one. 

 
The corresponding testing phase is carried out by winner-take-all competition 

based on the Minkowski metric d1(.,.). 
 
An Extension of FIS 

The basic idea towards novel FIS analysis and design is to employ a similarity 
measure function µ(X,Ai) = 1/[1+d(X,Ai)], where X,Ai∈ N

+F , as a fuzzy membership 
function regarding a rule Ri: Ai→Ci, where Ai∈ N

+F , Ci∈ M
+F , i=1,…,L (Kaburlasos & 

Kehagias, 2007). Advantages are presented in the following. 
 
Comparative Advantages 

First, an important advantage of the mathematical tools above is that the proposed 
ART/SOM/FIS extensions can handle, in any combination, numeric and/or non-numeric 
data, the latter include fuzzy numbers, intervals, and cumulative distribution functions. 

Second, we can employ parametric decreasing (increasing) functions θR: R→R (vR: 
R→R) in a data dimension, where the function parameters can be estimated/tuned 
optimally towards improving performance. 

Third, the proposed ART/SOM/FIS extensions can induce descriptive decision-
making knowledge (i.e. rules) from the training data. 

Fourth, regarding the FLR, note that a similarity measure function µ(.,.) can 
effectively replace an inclusion measure function σ(.,.) − Recall that the latter (function) 
had replaced both of fuzzy-ARTMAP’s Choice (Weber) function and Match function 
(Kaburlasos & Petridis, 2000, Kaburlasos, Athanasiadis & Mitkas, 2007). The reason 
behind the aforementioned “effective” replacement is that an inclusion measure σ(A,B), 
or σ(B,A), considers mainly one of A,B∈ N

+F ; whereas, a similarity measure µ(A,B) 
considers both A,B∈  based on their corresponding metric distance. N

+F
Fifth, regarding the proposed SOM extension, note that this work carries out 

computations in the cone F+ of FINs for faster data processing compared to a previous 
version of grSOM (Kaburlasos & Papadakis, 2006). 

Sixth, regarding the proposed FIS, novel advantages include a capacity to 
generalize beyond a fuzzy rule’s support. The latter implies, potentially, an alleviation of 
the “curse of dimensionality” problem regarding the number of rules. 
 
FUTURE TRENDS 

Data-processing of FINs by multiplayer perceptrons is straightforward, as 
described in (Kaburlasos & Christoforidis, 2006), and it will be pursued in future work. 
 

 



CONCLUSION  
This article has presented novel mathematical tools for unified analysis and design 

of neural/fuzzy systems. We built on fuzzy set theory’s “resolution identity theorem”. 
Nevertheless, in the first place, we dropped the possibilistic interpretation of a 
membership function. Then, we considered the corresponding “α-cuts representation”. 
Our interest focused on fuzzy interval numbers, or FINs for short, which can represent 
(fuzzy) numbers, intervals, and cumulative distribution functions. Based on lattice theory, 
we showed that the space of FINs is a metric cone. In conclusion, this works opens up the 
possibility to design FIN-to-FIN maps implementable on neural/fuzzy architectures 
including also tunable nonlinearities. 
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TERMS AND DEFINITIONS 
ART: ART stands for Adaptive Resonance Theory. That is a biologically inspired neural 

paradigm for, originally, clustering binary patterns. An analog pattern version of 
ART, namely fuzzy-ART, is applicable in the unit hypercube. The corresponding 
neural network for classification is called fuzzy-ARTMAP. 

Dual (lattice): Given a lattice (L,≤), its dual lattice, symbolically (L,≤)∂ or (L,≤∂) ≡ (L,≥), 
is a lattice with the inverse order relation (≥). 

FIS: FIS stands for Fuzzy Inference System. That is an architecture for reasoning 
involving fuzzy sets (typically fuzzy numbers) based of fuzzy logic. 

Isomorhic (function): Given two lattices (L1,≤1) and (L2,≤2), an isomorphic function is a 
bijective (one-to-one) function ϕ: (L1,≤1)→(L2,≤2) such that x≤y ⇔ ϕ(x)≤ϕ(y). 

Lattice: A lattice is a poset (L,≤) any two of whose elements have both a greatest lower 
bound (g.l.b.), denoted by x∧y, and a least upper bound (l.u.b.), denoted by x∨y. 

Poset: A partially ordered set (or, poset, for short) is a pair (P,≤), where P is a set and ≤ 
is an order relation on P. The latter (relation) by definition satisfies (1) x≤x, (2) x≤y 
and y≤x ⇒ x = y, and (3) x≤y and y≤z ⇒ x≤z. 

Positive valuation (function): Given a lattice (L,≤), a positive valuation is a function     
v: (L,≤)→R, which satisfies both v(x)+v(y) = v(x∧y)+v(x∨y) and x<y ⇒ v(x)<v(y). 

Rule Induction: Process of learning, from cases or instances, if-then rule relationships 
that consist of an antecedent (if-part, defining the preconditions or coverage of the 
rule) and a consequent (then-part, stating a classification, prediction, or other 
expression of a property that holds for cases defined in the antecedent). 

SOM: SOM stands for Self-Organizing Map. That is a biologically inspired neural 
paradigm for clustering analog patterns. SOM is often used for visualization of 
nonlinear relations of multi-dimensional data. 

Subattice: A sublattice (S,≤) of a lattice (L,≤) is another lattice such that both S⊆L and 
x,y∈S ⇒ x∧y,x∨y∈S. 

 


