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Summary. Fuzzy adaptive resonance theory (fuzzy-ART) and self-organizing map
(SOM) are two popular neural paradigms, which compute lattice-ordered granules.
Hence, lattice theory emerges as a basis for unified analysis and design. We present
both an enhancement of fuzzy-ART, namely fuzzy lattice reasoning (FLR), and an
enhancement of SOM, namely granular SOM (grSOM). FLR as well as grSOM can
rigorously deal with (fuzzy) numbers as well as with intervals. We introduce inspiring
novel interpretations. In particular, the FLR is interpreted as a reasoning scheme,
whereas the grSOM is interpreted as an energy function minimizer. Moreover, we can
introduce tunable nonlinearities. The interest here is in classification applications.
We cite evidence that the proposed techniques can clearly improve performance.

1.1 Introduction

Two novel approaches to neural computing were proposed lately by different
authors based on lattice theory [22, 23, 35]. More specifically, one approach
is based on the “order” definition for a lattice [22, 23], whereas the other
one is based on the “algebra” definition for a lattice [35] as explained later.
This chapter builds on the former definition; furthermore, it proposes granular
enhancements of two popular neural paradigms, namely adaptive resonance
theory (ART) and self-organizing map (SOM).

Stephen Grossberg, the founder of ART, points out occassionally an inher-
ent affinity of the biologically-motivated clustering mechanisms of ART with
Kohonen’s SOM [26]. This work shows yet another aspect of the aforemen-
tioned affinity since both ART and SOM can be studied analytically (and also
be further improved) based on mathematical lattice theory. Here we consider
the fuzzy enhancement of ART known as fuzzy-ART [5].

The operation of both fuzzy-ART and SOM is based on the computation
of clusters in RN . In particular, a cluster for fuzzy-ART corresponds to a
hyperbox, whereas a cluster for SOM corresponds to a Voronoi region in a
metric space. Another term for cluster is granule. Lately, there is a growing
interest in granular computing as explained next.
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Granular computing is a category of theories, methodologies, techniques
and tools that make use of information granules in the process of problem
solving. Where, an (information) granule can be conceived as a collection of
entities grouped together by similarity, functional adjacency, indistinguisha-
bility, coherency, etc. The basic notions and principles of granular computing
have appeared under different names in many related fields such as informa-
tion hiding in programming, granularity in artificial intelligence, divide and
conquer in theoretical computer science, interval computing, cluster analy-
sis, fuzzy and rough set theories, and many other. Granular computing is an
emerging computational paradigm [27, 30].

Granules in RN are partially-ordered, in particular they are lattice-ordered.
Hence, lattice theory emerges as a basis for analysis and design in granular
computing. This work shows granular enhancements of the popular fuzzy-ART
and SOM classifiers. Moreover, novel interpretations are introduced. In par-
ticular, fuzzy-ART is interpreted as an interactive reasoning scheme, whereas
SOM is interpreted as an energy minimizer. Note also that the techniques
presented here could be useful elsewhere in granular computing.

This chapter is organized as follows. Section 1.2 summarizes, in context,
the learning mechanisms of fuzzy-ART and SOM. Section 1.3 covers the math-
ematics required for describing the enhancements proposed later. Section 1.4
describes enhancements of both fuzzy-ART and SOM. Section 1.5 summarizes,
in perspective, the contribution of this work.

1.2 Fuzzy-ART and SOM

This section summarizes the operation of both fuzzy Adaptive Resonance The-
ory (fuzzy-ART) and Self-Organizing Map (SOM) for unsupervised learning,
i.e. clustering. It also presents interesting extensions by different authors.

1.2.1 Fuzzy-ART operation

The original fuzzy-ART neural network regards a two-layer architecture [5].
Layer F1 of fuzzy-ART fans out an input vector to the fully-interconnected,
competitive neurons in layer F2. A layer F2 neuron filters an input vector x
by computing vector x∧w, where w is the code (vector) stored on interlayer
links. More specifically, an entry of vector x ∧w equals the minimum of the
corresponding (positive real number) entries of vectors x and w. Algorithm
fuzzy-ART for training (learning) by clustering is briefly described next.

Algorithm fuzzy-ART for training

ART-1: Do while there are more inputs.
Apply the complement coding technique in order to represent input
[xi,1, ..., xi,N ] ∈ [0, 1]N by xi = [xi,1, ..., xi,N , 1 − xi,1, ..., 1 − xi,N ] ∈ R2N ,
i = 1, ..., n. Then, present xi to the (initially) “set” neurons in layer F2.
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ART-2: Each layer F2 neuron with code wj ∈ R2N computes its choice (Weber)
function Tj = |xi ∧wj |/(α + |wj |).

ART-3: If there are no “set” neurons in layer F2 then memorize input xi.
Else, competition among the “set” neurons in layer F2: Winner is neuron
J such that TJ

.= argmax
j

Tj .

ART-4: Similarity Test : (|xi ∧ wJ |/|xi|) ≥ ρ, where |xi ∧ wJ |/|xi| is the match
function and ρ ∈ (0, 1] is the user-defined vigilance parameter.

ART-5: If the Similarity Test is not satisfied then “reset” the winner neuron; goto
step ART-3 to search for another winner.
Else, replace the winner neuron code wJ by xi ∧wJ ; goto step ART-1.

We remark that |x| above equals, by definition, the sum of vector x (posi-
tive) entries. Parameter “α” in the choice (Weber) function Tj is a very small
positive number whose role is to break ties in case of multiple winners [16].

As soon as training (learning) completes, each neuron defines a cluster by
a hyperbox. It follows algorithm fuzzy-ART for testing (generalization).

Algorithm fuzzy-ART for testing

art-1: Feed an input vector x0 = [x0,1, ..., x0,N , 1− x0,1, ..., 1− x0,N ] ∈ R2N .
art-2: A layer F2 neuron with code wj ∈ R2N computes the choice (Weber)

function |x0 ∧wj |/(α + |wj |).
art-3: Competition among the neurons in layer F2: Winner is neuron J such that

TJ
.= argmax

j
Tj . Assign input x0 to the cluster represented by neuron J .

1.2.2 SOM operation

Kohonen’s self-organizing map (SOM) architecture [26] includes a two dimen-
sional L×L grid (or, map) of neurons (or, cells). Each cell Ci,j stores a vector
mi,j = [mi,j,1, ..., mi,j,N ]T ∈ RN , i = 1, ..., L, j = 1, ..., L. Vectors mi,j are
called code vectors and they are initialized randomly. A version of algorithm
SOM for training (learning) by clustering is briefly described next.

Algorithm SOM for training

SOM-1: Memorize the first input datum x1 ∈ RN by committing, randomly, a
neuron on the L× L grid.
Repeat the following steps a user-defined number Nepochs of epochs, t =
1, ..., Nepochs.

SOM-2: For each training datum xk ∈ RN , k = 1, ..., n carry out the following
computations.

SOM-3: Calculate the Euclidean distance d(mi,j ,xk), i, j ∈ {1, ..., L}.
SOM-4: Competition among the neurons on the L × L grid: Winner is neuron

(I, J) .= arg min
i,j∈{1,...,L}

d1(mi,j ,xk).
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SOM-5: Assimilation Condition: Vector mi,j is in the neighborhood of vector mI,J

on the L× L grid.
SOM-6: If the Assimilation Condition is satisfied then compute a new value m′

i,j :

m′
i,j = mi,j + a(t)(xk −mi,j) = [1− a(t)]mi,j + a(t)xk, (1.1)

where a(t) ∈ (0, 1) is a decreasing function in time (t).

As soon as training (learning) completes, each cell Ci,j defines a cluster
by a code vector mi,j . It follows algorithm SOM for testing (generalization).

Algorithm SOM for testing

som-1: Present an input x0 ∈ RN , k = 1, ..., n to the neurons of the L× L grid.
som-2: Calculate the Euclidean distance d(mi,j ,x0), i, j ∈ {1, ..., L}.
som-3: Competition among the neurons on the L × L grid: Winner is neuron

(I, J) .= arg min
i,j∈{1,...,L}

d1(mi,j ,xk). Assign input x0 to the cluster repre-

sented by neuron J .

Note that the set of clusters computed during training by both fuzzy-ART
[10, 16] and SOM depends on the order of data presentation.

1.2.3 Extensions by different authors in context

Both fuzzy-ART and SOM compute information granules. In particular, fuzzy-
ART computes fuzzy-sets with hyperbox cores, whereas SOM partitions its
data domain in Voronoi-regions.

Both fuzzy-ART and SOM for clustering have been extended by a number
of authors. More specifically, on the one hand, fuzzy-ARTMAP has been pro-
posed for supervised learning [6]. Improvements of fuzzy-ARTMAP were pro-
posed in various learning applications [7, 8]. Furthermore, fuzzy-ART(MAP)
has inspired various min-max neural networks [2, 18]. An interesting proba-
bilistic analysis of fuzzy-ARTMAP was proposed lately using martingales [1].
An extension of the fuzzy-ART(MAP) algorithm to a mathematical lattice
data domain is the FLR algorithm [19]. Note that the FLR algorithm can
be implemented as a neural network towards fuzzy lattice neurocomputing,
or FLN for short [18, 23, 32]. On the other hand, SOM has been popular
in signal- and other information- processing applications [26]. Various SOM
extensions have been proposed including nonEuclidean metrics [31], weight-
ing factors [13], etc. A different SOM extension is the generative topographic
mapping (GTM) based on a constrained mixture of Gaussians [4]. However,
conventional SOM as well as its extensions cannot cope with ambiguity. In
response, SOM-based fuzzy c-means algorithms have been proposed [24]. Note
that an early employment of SOM in fuzzy inference systems (FISs) appeared
[37]. Lately, SOM extensions were presented for FIS analysis and design based
on positive FINs [21, 29], the latter (FINs) are presented below.
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1.3 Mathematical Background

This section covers lattice theory mathematics necessary for introducing novel
enhancements later.

1.3.1 Crisp lattices

We present two equivalent definitions for a mathematical lattice [3], namely
order-based - and algebra-based - definition, respectively. The former is based
on the notion partially ordered set, or poset for short, defined in the Appendix.

By “a covers b” in a poset (P,≤) it is meant that b < a but b < x < a
for no x ∈ P . Let (P,≤) be a poset with least element O. Every x ∈ P which
covers O, if such x exists, is called atom.

Let (P,≤) be a poset and X ⊆ P . An upper bound of X is a a ∈ P with
x ≤ a, ∀x ∈ X. The least upper bound (l.u.b.), if it exists, is the unique upper
bound contained in every upper bound. The l.u.b. is also called supremum or
lattice join of X and denoted by supX or ∨X. The notions lower bound of
X and greatest lower bound (g.l.b.) of X are defined dually. The g.l.b. is also
called infimum or lattice meet of X and denoted by infX or ∧X.

The order-based definition for a lattice follows.

Definition 1.1 A lattice is a poset (L,≤) any two of whose elements have
both a greatest lower bound (g.l.b.), denoted by x∧ y, and a least upper bound
(l.u.b.), denoted by x∨y. A lattice (L,≤), or equivalently crisp lattice, is called
complete when each of its subsets X has a l.u.b. and a g.l.b. in L.

Setting X = L in definition 1.1 it follows that a nonvoid complete lattice
contains both a least element and a greatest element denoted, respectively, by
O and I. By definition, an atomic lattice (L,≤) is a complete lattice in which
every element is a joint of atoms.

The algebra-based definition for a lattice follows based on the notion algebra
defined in the Appendix to this chapter.

Definition 1.2 An algebra with two binary operations which satisfy L1-L4 is
a lattice, and conversely.

(L1) x ∧ x = x x ∨ x = x (Idempotent)
(L2) x ∧ y = y ∧ x x ∨ y = y ∨ x (Commutative)
(L3) x ∧ (y ∧ z) = (x ∧ y) ∧ z (Associative)

x ∨ (y ∨ z) = (x ∨ y) ∨ z
(L4) x ∧ (x ∨ y) = x x ∨ (x ∧ y) = x (Absorption)

We remark that definition 1.2 is popular in applications of mathematical
morphology [12, 34, 36]. This work employs mainly definition 1.1.

Both definitions 1.1 and 1.2 regard a crisp lattice, where the binary relation
x ≤ y is either true or false. In particular, if x ≤ y (or, y ≤ x) then x and y
are called comparable; otherwise, x and y are called incomparable or parallel,
symbolically x||y. A simple crisp lattice example is shown next.
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Example 1.1 Let P(A) = {{}, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}} be
the power set of set A = {a, b, c}. It turns out that (P(A),⊆) is a complete
lattice, ordered by set-inclusion, with least and greatest elements O = {} and
I = {a, b, c}, respectively. Fig. 1.1 shows a Hasse diagram of lattice (P(A),⊆)
such that a line segment connects two sets X (below) and Y (above) if and
only if Y covers X. A Hasse- or, equivalently, line- diagram can be drawn only
for a finite lattice.

{ } 

{c}
{b}

{a}

{b,c}{a,c}{a,b}

{a,b,c}

Fig. 1.1. Hasse diagram of the partially-ordered, complete lattice (P(A),⊆), where
“P(A)” is the powerset of set A = {a, b, c} and “⊆” is the set-inclusion relation.

The inverse ≥ of an order relation ≤ is itself an order relation. More
specifically, the order ≥ is called dual (order) of ≤, symbolically also ≤∂ , or
≤−1. Furthermore, the Cartesian product (L,≤) = (L1,≤1) × ... × (LN ,≤N )
of N constituent lattices (L1,≤1), ..., (LN ,≤N ) is a lattice [3]. In particular, if
both (a1, ..., aN ) and (b1, ..., bN ) are in L then (a1, ..., aN ) ≤ (b1, ..., bN ) if and
only if ai ≤ bi, i = 1, ..., N .

Of particular interest here is lattice (τ(L),≤), where τ(L) denotes the set of
intervals in L (including also the empty set) partially-ordered by set-inclusion
— For a definition of an interval see in the Appendix. One way of dealing
with lattice (τ(L),≤) is based on the product lattice (L∂ × L,≤∂ × ≤) [23].

1.3.2 Fuzzy lattices

The binary relation “≤” in a crisp lattice can be fuzzified resulting in a fuzzy
lattice as explained next — Note that a fuzzy set is denoted here by a pair
(U, µ), where U is the universe of discourse and µ is a function µ : U → [0, 1],
namely membership function.

Definition 1.3 A fuzzy lattice is a triple (L,≤, µ), where (L,≤) is a crisp
lattice and (L× L, µ) is a fuzzy set such that µ(x, y) = 1 if and only if x ≤ y.
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Function µ in definition 1.3 is a weak (fuzzy) partial order relation in the
sense that both µ(x, y) = 1 and µ(y, z) = 1 imply µ(x, z) = 1, whereas if
either µ(x, y) 6= 1 or µ(y, z) 6= 1 then µ(x, z) could be any number in [0, 1].
Fuzzification of a lattice can be pursued using either a generalized zeta function
[25] or an inclusion measure function. The latter is defined next [19].

Definition 1.4 Let (L,≤) be a complete lattice with least element O. An in-
clusion measure is a map σ : L × L → [0, 1], which satisfies the following
conditions.

(IM0) σ(x,O) = 0, x 6= O
(IM1) σ(x, x) = 1, ∀x ∈ L
(IM2) x ∧ y < x ⇒ σ(x, y) < 1
(IM3) u ≤ w ⇒ σ(x, u) ≤ σ(x, w) (Consistency Property)

For noncomplete lattices condition (IM0) drops.
We remark that σ(x, y) may be interpreted as a (fuzzy) degree of inclusion

of x in y. Therefore, notations σ(x, y) and σ(x ≤ y) are used interchangably.
Alternative inclusion measure function definitions have been proposed by dif-
ferent authors [9]. If σ : L× L → [0, 1] is an inclusion measure, in the sense of
definition 1.4, then (L,≤, σ) is a fuzzy lattice [18, 19].

1.3.3 Useful functions in a lattice

An inclusion measure can be defined in a crisp lattice (L,≤) based on a positive
valuation function (the latter is defined in the Appendix) as shown next.

Theorem 1.1 If v : L → R is a positive valuation function in a crisp lattice
(L,≤) then both functions (a) k(x, u) = v(u)/v(x ∨ u), and (b) s(x, u) =
v(x ∧ u)/v(x) are inclusion measures.

We point out that a positive valuation in a crisp lattice (L,≤) also defines
a metric function d : L×L → R+

0 given by d(x, y) = v(x∨ y)− v(x∧ y) — For
a definition of a metric see in the Appendix to this chapter.

Given (i) a product lattice (L,≤) = (L1,≤1)× ...× (LN ,≤N ), and (ii) both
a positive valuation v : Li → R and an isomorphic function θi : L∂

i → Li in
a constituent lattice (Li,≤i), i = 1, ..., N — for a definition of an isomorphic
function see in the Appendix to this chapter — then: (1) A positive valuation
v : L → R is given by v(x1, ..., xN ) = v1(x1) + ... + vN (xN ), (2) an isomorphic
function θ : L∂ → L is given by θ(x1, ..., xN ) = (θ1(x1), ..., θN (xN )), and (3)
countably infinite Minkowski metrics dp are given in L by

dp(x,y) = [dp
1(x1, y1) + ... + dp

N (xN , yN )]1/p, (1.2)

where p = 1, 2, ... and di(xi, yi) = vi(xi ∨ yi) − vi(xi ∧ yi), xi, yi ∈ Li,
i = 1, ..., N . In the following, interest focuses on lattices stemming from the
set R of real numbers.
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1.3.4 Lattices stemming from R

Three different lattice examples are shown in Examples 1.2, 1.3, and 1.4 next
including geometric interpretations on the plane.

Example 1.2 Consider the set R of real numbers represented by a line
(Fig. 1.2). It turns out that (R,≤) is a noncomplete lattice including only
comparable elements. Hence, lattice (R,≤) is called totally-ordered or, equiv-
alently, chain. Of particular interest is the complete sublattice (I = [0, 1],≤).

10

Fig. 1.2. The totally-ordered, noncomplete lattice (R,≤) of real numbers. Note that
lattice (I,≤), where I = [0, 1], is a complete one.

Example 1.3 Lattices of interest are both (τ(R),≤) and (τ(I),≤) , where
τ(R) and τ(I) denote the set of (closed) intervals in R and I, respectively. Con-
sider the set of hyperrectangles or, equivalently, hyperboxes, in the partially-
ordered lattice RN . It turns out that a hyperbox is a (lattice) interval in RN .
Moreover, (τ(RN ),≤) denotes the noncomplete lattice of hyperboxes in RN .
Note that τ(RN ) = [τ(R)]N . Of particular interest is complete lattice (IN ,≤),
namely unit-hypercube. The corresponding complete lattice of hyperboxes is
denoted by (τ(IN ),≤) ≡ ([τ(I)]N ,≤). Fig. 1.3 shows (hyper)boxes in lattice
(τ(RN ),≤) for N = 2 (i.e. the plane). The unit-square is also shown.

The diagonal of a hyperbox in RN is defined as follows.

Definition 1.5 The diagonal of a hyperbox [a, b] in RN , where a, b ∈ RN with
a ≤ b, is defined as a nonnegative real function diagp : τ(RN ) → R+

0 given by
diagp([a, b]) = dp(a, b), p = 1, 2, ...

1.3.5 Lattices of generalized intervals

Definition 1.6 (a) A positive generalized interval of height h is a map µh
a,b :

R → {0, h} given by µh
a,b(x) =





h, a ≤ x ≤ b

0, otherwise
, where h ∈ (0, 1]. (b) A

negative generalized interval of height h is a map µh
a,b : R → {0,−h} given by

µh
a,b(x) =




−h, a ≥ x ≥ b

0, otherwise
, where a > b and h ∈ (0, 1].
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10

u

w

v
z

1

Fig. 1.3. Partially-ordered hyperboxes in the noncomplete lattice (RN ,≤) are shown
for N = 2 (i.e. the plane). The complete lattice unit-square is also shown. Box u is
included in box w, i.e. u ≤ w; all the other boxes are incomparable, e.g. w||z, etc.

Note that a generalized interval is a “box” function, either positive or
negative. In the interest of simplicity a generalized interval will be denoted as
[a, b]h, where a ≤ b (a > b) for a positive (negative) generalized interval.

The set of positive (negative) generalized intervals of height h is denoted
by Mh

+(Mh
−). The set of generalized intervals of height h is denoted by Mh,

i.e. Mh = Mh
− ∪Mh

+. It turns out that the set Mh of generalized intervals is
partially ordered; more specifically, Mh is a mathematical lattice [17, 18] with
lattice meet and lattice join given, respectively, by [a, b]h∧[c, d]h = [a∨c, b∧d]h

and [a, b]h ∨ [c, d]h = [a ∧ c, b ∨ d]h. Moreover, the corresponding lattice order
relation [a, b]h ≤ [c, d]h in Mh is equivalent to “c ≤ a”.AND.“b ≤ d”.

Example 1.4 Fig. 1.4 shows elements of lattice Mh. In particular, Fig. 1.4
shows all combinations for generalized intervals of height h as detailed in
[17, 18, 20].

In the totally-ordered lattice R of real numbers any strictly increasing
function fh : R → R is a positive valuation, whereas any strictly decreasing
function θh : R → R is an isomorphic function. Given both fh and θh, a
positive valuation in lattice (Mh,≤) is given by v([a, b]h) = fh(θh(a)) + fh(b).
Therefore, a metric between two generalized intervals is given by

dh([a, b]h, [c, d]h) = [fh(θh(a∧c))−fh(θh(a∨c))]+[fh(b∨d)−fh(b∧d)] (1.3)

Choosing θh(x) = −x and fh such that fh(x) = −fh(−x) it follows
dh([a, b]h, [c, d]h) = [fh(a ∨ c)− fh(a ∧ c)] + [fh(b ∨ d)− fh(b ∧ d)].

The set-union of all Mhs is the set M of generalized intervals, i.e. M =
∪

h∈(0,1]
Mh. Our interest is in generalized intervals [a, b]h with h ∈ (0, 1] because

the latter emerge from α-cuts of fuzzy numbers [18, 22]. It is interesting that



12 Kaburlasos

p

  q

(e)

p q=q

p q=p

h -h

 h 

-h

p

 q

(f)

p q

p q

-h

h

h

 -h

p q

p q

(b)

p  q
 h

 h

-h

p q

p  q

p q

(a)

 h 

 h 

p q

p q

(d)

p   q
-h

h

-h

p q

p  q

(c)

p q

-h
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Fig. 1.4. Demonstrating the lattice- join (p ∨ q) and meet (p ∧ q) for all different
pairs (p, q) of generalized intervals of height h. Different fill-in patterns are used
for partially overlapped generalized intervals. (a) “Intersecting” positive general-
ized intervals. (b) “Nonintersecting” positive generalized intervals. (c) “Intersecting”
negative generalized intervals. (d) “Nonintersecting” negative generalized intervals.
(e) “Intersecting” positive and negative generalized intervals. (f) “Nonintersecting”
positive and negative generalized intervals.

different authors lately have considered the notion “α-fuzzy set” [33], the
latter is identical to the notion “positive generalized interval” here.

The significance of a positive valuation function is demonstrated next.
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Example 1.5 Consider the positive generalized intervals [−1, 0]1 and [3, 4]1.
Let f1(x) = x3 and f2(x) = (1 − e−x)/(1 + e−x) be the two strictly increas-
ing functions shown in Fig. 1.5(a) and Fig. 1.5(b), respectively. Note that
function f1(x) is steeply increasing, whereas function f2(x) is saturated. The
computation of the (metric) distance d1([−1, 0]1, [3, 4]1) using f1(x) equals
d1([−1, 0]1, [3, 4]1) = [f1(3) − f1(−1)] + [f1(4) − f1(−0)] = 65 + 27 = 92.
Whereas, the computation of the (metric) distance d1([−1, 0]1, [3, 4]1) us-
ing f2(x) equals d1([−1, 0]1, [3, 4]1) = [f2(3) − f2(−1)] + [f2(4) − f2(−0)] =
1.3672 + 0.9640 = 2.3312. This example was meant to demonstrate that dif-
ferent positive valuation functions can drastically change the distance between
two intervals. In practice, we often employ parametric positive valuations in
order to introduce tunable nonlinearities by optimal parameter estimation.

-1 0 1 2 3 4

0

10

20

30

40

50

60

-1 0 1 2 3 4
-1

-0.5

0

0.5

1

f1(x)

 x (a) f2(x)

 x 
(b)

Fig. 1.5. Two positive valuation functions are shown on the domain [−1, 4] including
(a) The steeply increasing cubic function f1(x) = x3, and (b) The saturated logistic
function f2(x) = (1− e−x)/(1 + e−x).

The space Mh of generalized intervals is a real linear space [18, 22] with

• addition defined as [a, b]h + [c, d]h = [a + c, b + d]h.
• multiplication (by k ∈ R) defined as k[a, b]h = [ka, kb]h.

A subset C of a linear space is called cone if for all x ∈ C and a real
number λ > 0 we have λx ∈ C. It turns out that both Mh

+ and Mh
− are cones.
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1.3.6 The lattice of Fuzzy Interval Numbers (FINs)

Consider the following definition.

Definition 1.7 A Fuzzy Interval Number, or FIN for short, is a function
F : (0, 1] → M such that (1) F (h) ∈ Mh, (2) either F (h) ∈ Mh

+ (positive
FIN), or F (h) ∈ Mh

− (negative FIN) for all h ∈ (0, 1], and (3) h1 ≤ h2 ⇒ {x :
F (h1) 6= 0} ⊇ {x : F (h2) 6= 0}.

A FIN F can be written as the set union of generalized intervals; in par-
ticular, F = ∪

h∈(0,1]
{[a(h), b(h)]h}, where both interval-ends a(h) and b(h) are

functions of h ∈ (0, 1]. The set of FINs is denoted by F. More specifically, the
set of positive (negative) FINs is denoted by F+ (F−).

Example 1.6 Fig. 1.6 shows a positive FIN. The only restriction is that a
FIN’s membership function needs to be “convex”.

F(h2)

 F(h1)

 F 

 h2

 h1

 1 

 0 

Fig. 1.6. A positive FIN F = ∪
h∈(0,1]

{F (h)} is the set-union of positive generalized

intervals F (h), h ∈ (0, 1].

We define an interval-FIN as F = ∪
h∈(0,1]

{[a(h), b(h)]h}, where both a(h)

and b(h) are constant, i.e. a(h) = a and b(h) = b. In particular, for a = b
an interval-FIN is called trivial-FIN. In the aforementioned sense F+ includes
both (fuzzy) numbers and intervals.

We remark that a FIN is a mathematical object, which can be interpreted
either as a possibility distribution (i.e. a fuzzy number) or as a probability
distribution, etc. [17, 18, 22]. An ordering relation has been introduced in F
as follows: F1 ≤ F2 ⇔ F1(h) ≤ F2(h), ∀h ∈ (0, 1]. It turns out that F is a
mathematical lattice. The following proposition introduces a metric in F.
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Proposition 1.1 Let F1 and F2 be FINs in the lattice F of FINs. A metric
function dK : F× F → R+

0 is given by

dK(F1, F2) =

1∫

0

dh(F1(h), F2(h))dh (1.4)

Based on dK , a metric D : FN ×FN → R+
0 can be defined between two N -

dimensional FINs F1 = [F1,1, ..., F1,N ]T and F2 = [F2,1, ..., F2,N ]T as follows.

D(F1,F2) =

√√√√
N∑

i=1

d2
K(F1,i, F2,i) (1.5)

We remark that formula (1.5) may involve a vector x = [x1, ..., xN ]T ∈ RN

under the assumption that a vector entry xi (number) is represented by the
trivial-FIN xi = ∪

h∈(0,1]
{[xi, xi]h}, i = 1, ..., N .

Addition and multiplication are extended from Mh to F as follows.

• The product kF1, where k ∈ R and F1 ∈ F, is defined as Fp : Fp(h) =
kF1(h), h ∈ (0, 1].

• The sum F1+F2, where F1, F2 ∈ F is defined as Fs : Fs(h) = (F1+F2)(h) =
F1(h) + F2(h), h ∈ (0, 1].

We remark that, on the one hand, the product kF1 is always a FIN. On the
other hand, when both F1 and F2 are in cone F+ (F−) then the sum F1 + F2

is in cone F+ (F−). However, if F1 ∈ F+ and F2 ∈ F− then F1 + F2 might not
be a FIN. The interest of this work is in positive FINs.

1.3.7 Practical FIN representation

From a practical viewpoint a FIN F is represented in the computer memory by

a L × 2 matrix




a1 b1

a2 b2

...
...

aL bL


 of real numbers, where L is a user-defined number

of levels h1, h2, ..., hL such that 0 < h1 ≤ h2 ≤ ... ≤ hL = 1; that is, FIN
F equals F = ∪

i∈{1,...,L}
{[ai, bi]hi}. In our experiments we usually use either

L = 16 or L = 32 levels, spaced equally in the interval [0, 1].
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1.4 Enhancement of Both Fuzzy-ART and SOM

Based on the lattice-theoretic notions and tools presented previously, this
section describes enhancements of both fuzzy-ART and SOM, namely fuzzy
lattice reasoning (FLR) and granular SOM (grSOM), respectively, for super-
vised granular learning. We point out that the FLR is based on an inclusion
measure function, whereas the grSOM is based on a metric function. Both
aforementioned functions are used here in the lattice F+ of positive FINs.

1.4.1 FLR: An enhancement of fuzzy-ART for classification

Algorithm FLR for training is presented next followed by algorithm FLR for
testing. Both algorithms are applied on interval-FINs.

Algorithm FLR for training

FLR-0: A rule-base RB = {(u1, C1), ..., (uL, CL)} is given, where ui ∈ FN
+ is a

hyperbox and Ci ∈ C, i = 1, ..., L is a class label — Note that C is a finite
set of class labels.

FLR-1: Present the next input pair (xi, ci) ∈ FN
+ × C, i = 1, ..., n to the initially

“set” RB.
FLR-2: If no more pairs are “set” in RB then store input pair (xi, ci) in RB;

L ← L + 1; goto step FLR-1.
Else, compute the fuzzy degree of inclusion k(xi ≤ ul), l ∈ {1, ..., L} of
input hyperbox xi to all “set” hyperboxes ui, i = 1, ..., L in RB.

FLR-3: Competition among the “set” pairs in the RB: Winner is pair (uJ , CJ )
such that J

.= arg max
l∈{1,...,L}

k(xi ≤ ul). In case of multiple winners, choose

the one with the smallest diagonal size.
FLR-4: The Assimilation Condition: Both (1) diag(xi ∨ uJ) is less than a maxi-

mum user-defined threshold size Dcrit, and (2) ci = CJ .
FLR-5: If the Assimilation Condition is not satisfied then “reset” the winner pair

(uJ , CJ); goto step FLR-2.
Else, replace the winner hyperbox uJ by the join-interval xi ∨ uJ ; goto
step FLR-1.

Algorithm FLR for testing

flr-0: Consider a rule-base RB = {(u1, C1), ..., (uL, CL)}.
flr-1: Present a hyperbox x0 ∈ FN

+ to the rule base RB.
flr-2: Compute the fuzzy degree of inclusion k(x0 ≤ ul), l ∈ {1, ..., L} of hyper-

box x0 in all hyperboxes ui, i = 1, ..., L in the RB.
flr-3: Competition among the hyperboxes in RB: Winner is pair (uJ , CJ ) such

that J
.= arg max

l∈{1,...,L}
k(xi ≤ ul).

flr-4: Hyperbox x0 is classified to the class with label CJ .
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By “hyperbox” above we mean “interval-FIN”. We remark that the FLR
has been described as a rule-based classifier [19], where a hyperbox h is as-
signed a class label thus corresponding to the following rule: If a point p is
inside hyperbox h (let the latter by labeled by c) then p is in class c. For
points outside all hyperboxes, as well as for points inside overlapping hyper-
boxes, inclusion measure k is used to assign a class. Note also that FLR has
been implemented on a neural network architecture [18, 23].

There are inherent similarities as well as substantial differences between
fuzzy-ART and FLR. In particular, both fuzzy-ART and FLR carry out learn-
ing rapidly in a single pass through the training data by computing hyperboxes
in their data domain. Note that a computed hyperbox corresponds to the core
of a fuzzy set and it can be interpreted as an information granule (cluster).

Advantages of FLR over fuzzy-ART include (1) comprehensiveness, (2)
flexibility, and (3) versatility as summarized next [23]. (1) The FLR can handle
intervals (granules), whereas fuzzy-ART deals solely with trivial intervals the
latter are points in the unit-hypercube. (2) It is possible to optimize FLR’s
behavior by tuning an underlying positive valuation function v as well as an
isomorphic function θ, whereas fuzzy-ART implicitly uses, quite restrictively,
only v(x) = x and θ(x) = 1 − x. (3) The FLR can handle general lattice
elements including points in the unit-hypercube, the latter is fuzzy-ART’s
sole application domain.

In addition, the FLR can deal with “missing” data as well as with “don’t
care” data in a constituent complete-lattice by replacing the aforementioned
data by the least and the greatest element, respectively, in the corresponding
constituent lattice [23].

Both of fuzzy-ART’s choice (Weber) function and match function cor-
respond to FLR’s inclusion measure function “k”. Moreover, fuzzy-ART’s
complement coding technique corresponds to a specific isomorphic function,
namely θ(x) = 1 − x. Apparently, choosing a different isomorphic function
than θ(x) = 1− x results in a different “coding” technique [18, 23].

Let fi and θi be strictly-increasing and strictly-decreasing functions, re-
spectively, in a constituent lattice R in RN . A typical assumption for both
fuzzy-ART and FLR is to select fi and θi such that equation v([a, b]) =
1+diag1([a, b]) is satisfied [19]. On the one hand, two popular functions fi and
θi in the complete lattice unit-interval [0, 1] are fi(x) = x and θi(x) = 1− x.
On the other hand, two popular functions fi and θi in the noncomplete lattice
R are fi(x) = 1/(1 + e−λ(x−x0)) and θi(x) = 2x0 − x.

Inclusion measure “k” above retains an Occam razor semantic interpre-
tation as detailed in [19]. In particular, winner of the competition in steps
FLR-3/flr-3 above is the hyperbox whose diagonal needs to be modified the
least so as to “barely” include an input datum/hyperbox.

The FLR was interpreted lately as a reasoning scheme, which supports two
different modes of reasoning, namely Generalized Modus Ponens and Reason-
ing by Analogy [19]. A novel interpretation is presented here as follows. In-
clusion measure k(p ≤ q) is interpreted as the degree of truth of implication
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“p ⇒ q” involving the truth values p and q, respectively, of two propositions.
Note that various mechanisms have been proposed in the literature for calcu-
lating the degree of truth of an implication “p ⇒ q” given the truth values p
and q [14]. The basic difference here is that the truth values p and q of the
two propositions involved in implication “p ⇒ q” take on values in a general
complete lattice [11] rather than taking on values solely in the unit-interval
[0, 1]. However, the truth of implication “p ⇒ q” takes on values in the unit-
interval [0, 1]. More specifically, the truth of implication “p ⇒ q” is calculated
as k(p ⇒ q) = v(q)/v(p ∨ q). In conclusion, the FLR carries out interactively
tunable inferences. A couple of FLR drawbacks are described next.

Fuzzy-ART’s proliferation problem, that is the proliferation of hyper-
boxes/clusters, is inherited to FLR. However, FLR is equipped with tools such
as an inclusion measure as well as a metric function to reduce “in principle”
the number of hyperboxes.

Another drawback of FLR, also inherited from fuzzy-ART, is that the
learned clusters (in particular their total number, size, and location) depend
on the order of presenting the training data. A potential solution is to employ
an ensemble of FLR classifiers in order to boost performance stably [18].

1.4.2 grSOM: An enhancement of SOM for classification

Algorithm FLR is applicable in the space F+ of (positive) FINs. Algorithm
grSOM for learning (training) is presented next followed by algorithm grSOM
for generalization (testing).

Algorithm grSOM for training

GR-0: Define the size L of a L× L grid of neurons. Each neuron can store both
a N -dimensional FIN Wi,j ∈ FN

+ , i, j ∈ 1, ..., L and a class label Ci,j ∈ C,
where C is a finite set. Initially all neurons are uncommitted.

GR-1: Memorize the first training data pair (x1, C1) ∈ FN
+ × C by committing,

randomly, a neuron in the L× L grid.
Repeat the following steps a user-defined number Nepochs of epochs, p =
1, ..., Nepochs.

GR-2: For each training datum (xk, Ck) ∈ FN
+ × C, k = 1, ..., n “reset” all L× L

grid neurons. Then carry out the following computations.
GR-3: Calculate the Minkowski metric d1(xk,Wi,j) between xk and committed

neurons Wi,j i, j ∈ {1, ..., L}.
GR-4: Competition among the “set” (and, committed) neurons in the L × L

grid: Winner is neuron (I, J) whose weight WI,J is the nearest to xk, i.e.
(I, J) .= arg min

i,j∈{1,...,L}
d1(xk,Wi,j).

GR-5: Assimilation Condition: Both (1) Vector Wi,j is in the neighborhood of
vector WI,J on the L× L grid, and (2) CI,J = Ck.
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GR-6: If the Assimilation Condition is satisfied then compute a new value W ′
i,j

as follows:
W ′

i,j =
[
1− h(k)

1+dK(WI,J ,Wi,j)

]
Wi,j + h(k)

1+dK(WI,J ,Wi,j)
xk.

Else, if the Assimilation Condition is not satisfied, “reset” the winner
(I, J); goto GR-4.

GR-7: If all the L×L neurons are “reset” then commit an uncommitted neuron
from the grid to memorize the current training datum (xk, Ck).
If there are no more uncommitted neurons then increase L by one.

Algorithm grSOM for testing

gr-0: Present x0 ∈ FN
+ to a trained grSOM.

gr-1: Calculate the Minkowski metric d1(x0,Wi,j) for committed neurons Wi,j ,
i, j ∈ {1, ..., L}.

gr-2: Competition among the committed neurons in the L× L grid: Winner is
neuron (I, J) such that (I, J) .= arg min

i,j∈{1,...,L}
d1(x0,Wi,j).

gr-3: The class C0 of x0 equals C0
.= CI,J .

Function “h(k)”, in the training phase above, reduces smoothly from
1 down to 0 with the epoch number k. The above algorithm is called
incremental-grSOM [20]. It differs from another grSOM algorithm, namely
greedy-grSOM [22], in that only the incremental-grSOM employs convex com-
binations of (positive) FINs. Both grSOM and SOM partition the data domain
in Voronoi-regions, and each one of the aforementioned regions can also be
interpreted as an information granule.

A fundamental improvement of grSOM over SOM is the sound capacity of
grSOM to rigorously deal with nonnumeric data including both fuzzy numbers
and intervals represented by FINs. However, the decision-making function of
grSOM (as well as the corresponding function of SOM) does not admit a
logical/linguistic interpretation. Rather, since the aforementioned function is
an energy-type objective function, that is a metric, optimization is pursued
during learning using energy minimization techniques.

1.5 Conclusion

This chapter was meant as a reference towards proliferating the employment
of both fuzzy-ART and SOM in granular classification applications. Enhance-
ments of fuzzy-ART as well as of SOM were presented, namely FLR and
grSOM, respectively. FLR/grSOM is applicable in the lattice of fuzzy interval
numbers, or FINs for short, including both (fuzzy) numbers and intervals.
The FLR was interpreted as a reasoning scheme, whereas the grSOM was
interpreted as an energy minimizer. The employment of mathematical lattice
theory was instrumental for introducing useful tools.
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Ample experimental evidence suggests that FLR and/or grSOM can com-
paratively improve classification performance [18, 19, 20, 21, 22, 23].

Future work will consider alternative granular inputs to modified FLR
/grSOM classifiers including type-2 fuzzy set inputs, rough set inputs, etc. In
addition, fuzzy logic reasoning applications [15, 28] will be pursued.
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Chapter 1 Appendix

A poset is a pair (P,≤), where P is a set and ≤ is a binary partial order
relation defined next.

Definition 1.8 A partial order relation satisfies the following laws.
(PO1) x ≤ x (Reflexivity)
(PO2) x ≤ y and y ≤ x ⇒ x = y (Antisymmetry)
(PO3) x ≤ y and y ≤ z ⇒ x ≤ z (Transitivity)

We remark that relation < means both ≤ and 6=.

Definition 1.9 An algebra is a pair (S, F ), where S is a non-empty set, and
F is a set of operations fa, each mapping a power Sn(a) of S into S for some
non-negative finite integer n(a).

We remark that each operation fa assigns to every n(a)-ple (x1, . . . , xn(a))
of elements of S, an element fa(x1, . . . , xn(a)) in S, the result of performing
the operation fa on the sequence x1, . . . , xn(a). In particular, if n(a) = 1, the
operation fa is called unary ; if n(a) = 2, it is called binary, etc.

Definition 1.10 An interval [a, b], with a ≤ b in a poset (P,≤), is defined as
the set [a, b] = {x ∈ P : a ≤ x ≤ b}.
Definition 1.11 A positive valuation in a crisp lattice (L,≤) is a real func-
tion v : L → R, which satisfies both

(PV 1) v(x) + v(y) = v(x ∧ y) + v(x ∨ y), and
(PV 2) x < y ⇒ v(x) < v(y).

Definition 1.12 A metric in a set A is a nonnegative real function d : A ×
A → R+

0 , which satisfies
(D0) d(x, y) = 0 ⇒ x = y
(D1) d(x, x) = 0
(D2) d(x, y) = d(y, x)
(D3) d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

If only conditions D1, D2, and D3 are satisfied then function d is called
pseudo-metric. We remark that a metric space is a pair (A, d) including both
a set A and a metric d : A×A → R+

0 .

Definition 1.13 Let P and Q be posets. A map ψ : P → Q is called
(i) Order-perserving (or, alternatively, monotone), if x ≤ y in P implies

ψ(x) ≤ ψ(y) in Q.
(ii) Order-isomorphism (or, simply, isomorphism), if both x ≤ y in P ⇔

ψ(x) ≤ ψ(y) in Q and “ψ is onto Q”.

We remark that when there is an isomorphism from P to Q, then P and
Q are called isomorphic, symbolically P ∼= Q; moreover, the corresponding
function ψ is called isomorphic (function).


